Добірка наукової літератури з теми "Connected components labeling (CCL)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Connected components labeling (CCL)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Connected components labeling (CCL)"
Putri, Audini Nifira, and I. Putu Gede Hendra Suputra. "Hijaiyah Letter Segmentation Using Connected Component Labeling Method." JELIKU (Jurnal Elektronik Ilmu Komputer Udayana) 9, no. 2 (November 24, 2020): 249. http://dx.doi.org/10.24843/jlk.2020.v09.i02.p12.
Повний текст джерелаDharmajaya, Gede Putra, and I. Dewa Made Bayu Atmaja Darmawan. "Tempo Tracking on Guru Ding Dong Transcript using Connected Component Labeling (CCL) Method." JELIKU (Jurnal Elektronik Ilmu Komputer Udayana) 8, no. 2 (January 8, 2020): 137. http://dx.doi.org/10.24843/jlk.2019.v08.i02.p05.
Повний текст джерелаAmmar, Maan, Muhammad Shamdeen, Mazen Kasedeh, Kinan Mansour, and Waad Ammar. "Using Distance Measure based Classification in Automatic Extraction of Lungs Cancer Nodules for Computer Aided Diagnosis." Signal & Image Processing : An International Journal 12, no. 3 (June 30, 2021): 25–43. http://dx.doi.org/10.5121/sipij.2021.12303.
Повний текст джерелаDung, Le, and Makoto Mizukawa. "Fast Hand Feature Extraction Based on Connected Component Labeling, Distance Transform and Hough Transform." Journal of Robotics and Mechatronics 21, no. 6 (December 20, 2009): 726–38. http://dx.doi.org/10.20965/jrm.2009.p0726.
Повний текст джерелаSuriani, Uci, and Tri Basuki Kurniawan. "Comparing the Prediction of Numeric Patterns on Form C1 Using the K-Nearest Neighbors (K-NN) Method and a Combination of K-Nearest Neighbors (K-NN) with Connected Component Labeling (CCL)." Journal of Information Systems and Informatics 5, no. 4 (December 3, 2023): 1569–80. http://dx.doi.org/10.51519/journalisi.v5i4.592.
Повний текст джерелаAissou, B., and A. Belhadj Aissa. "AN ADAPTED CONNECTED COMPONENT LABELING FOR CLUSTERING NON-PLANAR OBJECTS FROM AIRBORNE LIDAR POINT CLOUD." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B2-2020 (August 12, 2020): 191–95. http://dx.doi.org/10.5194/isprs-archives-xliii-b2-2020-191-2020.
Повний текст джерелаKowalczyk, Marcin, Piotr Ciarach, Dominika Przewlocka-Rus, Hubert Szolc, and Tomasz Kryjak. "Real-Time FPGA Implementation of Parallel Connected Component Labelling for a 4K Video Stream." Journal of Signal Processing Systems 93, no. 5 (April 1, 2021): 481–98. http://dx.doi.org/10.1007/s11265-021-01636-4.
Повний текст джерелаTian, Yifei, Wei Song, Long Chen, Yunsick Sung, Jeonghoon Kwak, and Su Sun. "A Fast Spatial Clustering Method for Sparse LiDAR Point Clouds Using GPU Programming." Sensors 20, no. 8 (April 18, 2020): 2309. http://dx.doi.org/10.3390/s20082309.
Повний текст джерелаRakhmadi. "Connected Component Labeling Using Components Neighbors-Scan Labeling Approach." Journal of Computer Science 6, no. 10 (October 1, 2010): 1099–107. http://dx.doi.org/10.3844/jcssp.2010.1099.1107.
Повний текст джерелаAsano, Tetsuo, and Hiroshi Tanaka. "In-Place Algorithm for Connected Components Labeling." Journal of Pattern Recognition Research 5, no. 1 (2010): 10–22. http://dx.doi.org/10.13176/11.218.
Повний текст джерелаДисертації з теми "Connected components labeling (CCL)"
Sundström, Alex, and Victor Ähdel. "Is GPGPU CCL worth it? : A performance comparison between some GPU and CPU algorithms for solving connected components labeling on binary images." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-186270.
