Добірка наукової літератури з теми "CONTEXT-AWARE RECOMMENDER"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "CONTEXT-AWARE RECOMMENDER".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "CONTEXT-AWARE RECOMMENDER"
Adomavicius, Gediminas, Bamshad Mobasher, Francesco Ricci, and Alexander Tuzhilin. "Context-Aware Recommender Systems." AI Magazine 32, no. 3 (October 31, 2011): 67. http://dx.doi.org/10.1609/aimag.v32i3.2364.
Повний текст джерелаWANG, Li-Cai, Xiang-Wu MENG, and Yu-Jie ZHANG. "Context-Aware Recommender Systems." Journal of Software 23, no. 1 (March 5, 2012): 1–20. http://dx.doi.org/10.3724/sp.j.1001.2012.04100.
Повний текст джерелаPisotskyi, Marian, and Alexey Botchkaryov. "Online Video Platform with Context-aware Content-based Recommender System." Advances in Cyber-Physical Systems 6, no. 1 (January 23, 2021): 46–53. http://dx.doi.org/10.23939/acps2021.01.046.
Повний текст джерелаQassimi, Sara, El Hassan Abdelwahed, and Meriem Hafidi. "Folksonomy Graphs Based Context-Aware Recommender System Using Spectral Clustering." International Journal of Machine Learning and Computing 10, no. 1 (January 2020): 63–68. http://dx.doi.org/10.18178/ijmlc.2020.10.1.899.
Повний текст джерелаKavu, Tatenda D., Kudakwashe Dube, and Peter G. Raeth. "Holistic User Context-Aware Recommender Algorithm." Mathematical Problems in Engineering 2019 (September 29, 2019): 1–15. http://dx.doi.org/10.1155/2019/3965845.
Повний текст джерелаAli, Waqar, Jay Kumar, Cobbinah Bernard Mawuli, Lei She, and Jie Shao. "Dynamic context management in context-aware recommender systems." Computers and Electrical Engineering 107 (April 2023): 108622. http://dx.doi.org/10.1016/j.compeleceng.2023.108622.
Повний текст джерелаIqbal, Misbah, Mustansar Ali Ghazanfar, Asma Sattar, Muazzam Maqsood, Salabat Khan, Irfan Mehmood, and Sung Wook Baik. "Kernel Context Recommender System (KCR): A Scalable Context-Aware Recommender System Algorithm." IEEE Access 7 (2019): 24719–37. http://dx.doi.org/10.1109/access.2019.2897003.
Повний текст джерелаNaha, Sanchita, and Sudeep Marwaha. "Context-Aware Recommender System for Maize Cultivation." Journal of Community Mobilization and Sustainable Development 15, no. 2 (2020): 485–90. http://dx.doi.org/10.5958/2231-6736.2020.00034.
Повний текст джерелаKumar, Rajeev, B. K. Verma, and Shyam Sunder Rastogi. "Context-aware Social Popularity based Recommender System." International Journal of Computer Applications 92, no. 2 (April 18, 2014): 37–42. http://dx.doi.org/10.5120/15985-4907.
Повний текст джерелаWoerndl, Wolfgang, Michele Brocco, and Robert Eigner. "Context-Aware Recommender Systems in Mobile Scenarios." International Journal of Information Technology and Web Engineering 4, no. 1 (January 2009): 67–85. http://dx.doi.org/10.4018/jitwe.2009010105.
Повний текст джерелаДисертації з теми "CONTEXT-AWARE RECOMMENDER"
Liu, Xiaohu. "Context-aware recommender systems for implicit data." Thesis, University of York, 2014. http://etheses.whiterose.ac.uk/13237/.
Повний текст джерелаAl-Ghossein, Marie. "Context-aware recommender systems for real-world applications." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLT008/document.
Повний текст джерелаRecommender systems have proven to be valuable tools to help users overcome the information overload, and significant advances have been made in the field over the last two decades. In particular, contextual information has been leveraged to model the dynamics occurring within users and items. Context is a complex notion and its traditional definition, which is adopted in most recommender systems, fails to cope with several issues occurring in real-world applications. In this thesis, we address the problems of partially observable and unobservable contexts in two particular applications, hotel recommendation and online recommendation, challenging several aspects of the traditional definition of context, including accessibility, relevance, acquisition, and modeling.The first part of the thesis investigates the problem of hotel recommendation which suffers from the continuous cold-start issue, limiting the performance of classical approaches for recommendation. Traveling is not a frequent activity and users tend to have multifaceted behaviors depending on their specific situation. Following an analysis of the user behavior in this domain, we propose novel recommendation approaches integrating partially observable context affecting users and we show how it contributes in improving the recommendation quality.The second part of the thesis addresses the problem of online adaptive recommendation in streaming environments where data is continuously generated. Users and items may depend on some unobservable context and can evolve in different ways and at different rates. We propose to perform online recommendation by actively detecting drifts and updating models accordingly in real-time. We design novel methods adapting to changes occurring in user preferences, item perceptions, and item descriptions, and show the importance of online adaptive recommendation to ensure a good performance over time
Li, Siying. "Context-aware recommender system for system of information systems." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2602.
Повний текст джерелаWorking collaboratively is no longer an issue but a reality, what matters today is how to implement collaboration so that it is as successful as possible. However, successful collaboration is not easy and is conditioned by different factors that can influence it. It is therefore necessary to take these impacting factors into account within the context of collaboration for promoting the effectiveness of collaboration. Among the impacting factors, collaborator is a main one, which is closely associated with the effectiveness and success of collaborations. The selection and/or recommendation of collaborators, taking into account the context of collaboration, can greatly influence the success of collaboration. Meanwhile, thanks to the development of information technology, many collaborative tools are available, such as e-mail and real-time chat tools. These tools can be integrated into a web-based collaborative work environment. Such environments allow users to collaborate beyond the limit of geographical distances. During collaboration, users can utilize multiple integrated tools, perform various activities, and thus leave traces of activities that can be exploited. This exploitation will be more precise when the context of collaboration is described. It is therefore worth developing web-based collaborative work environments with a model of the collaboration context. Processing the recorded traces can then lead to context-aware collaborator recommendations that can reinforce the collaboration. To generate collaborator recommendations in web-based Collaborative Working Environments, this thesis focuses on producing context-aware collaborator recommendations by defining, modeling, and processing the collaboration context. To achieve this, we first propose a definition of the collaboration context and choose to build a collaboration context ontology given the advantages of the ontology-based modeling approach. Next, an ontologybased semantic similarity is developed and applied in three different algorithms (i.e., PreF1, PoF1, and PoF2) to generate context-aware collaborator recommendations. Furthermore, we deploy the collaboration context ontology into web-based Collaborative Working Environments by considering an architecture of System of Information Systems from the viewpoint of web-based Collaborative Working Environments. Based on this architecture, a corresponding prototype of web-based Collaborative Working Environment is then constructed. Finally, a dataset of scientific collaborations is employed to test and evaluate the performances of the three context-aware collaborator recommendation algorithms
Hoque, Tania Tanzin. "A context aware recommender system for tourism with ambient intelligence." Master's thesis, Universidade de Évora, 2020. http://hdl.handle.net/10174/27906.
Повний текст джерелаAgagu, Tosin. "Recommendation Approaches Using Context-Aware Coupled Matrix Factorization." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/37012.
Повний текст джерелаStrand, Anton, and Markus Gunnarsson. "Code Reviewer Recommendation : A Context-Aware Hybrid Approach." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18288.
Повний текст джерелаThollot, Raphaël. "Dynamic situation monitoring and Context-Aware BI recommendations." Phd thesis, Ecole Centrale Paris, 2012. http://tel.archives-ouvertes.fr/tel-00718917.
Повний текст джерелаAlghamdi, Hamzah. "E-Tourism: Context-Aware Points of Interest Finder and Trip Designer." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/35676.
Повний текст джерелаSauer, Christian Severin. "Knowledge elicitation and formalisation for context and explanation-aware computing with case-based recommender systems." Thesis, University of West London, 2016. http://repository.uwl.ac.uk/id/eprint/2226/.
Повний текст джерелаAkermi, Imen. "A hybrid model for context-aware proactive recommendation." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30101/document.
Повний текст джерелаJust-In-Time recommender systems involve all systems able to provide recommendations tailored to the preferences and needs of users in order to help them access useful and interesting resources within a large data space. The user does not need to formulate a query, this latter is implicit and corresponds to the resources that match the user's interests at the right time. Our work falls within this framework and focuses on developing a proactive context-aware recommendation approach for mobile devices that covers many domains. It aims at recommending relevant items that match users' personal interests at the right time without waiting for the users to initiate any interaction. Indeed, the development of mobile devices equipped with persistent data connections, geolocation, cameras and wireless capabilities allows current context-aware recommender systems (CARS) to be highly contextualized and proactive. We also take into consideration to which degree the recommendation might disturb the user. It is about balancing the process of recommendation against intrusive interruptions. As a matter of fact, there are different factors and situations that make the user less open to recommendations. As we are working within the context of mobile devices, we consider that mobile applications functionalities such as the camera, the keyboard, the agenda, etc., are good representatives of the user's interaction with his device since they somehow stand for most of the activities that a user could use in a mobile device in a daily basis such as texting messages, chatting, tweeting, browsing or taking selfies and pictures
Книги з теми "CONTEXT-AWARE RECOMMENDER"
1st, Kala K. U., and Nandhini M. 2nd. Deep Learning Model for Categorical Context Adaptation in Sequence-Aware Recommender Systems. INSC International Publisher (IIP), 2021.
