Добірка наукової літератури з теми "Constrained Zonotopes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Constrained Zonotopes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Constrained Zonotopes"

1

Raghuraman, Vignesh, and Justin P. Koeln. "Set operations and order reductions for constrained zonotopes." Automatica 139 (May 2022): 110204. http://dx.doi.org/10.1016/j.automatica.2022.110204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hamdi, Walid, Wissal Bey, and Naceur Benhadj Braiek. "Stabilization of constrained uncertain systems by an off-line approach using zonotopes." Advances in Science, Technology and Engineering Systems Journal 3, no. 1 (January 2018): 281–87. http://dx.doi.org/10.25046/aj030134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Scott, Joseph K., Davide M. Raimondo, Giuseppe Roberto Marseglia, and Richard D. Braatz. "Constrained zonotopes: A new tool for set-based estimation and fault detection." Automatica 69 (July 2016): 126–36. http://dx.doi.org/10.1016/j.automatica.2016.02.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ocampo-Martinez, C., P. Guerra, V. Puig, and J. Quevedo. "Actuator fault-tolerance evaluation of linear constrained model predictive control using zonotope-based set computations." Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 221, no. 6 (September 1, 2007): 915–26. http://dx.doi.org/10.1243/09596518jsce340.

Повний текст джерела
Анотація:
This paper presents a computational procedure to evaluate the fault tolerance of a linear-constrained model predictive control (LCMPC) scheme for a given actuator fault configuration (AFC). Faults in actuators cause changes in the constraints related to control signals (inputs), which in turn modify the set of MPC feasible solutions. This fact may result in an empty set of admissible solutions for a given control objective. Therefore, the admissibility of the control law facing actuator faults can be determined by knowing the set of feasible solutions. One of the aims of this paper is to provide methods to compute this set and to evaluate the admissibility of the control law for a given AFC, once the control objective and the admissibility criteria have been established. In particular, the admissible solution set for the predictive control problem, including the effect of faults (either through reconfiguration or accommodation), is determined using an algorithm that is implemented using set computations based on zonotopes. Finally, the proposed method is tested on a real application consisting of a part of the Barcelona sewer network.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rego, Brenner S., Davide M. Raimondo, and Guilherme V. Raffo. "Set-based state estimation and fault diagnosis of linear discrete-time descriptor systems using constrained zonotopes." IFAC-PapersOnLine 53, no. 2 (2020): 4291–96. http://dx.doi.org/10.1016/j.ifacol.2020.12.2484.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rego, Brenner S., Joseph K. Scott, Davide M. Raimondo, and Guilherme V. Raffo. "Set-valued state estimation of nonlinear discrete-time systems with nonlinear invariants based on constrained zonotopes." Automatica 129 (July 2021): 109638. http://dx.doi.org/10.1016/j.automatica.2021.109638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rego, Brenner S., Guilherme V. Raffo, Joseph K. Scott, and Davide M. Raimondo. "Guaranteed methods based on constrained zonotopes for set-valued state estimation of nonlinear discrete-time systems." Automatica 111 (January 2020): 108614. http://dx.doi.org/10.1016/j.automatica.2019.108614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xu, Zhanpeng, Xiaoqian Chen, Yiyong Huang, Yuzhu Bai, and Qifeng Chen. "Collision prediction and avoidance for satellite ultra-close relative motion with zonotope-based reachable sets." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 11 (November 14, 2018): 3920–37. http://dx.doi.org/10.1177/0954410018810255.

Повний текст джерела
Анотація:
Collision prediction and avoidance are critical for satellite proximity operations, and the key is the treatment of satellites' motion uncertainties and shapes, especially for ultra-close autonomous systems. In this paper, the zonotope-based reachable sets are utilized to propagate the uncertainties. For satellites with slender structures (such as solar panels), their shapes are simplified as cuboids which is a special class of zonotopes, instead of the classical sphere approach. The domains in position subspace influenced by the uncertainties and shapes are determined, and the relative distance is estimated to assess the safety of satellites. Moreover, with the approximation of the domains, the worst-case uncertainties for path constraints are determined, and a robust model predictive control method is proposed to deal with the line of sight and obstacle avoidance constraints. With zonotope representations of satellites, the proposed robust model predictive control is capable of handling the shapes of the satellite and obstacle simultaneously. Numerical simulations demonstrate the effectiveness of the proposed methods with an elliptic reference orbit. 1
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ping, Xubin, and Ning Sun. "Dynamic Output Feedback Robust Model Predictive Control via Zonotopic Set-Membership Estimation for Constrained Quasi-LPV Systems." Journal of Applied Mathematics 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/875850.