Повний текст джерелаEtikettering av sammansatta komponenter (CCL) är ett traditionellt sekventiellt problem som är svårt att parallellisera. Denna rapport ämnar atttestaprestandanavattlösaCCLmedanvändningavmassivtparallell hårdvara genom metoden GPGPU. För att uppnå detta undersöktes och implementerades ett flertal CCL algoritmer i C++ och OpenCL Resultaten pekar på en förbättring upp till en faktor av 2, vilket är obetydligt när man också tar hänsyn till minnesöverföringen. Sammanfattningsvis så är det ej värt att utföra CCL med GPGPU om data även måste överföras till och från GPU.
Babilotte, Killian. "Étude d'endommagement sous choc en dynamique moléculaire par développement d'un algorithme d'analyse in-situ massivement parallèle." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP085.
Повний текст джерелаIn the perspective of the study of condensed matter under extreme conditions, many questions remain open in order to understand some phenomena, due to the difficulty of studying them experimentally. Depending on the phenomena studied, the lack of experimental data may prevent the modeling of these phenomena, or, when models do exist, it may prevent their calibration or settling which one to use. Molecular dynamics (MD) is the technique of choice for studying these phenomena, as it enables the response of a system to be simulated solely from the description of atomic interactions, for which well-tested models often exist. However, one of the disadvantages of this technique is that it requires a large number of atoms to reach a scale that is sufficiently representative of the phenomena being studied, in order to be able to observe them and overcome size effects as far as possible. Over the past decade, numerous efforts have been made to adapt DM codes to the latest supercomputer architectures, enabling us to simulate systems with several billion atoms. These MD simulations have become true numerical experiments, generating huge quantities of data to be processed. Nowadays, the time required for post-processing and analysis of this data can now become more important than for simulation, and is becoming an essential issue. In this thesis, we have developed an analysis algorithm for MD simulation capable of processing multi-billion-atom workloads with a computational cost of the order of one percent of the total simulation time. The algorithm detects and characterizes areas of interest in the simulation based on user-defined criteria, making it highly versatile. We have based this algorithm on connected components labeling techniques, parallelized in shared-memory, which we have extended to hybrid shared and distributed memory parallelism. This extension to distributed-memory settings not only enables us to handle the quantity of data generated by the simulations, but has also enabled us to incorporate our analysis into the CEA MD code exaStamp for in-situ processing of the simulations. This in-situ processing of the simulation reduces the amount of data to be stored on disk and increases the frequency of analysis on a simulation compared to what could be done in post-processing. A characterization of the errors associated with the measurements made by our analysis has been carried out, making it directly exploitable by physicists. In particular, we have applied it to a number of physical cases: micro-jetting and splashing where aggregate detection is required, as well as shock damage simulations (spalling) involving void detection
CHANG, YUAN CHUAN, and 張永專. "Connected Components Labeling Algorithm Applied to Image Segmentation." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/86231509563166292537.
Повний текст джерела國立中山大學
電機工程研究所
83
A new image segmentation algorithm based on the textural information of image pixels is presented. Image segmentation is a fundamental technique for the application of computer vision. There are two difficulties for the technique of image segmentation.First, the choice of the characteristic with which the regions of an image segmentation are homogeneous enough for the decision.Second,the connection problem for pixels within the segmented components in an arbitrary shape. In this thesis, we propose a new property vector related to the concept of image texture and employ the technique of connected components labeling to solve the problems. The image structure are defined to be the linear relationship between pixels with their upper and left neighbors. Image can be very inhomogenious. However, the image structure may be uniform enough in some image components. By this image texture, individual image constraint equations can be set up for those triple pixel. These equations are the property vectors chosen by us for segmentation decision. Discrepancy between equations are measured by sequential least squared method. A recursive method for computing the error is developed in this thesis for simplifying computation. Connected components labeling method was originally developed for the binary images. By the introduction of our property vector, the labeling method are extended into the gray image segmentation. For computing efficiency, the Ronse and Devijver''s run-length version of labeling method is modified by us for our application. Our methods of computing segmentation error for property vectors and labeling segmentation components are both based upon a top-down and left- right scanning order. As a summary, our segmentation computing are very efficient due to the recursive computation structure and the scanning method.
WU, BO-YEN, and 吳柏彥. "Connected Components Labeling Algorithm By Unidirectional Run-length Table Searching." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/52054847292075951596.
Повний текст джерела輔仁大學
資訊工程學系碩士班
104
In order to improve the efficiency of connected components labeling, this paper presents a new connected components labeling method by unidirectional run-length table searching. Instead of searching the run-length table up and down, this method only needs to search the table in one direction. The number of run-length code searching in the labeling algorithm is reduced with our method, thus, our method increases the efficiency of connected components labeling. Also in our method the run-length code of each connected components are stored as a linked list. When extracting the blobs, it only need to read the linked list of each blobs. The result of experiments demonstrates that our method reduces the total searching times, compared with the previous algorithm.
Lin, Keng-li, and 林耿立. "An Efficient Two-Phase Algorithm for Labeling Connected Components Based on a Two-Scan." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/21955013549406582369.
Повний текст джерела國立臺灣科技大學
資訊工程系
97
Owing to the demand of more efficient technology about robot vision applications, the researches on intelligent pattern detection and recognition have been rapidly grown in recent years. In addition to that an adaptive pattern classifier may affect recognition results, one of the most important characteristics of an intelligent robot vision system is to employ a quick and efficient pattern extraction method. To achieve such a good, in this thesis, we present an efficient two-phase labeling connected components algorithm based on a two-scan structure. In the labeling step, unlike conventional labeling algorithms using the same labeling operations for each object pixel for labeling or relation checking, our algorithm executes different labeling operations for each pixel depending on its location in a row of contiguous object pixels. Thus, we can reduce many unnecessary labeling operations and lessen the execution time. As to the label relation table, we propose a novel table structure similar to a circle to resolve label equivalence between provisional label sets. It not only can record all information as same as conventional label relation tables, but also can reduce 1/3 memory space at most than the other so. The implementation of this structure only requires two 1-D arrays, and we can easily record the relation between provisional labels and their corresponding representative labels by use of our record procedure. Experimental results reveal that the performance of our algorithm is superior to those of all conventional labeling algorithms for both ordinary and noisy images under the common sequential execution hardware.
Частини книг з теми "Connected components labeling (CCL)"
Bolelli, Federico, Stefano Allegretti, and Costantino Grana. "Connected Components Labeling on Bitonal Images." In Image Analysis and Processing – ICIAP 2022, 347–57. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06430-2_29.
Повний текст джерелаGrana, Costantino, Lorenzo Baraldi, and Federico Bolelli. "Optimized Connected Components Labeling with Pixel Prediction." In Advanced Concepts for Intelligent Vision Systems, 431–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48680-2_38.
Повний текст джерелаMa, Dongdong, Shaojun Liu, and Qingmin Liao. "Run-Based Connected Components Labeling Using Double-Row Scan." In Lecture Notes in Computer Science, 264–74. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71598-8_24.
Повний текст джерелаBolelli, Federico, Michele Cancilla, Lorenzo Baraldi, and Costantino Grana. "Connected Components Labeling on DRAGs: Implementation and Reproducibility Notes." In Reproducible Research in Pattern Recognition, 89–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23987-9_7.
Повний текст джерелаAsano, Tetsuo, and Sergey Bereg. "A New Framework for Connected Components Labeling of Binary Images." In Combinatorial Image Analaysis, 90–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34732-0_7.
Повний текст джерелаBolelli, Federico, Michele Cancilla, and Costantino Grana. "Two More Strategies to Speed Up Connected Components Labeling Algorithms." In Image Analysis and Processing - ICIAP 2017, 48–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68548-9_5.
Повний текст джерелаHarrison, Cyrus, Jordan Weiler, Ryan Bleile, Kelly Gaither, and Hank Childs. "A Distributed-Memory Algorithm for Connected Components Labeling of Simulation Data." In Mathematics and Visualization, 3–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44900-4_1.
Повний текст джерелаAllegretti, Stefano, Federico Bolelli, Michele Cancilla, Federico Pollastri, Laura Canalini, and Costantino Grana. "How Does Connected Components Labeling with Decision Trees Perform on GPUs?" In Computer Analysis of Images and Patterns, 39–51. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29888-3_4.
Повний текст джерелаRasmusson, A., T. S. Sørensen, and G. Ziegler. "Connected Components Labeling on the GPU with Generalization to Voronoi Diagrams and Signed Distance Fields." In Advances in Visual Computing, 206–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41914-0_21.
Повний текст джерелаBolelli, Federico, Stefano Allegretti, and Costantino Grana. "A Heuristic-Based Decision Tree for Connected Components Labeling of 3D Volumes: Implementation and Reproducibility Notes." In Reproducible Research in Pattern Recognition, 139–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76423-4_9.
Повний текст джерелаТези доповідей конференцій з теми "Connected components labeling (CCL)"
Monif, Mamdouh, Kinan Mansour, Waad Ammar, and Maan Ammar. "Automatic Detection and Extraction of Lungs Cancer Nodules Using Connected Components Labeling and Distance Measure Based Classification." In 11th International Conference on Computer Science and Information Technology (CCSIT 2021). AIRCC Publishing Corporation, 2021. http://dx.doi.org/10.5121/csit.2021.110705.
Повний текст джерелаKhoshki, Rohollah Mazrae, and Subramaniam Ganesan. "Improved Automatic License Plate Recognition (ALPR) system based on single pass Connected Component Labeling (CCL) and reign property function." In 2015 IEEE International Conference on Electro/Information Technology (EIT). IEEE, 2015. http://dx.doi.org/10.1109/eit.2015.7293378.
Повний текст джерелаBolelli, Federico, Lorenzo Baraldi, Michele Cancilla, and Costantino Grana. "Connected Components Labeling on DRAGs." In 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018. http://dx.doi.org/10.1109/icpr.2018.8545505.
Повний текст джерелаGrana, Costantino, Daniele Borghesani, and Rita Cucchiara. "Fast block based connected components labeling." In 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5413731.
Повний текст джерелаNagaraj, Nithin, and Shekhar Dwivedi. "CxCxC: compressed connected components labeling algorithm." In Medical Imaging, edited by Josien P. W. Pluim and Joseph M. Reinhardt. SPIE, 2007. http://dx.doi.org/10.1117/12.709210.
Повний текст джерелаZuo, Yingnan, and Danyang Zhang. "Connected Components Labeling Algorithms: A Review." In 2023 9th International Conference on Computer and Communications (ICCC). IEEE, 2023. http://dx.doi.org/10.1109/iccc59590.2023.10507420.
Повний текст джерелаGrana, Costantino, Daniele Borghesani, Paolo Santinelli, and Rita Cucchiara. "High Performance Connected Components Labeling on FPGA." In 2010 21st International Conference on Database and Expert Systems Applications (DEXA). IEEE, 2010. http://dx.doi.org/10.1109/dexa.2010.57.
Повний текст джерелаGrana, Costantino, Federico Bolelli, Lorenzo Baraldi, and Roberto Vezzani. "YACCLAB - Yet Another Connected Components Labeling Benchmark." In 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016. http://dx.doi.org/10.1109/icpr.2016.7900112.
Повний текст джерелаAllegretti, Stefano, Federico Bolelli, Michele Cancilla, and Costantino Grana. "Optimizing GPU-Based Connected Components Labeling Algorithms." In 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS). IEEE, 2018. http://dx.doi.org/10.1109/ipas.2018.8708900.
Повний текст джерелаSantiago, Diego J. C., Tsang Ing Ren, George D. C. Cavalcanti, and Tsang Ing Jyh. "Fast block-based algorithms for connected components labeling." In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638021.
Повний текст джерелаЗвіти організацій з теми "Connected components labeling (CCL)"
Yang, Xue D. An Improved Algorithm for Labeling Connected Components in a Binary Image. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada210100.
Повний текст джерела