Добірка наукової літератури з теми "Constrained mock-Chebyshev least squares"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Constrained mock-Chebyshev least squares".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Constrained mock-Chebyshev least squares"
De Marchi, S., F. Dell’Accio, and M. Mazza. "On the constrained mock-Chebyshev least-squares." Journal of Computational and Applied Mathematics 280 (May 2015): 94–109. http://dx.doi.org/10.1016/j.cam.2014.11.032.
Повний текст джерелаDell’Accio, Francesco, Domenico Mezzanotte, Federico Nudo, and Donatella Occorsio. "Numerical approximation of Fredholm integral equation by the constrained mock-Chebyshev least squares operator." Journal of Computational and Applied Mathematics 447 (September 2024): 115886. http://dx.doi.org/10.1016/j.cam.2024.115886.
Повний текст джерелаDell’Accio, Francesco, Filomena Di Tommaso, and Federico Nudo. "Generalizations of the constrained mock-Chebyshev least squares in two variables: Tensor product vs total degree polynomial interpolation." Applied Mathematics Letters 125 (March 2022): 107732. http://dx.doi.org/10.1016/j.aml.2021.107732.
Повний текст джерелаParnovsky, S. L. "Bias of the Hubble Constant Value Caused by Errors in Galactic Distance Indicators." Ukrainian Journal of Physics 66, no. 11 (November 30, 2021): 955. http://dx.doi.org/10.15407/ujpe66.11.955.
Повний текст джерелаEconomou, D., C. Mavroidis, I. Antoniadis, and C. Lee. "Maximally Robust Input Preconditioning for Residual Vibration Suppression Using Low-Pass FIR Digital Filters." Journal of Dynamic Systems, Measurement, and Control 124, no. 1 (July 27, 2000): 85–97. http://dx.doi.org/10.1115/1.1434272.
Повний текст джерелаTANG, Jingyuan, Yongjie GOU, Yangyang MA, and Binfeng PAN. "Rocket landing guidance based on second-order Picard-Chebyshev-Newton type algorithm." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 42, no. 1 (February 2024): 98–107. http://dx.doi.org/10.1051/jnwpu/20244210098.
Повний текст джерелаBoyd, John P., and Fei Xu. "Divergence (Runge Phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock–Chebyshev subset interpolation." Applied Mathematics and Computation 210, no. 1 (April 2009): 158–68. http://dx.doi.org/10.1016/j.amc.2008.12.087.
Повний текст джерелаWang, Xianghui, Mei Li, Yingke Zhao, Jiao Wang, and Xin Tan. "Design of Planar Differential Microphone Array Beampatterns with Controllable Mainlobe Beamwidth and Sidelobe Level." Sensors 23, no. 7 (April 4, 2023): 3733. http://dx.doi.org/10.3390/s23073733.
Повний текст джерелаKosari, Amirreza, Hossein Maghsoudi, and Abolfazl Lavaei. "Path generation for flying robots in mountainous regions." International Journal of Micro Air Vehicles 9, no. 1 (December 23, 2016): 44–60. http://dx.doi.org/10.1177/1756829316678877.
Повний текст джерелаBaigunchekov, Zhumadil, Med Amine Laribi, Giuseppe Carbone, Azamat Mustafa, Bekzat Amanov, and Yernar Zholdassov. "Structural-Parametric Synthesis of the RoboMech Class Parallel Mechanism with Two Sliders." Applied Sciences 11, no. 21 (October 21, 2021): 9831. http://dx.doi.org/10.3390/app11219831.
Повний текст джерелаДисертації з теми "Constrained mock-Chebyshev least squares"
Nudo, Frederico. "Approximations polynomiales et méthode des éléments finis enrichis, avec applications." Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3067.
Повний текст джерелаA very common problem in computational science is the determination of an approximation, in a fixed interval, of a function whose evaluations are known only on a finite set of points. A common approach to solving this problem relies on polynomial interpolation, which consists of determining a polynomial that coincides with the function at the given points. A case of great practical interest is the case where these points follow an equispaced distribution within the considered interval. In these hypotheses, a problem related to polynomial interpolation is the Runge phenomenon, which consists in increasing the magnitude of the interpolation error close to the ends of the interval. In 2009, J. Boyd and F. Xu demonstrated that the Runge phenomenon could be eliminated by interpolating the function only on a proper subset formed by nodes closest to the Chebyshev-Lobatto nodes, the so called mock-Chebyshev nodes.However, this strategy involves not using almost all available data. In order to improve the accuracy of the method proposed by Boyd and Xu, while making full use of the available data, S. De Marchi, F. Dell'Accio, and M. Mazza introduced a new technique known as the constrained mock-Chebyshev least squares approximation. In this method, the role of the nodal polynomial, essential for ensuring interpolation at mock-Chebyshev nodes, is crucial. Its extension to the bivariate case, however, requires alternative approaches. The recently developed procedure by F. Dell'Accio, F. Di Tommaso, and F. Nudo, employing the Lagrange multipliers method, also enables the definition of the constrained mock-Chebyshev least squares approximation on a uniform grid of points. This innovative technique, equivalent to the previously introduced univariate method in analytical terms, also proves to be more accurate in numerical terms. The first part of the thesis is dedicated to the study of this new technique and its application to numerical quadrature and differentiation problems.In the second part of this thesis, we focus on the development of a unified and general framework for the enrichment of the standard triangular linear finite element in two dimensions and the standard simplicial linear finite element in higher dimensions. The finite element method is a widely adopted approach for numerically solving partial differential equations arising in engineering and mathematical modeling [55]. Its popularity is partly attributed to its versatility in handling various geometric shapes. However, the approximations produced by this method often prove ineffective in solving problems with singularities. To overcome this issue, various approaches have been proposed, with one of the most famous relying on the enrichment of the finite element approximation space by adding suitable enrichment functions. One of the simplest finite elements is the standard linear triangular element, widely used in applications. In this thesis, we introduce a polynomial enrichment of the standard triangular linear finite element and use this new finite element to introduce an improvement of the triangular Shepard operator. Subsequently, we introduce a new class of finite elements by enriching the standard triangular linear finite element with enrichment functions that are not necessarily polynomials, which satisfy the vanishing condition at the vertices of the triangle.Later on, we generalize the results presented in the two-dimensional case to the case of the standard simplicial linear finite element, also using enrichment functions that do not satisfy the vanishing condition at the vertices of the simplex.Finally, we apply these new enrichment strategies to extend the enrichment of the simplicial vector linear finite element developed by Bernardi and Raugel
Частини книг з теми "Constrained mock-Chebyshev least squares"
Wang, Hongyan, and Zhongqian Su. "Fight the Fire with Mock Model Theory." In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220077.
Повний текст джерелаТези доповідей конференцій з теми "Constrained mock-Chebyshev least squares"
Mohan, Prashant, Jami Shah, and Joseph K. Davidson. "A Library of Feature Fitting Algorithms for GD&T Verification of Planar and Cylindrical Features." In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12612.
Повний текст джерелаMohan, Prashant, Jami Shah, and Joseph Davidson. "Simulated and Experimental Verification of CMM Feature Fitting Algorithms." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46515.
Повний текст джерела