Повний текст джерела
Анотація:
For the quasi-linear parameter varying (quasi-LPV) system with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC) is investigated. The estimation error set is represented by a zonotope and refreshed by the zonotopic set-membership estimation method. By properly refreshing the estimation error set online, the bounds of true state at the next sampling time can be obtained. Furthermore, the feasibility of the main optimization problem at the next sampling time can be determined at the current time. A numerical example is given to illustrate the effectiveness of the approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Zixing, Ziyun Wang, Yan Wang, and Zhicheng Ji. "Sensor fault estimation based on the constrained zonotopic Kalman filter." International Journal of Robust and Nonlinear Control 31, no. 12 (June 3, 2021): 5984–6006. http://dx.doi.org/10.1002/rnc.5629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Constrained Zonotopes"

1

Kabi, Bibek. "Synthesizing invariants : a constraint programming approach based on zonotopic abstraction." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX017.

Повний текст джерела
Анотація:
Les systèmes dynamiques sont des modèles mathématiques pour décrire l'évolution temporelle de l'état d'un système. Il y a deux classes de systèmes dynamiques pertinentes à cette thèse : les systèmes discrets et les systèmes continus. Dans les systèmes dynamiques discrets (ou les programmes informatiques classiques), l'état évolue avec un pas de temps discrets. Dans les systèmes dynamiques continus, l'état du système est fonction du temps continu, et son évolution caractérisée par des équations différentielles. Étant donné que ces systèmes peuvent prendre des décisions critiques, il est important de pouvoir vérifier des propriétés garantissant leur sûreté. Par exemple, sur un programme, l'absence de débordement arithmétique. Dans cette thèse, nous développons un cadre pour la vérification automatique des propriétés de sûreté des programmes. Un élément clé de cette vérification est la preuve de propriétés invariantes. Nous développons ici un algorithme pour synthétiser des invariants inductifs (des propriétés vraies pour l'état initial, qui sont stables dans l'évolution des états du programme, donc sont toujours vraies par récurrence) pour des programmes numériques. L’interprétation abstraite (IA) est une approche traditionnelle pour la recherche d’invariants inductifs des programmes numériques. L'IA interprète les instructions du programme dans un domaine abstrait (par exemple intervalles, octogones, polyèdres, zonotopes), domaine qui est choisi en fonction des propriétés à prouver. Un invariant inductif peut être calculé comme limite possiblement infinie des itérées d'une fonctionnelle croissante. L'analyse peut recourir aux opérateurs d'élargissement pour forcer la convergence, au détriment de la précision. Si l'invariant n'est pas prouvé, une solution standard est de remplacer le domaine par un nouveau domaine abstrait davantage susceptible de représenter précisément l'invariant.La programmation par contraintes (PPC) est une approche alternative pour synthétiser des invariants, traduisant un programme en contraintes, et les résolvant en utilisant des solveurs de contraintes. Les contraintes peuvent opérer sur des domaines soit discrets, soit continus. La programmation classique par contraintes continues est basée sur un domaine d'intervalle, mais peut approximer une forme invariante complexe par une collection d’éléments abstraits. Une approche existante combine IA et PPC, raffinant de façon itérative, par découpage et contraction, une collection d’éléments abstraits, jusqu'à obtenir un invariant inductif. Celle-ci a été initialement présentée en combinaison avec intervalles et octogones. La nouveauté de notre travail est d'étendre ce cadre au domaine abstrait des zonotopes, un domaine sous-polyédrique qui présente un bon compromis en terme de précision et de coût. Cette extension demande de définir de nouveaux opérateurs sur les zonotopes, pour permettre le découpage et la contraction, ainsi que d'adapter l'algorithme générique. Nous introduisons notamment un nouvel algorithme de découpage de zonotopes basé sur un pavage par sous-zonotopes et parallélotopes. Nous proposons également des alternatives à certains opérateurs existants sur les zonotopes, mieux adaptés que les existants à la méthode. Nous avons implémenté ces opérations dans la bibliothèque APRON et avons testé l'approche sur des programmes présentant des invariants complexes, éventuellement non convexes. Les résultats démontrent un bon compromis par rapport à l'utilisation de domaines simples, comme les intervalles et les octogones, ou d'un domaine plus couteux comme les polyèdres. Enfin, nous discutons de l'extension de l'approche pour trouver des ensembles d'invariants positifs et négatifs pour des systèmes dynamiques continus
Dynamical systems are mathematical models for describing temporal evolution of the state of a system. There are two classes of dynamical systems relevant to this thesis: discrete and continuous. In discrete dynamical systems (or classical computer programs), the state evolves in discrete time steps, as described by difference equations. In continuous dynamical systems, the state of the system is a function of continuous time, characterized by differential equations. When we analyze the behavior of a dynamical system, we usually want to make sure that it satisfies a safety property expressing that nothing bad happens. An example of a safety property of programs is the absence of arithmetic overflows. In this thesis, we design a framework related to the automatic verification of the safety properties of programs. Proving that a program satisfies a safety property of interest involves an invariance argument. We develop an algorithm for inferring invariants more precisely inductive invariants (properties which hold during the initial state, remains stable under the program evolution, and hence hold always due to induction) for numerical programs. A traditional approach for finding inductive invariants in programs is abstract interpretation (AI) that interprets the states of a program in an abstract domain (intervals, polyhedra, octagon, zonotopes) of choice. This choice is made based on the property of interest to be inferred. Using the AI framework, inductive invariant can be computed as limits of iterations of functions. However, for abstract domains which feature infinite increasing chain, for instance, interval, these computations may fail to converge. Then, the classical solution would be to withdraw that particular domain and in its place redesign a new abstract domain which can represent the shape of the invariant. One may also use convergence techniques like widening to enforce convergence, but this may come at the cost of precision. Another approach called constraint programming (CP), can be used to find invariants by translating a program into constraints and solving them by using constraint solvers. Constraints in CP primarily operate on domains that are either discrete or continuous. Classical continuous constraint programming corresponds to interval domain and can approximate a complex shape invariant by a set of boxes, for instance, upto a precision criterion. An existing framework combines AI and continuous CP inspired by iterative refinement, splitting and tightening a collection of abstract elements. This was initially presented in combination with simple underlying abstract elements, boxes and octagons. The novelty of our work is to extend this framework by using zonotopes, a sub-polyhedric domain that shows a good compromise between cost and precision. However, zonotopes are not closed under intersection, and we had to extend the existing framework, in addition to designing new operations on zonotopes. We introduce a novel splitting algorithm based on tiling zonotopes by sub-zonotopes and parallelotopes. We also propose few alternative operators to the existing ones for a better efficiency of the method. We implemented these operations on top of the APRON library, and tested it on programs with non-linear loops that present complex, possibly non-convex, invariants. We present some results demonstrating the interest of this splitting-based algorithm to synthesize invariants on such programs. This algoritm also shows a good compromise by its use in combination with zonotopes with respect to its use with both simpler domains such as boxes and octagons, and more expressive domains like polyhedra. Finally, we discuss the extension of the approach to infer positive and negative invariant sets for dynamical systems
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Constrained Zonotopes"