Знайти повний текст джерелаЧастини книг з теми "CONTEXT-AWARE RECOMMENDER"
Adomavicius, Gediminas, and Alexander Tuzhilin. "Context-Aware Recommender Systems." In Recommender Systems Handbook, 217–53. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-0-387-85820-3_7.
Повний текст джерелаAdomavicius, Gediminas, and Alexander Tuzhilin. "Context-Aware Recommender Systems." In Recommender Systems Handbook, 191–226. Boston, MA: Springer US, 2015. http://dx.doi.org/10.1007/978-1-4899-7637-6_6.
Повний текст джерелаNegre, Elsa, Franck Ravat, and Olivier Teste. "OLAP Queries Context-Aware Recommender System." In Lecture Notes in Computer Science, 127–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98812-2_9.
Повний текст джерелаZheng, Yong, Bamshad Mobasher, and Robin Burke. "Emotions in Context-Aware Recommender Systems." In Human–Computer Interaction Series, 311–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31413-6_15.
Повний текст джерелаMiao, Huiyu, Bingqing Luo, and Zhixin Sun. "An Improved Context-Aware Recommender Algorithm." In Intelligent Computing Theories and Application, 153–62. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42291-6_15.
Повний текст джерелаZhong, Jinfeng, and Elsa Negre. "Context-Aware Explanations in Recommender Systems." In Progresses in Artificial Intelligence & Robotics: Algorithms & Applications, 76–85. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98531-8_8.
Повний текст джерелаInzunza, Sergio, and Reyes Juárez-Ramírez. "A Comprehensive Context-Aware Recommender System Framework." In Computer Science and Engineering—Theory and Applications, 1–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74060-7_1.
Повний текст джерелаHerzog, Daniel, and Wolfgang Wörndl. "Mobile and Context-Aware Event Recommender Systems." In Lecture Notes in Business Information Processing, 142–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66468-2_8.
Повний текст джерелаDixit, Veer Sain, and Parul Jain. "Weighted Percentile-Based Context-Aware Recommender System." In Advances in Intelligent Systems and Computing, 377–88. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1822-1_35.
Повний текст джерелаTang, Tiffany Y., Pinata Winoto, and Gordon McCalla. "Further Thoughts on Context-Aware Paper Recommendations for Education." In Recommender Systems for Technology Enhanced Learning, 159–73. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0530-0_8.
Повний текст джерелаТези доповідей конференцій з теми "CONTEXT-AWARE RECOMMENDER"
Adomavicius, Gediminas, and Alexander Tuzhilin. "Context-aware recommender systems." In the 2008 ACM conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1454008.1454068.
Повний текст джерелаAbbas, Manzar, Muhammad Usman Riaz, Asad Rauf, Muhammad Taimoor Khan, and Shehzad Khalid. "Context-aware Youtube recommender system." In 2017 International Conference on Information and Communication Technologies (ICICT). IEEE, 2017. http://dx.doi.org/10.1109/icict.2017.8320183.
Повний текст джерелаElahi, Mehdi. "Context-aware intelligent recommender system." In the 15th international conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1719970.1720045.
Повний текст джерелаJain, Rajshree, Jaya Tyagi, Sandeep Kumar Singh, and Taj Alam. "Hybrid context aware recommender systems." In ADVANCEMENT IN MATHEMATICAL SCIENCES: Proceedings of the 2nd International Conference on Recent Advances in Mathematical Sciences and its Applications (RAMSA-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5008707.
Повний текст джерелаUnger, Moshe. "Latent Context-Aware Recommender Systems." In RecSys '15: Ninth ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2792838.2796546.
Повний текст джерелаRicci, Francesco. "Context-aware music recommender systems." In the 21st international conference companion. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2187980.2188215.
Повний текст джерелаKahng, Minsuk, Sangkeun Lee, and Sang-goo Lee. "Ranking in context-aware recommender systems." In the 20th international conference companion. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1963192.1963226.
Повний текст джерелаCella, Leonardo. "Efficient Context-Aware Sequential Recommender System." In Companion of the The Web Conference 2018. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3184558.3191581.
Повний текст джерелаAdomavicius, Gediminas, Konstantin Bauman, Bamshad Mobasher, Francesco Ricci, Alexander Tuzhilin, and Moshe Unger. "Workshop on context-aware recommender systems." In RecSys '19: Thirteenth ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3298689.3346954.
Повний текст джерелаPichl, Martin, Eva Zangerle, and Günther Specht. "Improving Context-Aware Music Recommender Systems." In ICMR '17: International Conference on Multimedia Retrieval. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3078971.3078980.
Повний текст джерела