1

Adimoolam, A., and T. Dang. "Template Complex Zonotope Based Stability Verification." In Control Subject to Computational and Communication Constraints, 83–96. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78449-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kabi, Bibek, Eric Goubault, Antoine Miné, and Sylvie Putot. "Combining Zonotope Abstraction and Constraint Programming for Synthesizing Inductive Invariants." In Lecture Notes in Computer Science, 221–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63618-0_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Constrained Zonotopes"

1

Bertin, Etienne, Bruno Herisse, Julien Alexandre dit Sandretto, and Alexandre Chapoutot. "Spatio-temporal constrained zonotopes for validation of optimal control problems." In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE, 2021. http://dx.doi.org/10.1109/cdc45484.2021.9683301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Yuhao, and Xiangru Xu. "Safety Verification of Neural Feedback Systems Based on Constrained Zonotopes." In 2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022. http://dx.doi.org/10.1109/cdc51059.2022.9992655.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bravo, J. M., T. Alamo, D. Limon, and E. F. Camacho. "Robust MPC of constrained discrete-time nonlinear systems based on zonotopes." In 2003 European Control Conference (ECC). IEEE, 2003. http://dx.doi.org/10.23919/ecc.2003.7085265.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hamdi, Walid, and Wissal Bey. "Stabilization of constrained uncertain systems by an off-line approach using zonotopes." In 2017 International Conference on Advanced Systems and Electric Technologies (IC_ASET). IEEE, 2017. http://dx.doi.org/10.1109/aset.2017.7983659.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rego, Brenner S., Davide M. Raimondo, and Guilherme V. Raffo. "Set-based state estimation of nonlinear systems using constrained zonotopes and interval arithmetic*." In 2018 17th European Control Conference (ECC). IEEE, 2018. http://dx.doi.org/10.23919/ecc.2018.8550353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rego, Brenner S., Davide M. Raimondo, and Guilherme V. Raffo. "Path Tracking Control with State Estimation based on Constrained Zonotopes for Aerial Load Transportation." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8618678.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Locatelli, Diego, Giacomo Saccani, Brenner S. Rego, Guilherme V. Raffo, and Davide M. Raimondo. "Set-based joint state and parameter estimation of a Li-ion cell using constrained zonotopes." In 2022 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2022. http://dx.doi.org/10.1109/vppc55846.2022.10003457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Locatelli, Diego, Angelo Tottoli, Giacomo Saccani, and Davide M. Raimondo. "Thermal fault-detection in series connected Li-ion cells: a set-based approach using constrained zonotopes." In 2022 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 2022. http://dx.doi.org/10.1109/ccta49430.2022.9965976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Koeln, Justin P., and Brandon M. Hencey. "Constrained Hierarchical MPC via Zonotopic Waysets." In 2019 American Control Conference (ACC). IEEE, 2019. http://dx.doi.org/10.23919/acc.2019.8815295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Merhy, Dory, Teodoro Alamo, Cristina Stoica Maniu, and Eduardo F. Camacho. "Zonotopic Constrained Kalman Filter Based on a Dual Formulation." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії