Зміст
Добірка наукової літератури з теми "Conjectures mathématiques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Conjectures mathématiques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Conjectures mathématiques"
Morás, Nadjanara Ana Basso, Clélia Maria Ignatius Nogueira, and Luiz Marcio Santos Farias. "acesso ao saber matemático em turmas inclusivas." Educação Matemática Pesquisa Revista do Programa de Estudos Pós-Graduados em Educação Matemática 25, no. 4 (December 23, 2023): 190–213. http://dx.doi.org/10.23925/1983-3156.2023v25i4p190-213.
Повний текст джерелаViaut, Laura. "Mathématiques et sciences juridiques." Revue de la recherche juridique, no. 2 (January 5, 2021): 941–53. http://dx.doi.org/10.3917/rjj.190.0941.
Повний текст джерелаde Gans, Henk A. "Loi mathématique ou conjecture spéculative ?" Population 57, no. 1 (2002): 91. http://dx.doi.org/10.3917/popu.201.0091.
Повний текст джерелаRaouf, Khadija, Najia Benkenza, M’hamed El Aydi, Mohamed Anaya, and Khalid Ennaciri. "Conception d’une séquence d’introduction dynamique du produit scalaire via une approche constructiviste intégrant la mécanique et les TIC." ITM Web of Conferences 39 (2021): 01007. http://dx.doi.org/10.1051/itmconf/20213901007.
Повний текст джерелаRaouf, Khadija, Najia Benkenza, M’hamed El Aydi, Mohamed Anaya, and Khalid Ennaciri. "Conception d’une séquence d’introduction dynamique du produit scalaire via une approche constructiviste intégrant la mécanique et les TIC." South Florida Journal of Development 2, no. 2 (June 11, 2021): 3086–99. http://dx.doi.org/10.46932/sfjdv2n2-148.
Повний текст джерелаMarion, Mathieu, and Mitsuhiro Okada. "Wittgenstein et le lien entre la signification d’un énoncé mathématique et sa preuve." Articles 39, no. 1 (August 7, 2012): 101–24. http://dx.doi.org/10.7202/1011612ar.
Повний текст джерелаWaldschmidt, Michel. "Les Huit Premiers Travaux de Pierre Liardet." Uniform distribution theory 11, no. 2 (December 1, 2016): 169–77. http://dx.doi.org/10.1515/udt-2016-0019.
Повний текст джерелаXie, Ling. "The continuity of prime numbers can lead to even continuity (Relationship with Gold Bach’s conjecture)." Annals of Mathematics and Physics 5, no. 2 (December 2, 2022): 171–79. http://dx.doi.org/10.17352/amp.000062.
Повний текст джерелаGallagher, Katherine, Lucia Li, and Katja Vassilev. "Lacunarity of Han–Nekrasov–Okounkov q-Series." Annals of Combinatorics 24, no. 4 (September 24, 2020): 623–36. http://dx.doi.org/10.1007/s00026-020-00505-4.
Повний текст джерелаBaumgartner, James E. "Edwin W. Miller. On a property of families of sets. English with Polish summary. Sprawozdania z posiedzeń Towarzystwa Naukowego Warszawskiego (Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie), Class III, vol. 30 (1937), pp. 31–38. - Ben Dushnik and Miller E. W.. Partially ordered sets. American journal of mathematics, vol. 63 (1941), pp. 600–610. - P. Erdős. Some set-theoretical properties of graphs. Revista, Universidad Nacional de Tucumán, Serie A, Matemáticas y física teórica, vol. 3 (1942), pp. 363–367. - G. Fodor. Proof of a conjecture of P. Erdős. Acta scientiarum mathematicarum, vol. 14 no. 4 (1952), pp. 219–227. - P. Erdős and Rado R.. A partition calculus in set theory. Bulletin of the American Mathematical Society, vol. 62 (1956), pp. 427–489. - P. Erdős and Rado R.. Intersection theorems for systems of sets. The journal of the London Mathematical Society, vol. 35 (1960), pp. 85–90. - A. Hajnal. Some results and problems on set theory. Acta mathematica Academiae Scientiarum Hungaricae, vol. 11 (1960), pp. 277–298. - P. Erdős and Hajnal A.. On a property of families of sets. Acta mathematica Academiae Scientiarum Hungaricae, vol. 12 (1961), pp. 87–123. - A. Hajnal. Proof of a conjecture of S. Ruziewicz. Fundamenta mathematicae, vol. 50 (1961), pp. 123–128. - P. Erdős, Hajnal A. and Rado R.. Partition relations for cardinal numbers. Acta mathematica Academiae Scientiarum Hungaricae, vol. 16 (1965), pp. 93–196. - P. Erdős and Hajnal A.. On a problem of B. Jónsson. Bulletin de l'Académie Polonaise des Sciences, Série des sciences mathématiques, astronomiques et physiques, vol. 14 (1966), pp. 19–23. - P. Erdős and Hajnal A.. On chromatic number of graphs and set-systems. Acta mathematica Academiae Scientiarum Hungaricae, vol. 17 (1966), pp. 61–99." Journal of Symbolic Logic 60, no. 2 (June 1995): 698–701. http://dx.doi.org/10.2307/2275868.
Повний текст джерелаДисертації з теми "Conjectures mathématiques"
Vanden, Wyngaerd Anna. "Delta conjectures and Theta refinements." Doctoral thesis, Universite Libre de Bruxelles, 2020. https://dipot.ulb.ac.be/dspace/bitstream/2013/314077/4/toc.pdf.
Повний текст джерелаDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Cheukam, Ngouonou Jovial. "Apprentissage automatique de cartes d’invariants d’objets combinatoires avec une application pour la synthèse d’algorithmes de filtrage." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0418.
Повний текст джерелаTo improve the efficiency of solution methods for many combinatorial optimisation problems in our daily lives, we use constraints programming to automatically generate conjectures. These conjectures characterise combinatorial objects used to model these optimisation problems. These include graphs, trees, forests, partitions and Boolean sequences. Unlike the state of the art, the system, called Bound Seeker, that we have developed not only generates conjectures independently, but it also points to links between conjectures. Thus, it groups the conjectures in the form of bounds of the same variable characterising the same combinatorial object. This grouping is called a bounds map of the combinatorial object considered. Then, a study consisting of establishing links between generated maps is carried out. The goal of this study is to deepen knowledge on combinatorial objects and to develop the beginnings of automatic proofs of conjectures. Then, to show the consistency of the maps and the Bound Seeker, we develop some manual proofs of the conjectures discovered by the Bound Seeker. This allows us to demonstrate the usefulness of some new bound theorems that we have established. To illustrate one of its concrete applications, we introduce a method for semi-automatic generation of filtering algorithms that reduce the search space for solutions to a combinatorial optimisation problem. This reduction is made thanks to the new bound theorems that we established after having automatically selected them from the conjectures generated by the Bound Seeker. To show the effectiveness of this technique, we successfully apply it to the problem of developing balanced academic courses for students
Charles, François. "Cycles algébriques et cohomologie de certaines variétés projectives complexes." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00472932.
Повний текст джерелаPaperman, Charles. "Circuits booléens, prédicats modulaires et langages réguliers." Paris 7, 2014. http://www.theses.fr/2014PA077258.
Повний текст джерелаThe Straubing conjecture, stated in his book published in 1994, suggest that a regular language definable by a fragment of logic and equipped with an arbitrary numerical signature is definable using the same fragment of logic using only regular predicates. The considered fragments of logic are classed of formulas of monadic second order logic over finite words. This thesis is a contribution to the study of the Straubing conjecture. To prove such a conjecture, it seems necessary to obtain two results of two distinct types: 1. Algebraic characterizations of classes of regular languages defined by fragments of logics equipped with regular predicates, 2. Undefinability results of regular languages in fragments of logics equipped with arbitrary numerical predicates. The first part of this thesis is dedicated to the operation of adding regular predicates to a given fragment of logic, with a particular focus on modular predicates in the case where logical fragments have some algebraic structure. The second par of this thesis is dedicated to undefinability results with a particular focus on two-variable first order logic
Balzin, Eduard. "Les fibrations de Grothendieck et l’algèbre homotopique." Thesis, Nice, 2016. http://www.theses.fr/2016NICE4032/document.
Повний текст джерелаThis thesis is devoted to the study of families of categories equipped with a homotopical structure. The principal results comprising this work are:i. A generalisation of the Reedy model structure, which, in this work, is constructed for sections of a suitable family of model categories over a Reedy category. Unlike previous considerations, such as Hirschowitz-Simpson, we require as little as possible from the family, so that our result may be applied in situations when the transition functors in the family are non-linear in nature. ii. An extension of Segal formalism for algebraic structures to the setting of monoidal categories over an operator category in the sense of Barwick. We do this by treating monoidal structures using the language of Grothendieck opfibrations, and introduce derived sections of the latter using the simplicial replacements of Bousfield-Kan. Our Reedy structure result then permits to work with derived sections. iii. A proof of a certain homotopy descent result, which gives sufficient conditions on when an inverse image functor is an equivalence between suitable categories of derived sections. We show this result for functors which satisfy a technical ``Quillen Theorem A''-type property, called resolutions. One example of a resolution is given by a functor from the category of planar marked trees of Kontsevich-Soibelman, to the stratified fundamental groupoid of the Ran space of the $2$-disc. An application of the homotopy descent result to this functor gives us a new proof of Deligne conjecture, providing an alternative to the use of operads
Fuser, Alain. "Autour de la conjecture d'Alexandru." Nancy 1, 1997. http://www.theses.fr/1997NAN10289.
Повний текст джерелаViguié, Stéphane. "Contribution à l'étude de la conjecture de Gras et de la conjecture principale d'Iwasawa, par les systèmes d'Euler." Phd thesis, Université de Franche-Comté, 2011. http://tel.archives-ouvertes.fr/tel-00839919.
Повний текст джерелаHeistercamp, Muriel. "The Weinstein conjecture with multiplicities on spherizations." Doctoral thesis, Universite Libre de Bruxelles, 2011. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209882.
Повний текст джерелаL'existence d'une orbite orbite fermée du flot de Reeb sur S fut annoncée par Weinstein dans sa conjecture en 1978. Indépendamment, Weinstein et Rabinowitz ont montré l'existence d'une orbite fermée sur les hypersurfaces de type étoilées dans l'espace réel de dimension 2n. Sous les hypothèses précédentes, l'existence d'une orbite fermée fut démontrée par Hofer et Viterbo. Dans le cas particulier du flot géodésique, l'existence de plusieurs orbites fermées fut notamment étudiée par Gromov, Paternain et Paternain-Petean. Dans cette thèse, ces résultats sont généralisés.
Les résultats principaux de cette thèse montrent que la structure topologique de la variété M implique, pour toute hypersurface étoilée fibre par fibre, l'existence de beaucoup d'orbites fermées du flot de Reeb. Plus précisément, une borne inférieure de la croissance du nombre d'orbites fermées du flot de Reeb en fonction de leur période est mise en évidence. /
Let M be a smooth closed manifold and denote by T*M the cotangent bundle over M endowed with its usual symplectic structure induced by the Liouville form. A hypersurface S of T*M is said to be fiberwise starshaped if for each point q in M the intersection Sq of S with the fiber at q bounds a domain starshaped with respect to the origin 0q in T*qM. There is a flow naturally associated to S, generated by the unique Reeb vector field R along S ,the Reeb flow.
The existence of one closed orbit was conjectured by Weinstein in 1978 in a more general setting. Independently, Weinstein and Rabinowitz established the existence of a closed orbit on star-like hypersurfaces in the 2n-dimensional real space. In our setting the Weinstein conjecture without the assumption was proved in 1988 by Hofer and Viterbo. The existence of many closed orbits has already been well studied in the special case of the geodesic flow, for example by Gromov, Paternain and Paternain-Petean. In this thesis we will generalize their results.
The main result of this thesis is to prove that the topological structure of $M$ forces, for all fiberwise starshaped hypersurfaces S, the existence of many closed orbits of the Reeb flow on S. More precisely, we shall give a lower bound of the growth rate of the number of closed Reeb-orbits in terms of their periods.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Wang, Zhengfang. "Equivalence singulière à la Morita et la cohomologie de Hochschild singulière." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC203/document.
Повний текст джерелаIn this thesis, we are concerned with some aspects of singular categories of unitalassociative k-algebras over a commutative ring k. First, we develop a Morita theory for singular categories. Analogous to the classical Morita theory, we propose a definition of singular equivalence of Morita type with level. This follows and generalizes a definition of stable equivalence of Morita type introduced by Michel Broué. A derived equivalence of standard type induces a singular equivalence of Morita type with level. Second, we study the Hom-space from A to A[i] in the singular category Dsg(AkAop) of the enveloping algebra AkAop, where A is an associative k-projective k-algebra and i is any integer. Recall that the i-th Hochschild cohomology group HHi(A,A) can be realized as the Hom-space from A to A[i] in the bounded derived category Db(A k Aop). From this motivation, we call HomDsg(AkAop)(A,A[i]) the i-th singular Hochschild cohomology group and denote this group by HHi sg(A,A). Analogous to the Hochschild cohomology ring HH_(A,A), we prove that there is a Gerstenhaber algebra structure on the singular Hochschild ring HH_sg(A,A) and provide an interpretation of the Lie bracket from the point of view of PROP theory. We also associate a cochain complex, which we call singular Hochschild cochain complex, C_sg(A,A) to the singular Hochschild cohomology. Thenwe study the higher algebraic structures (e.g. B1-algebra) on C_sg(A,A) and propose asingular version of the Deligne conjecture. Following Keller’s approach which was developed for derived equivalences, we establish the invariance of the Gerstenhaber algebra structure which we defined on the singular Hochschild cohomology under singular equivalence of Morita type with level. In this proof, we define the singular derived Picard group sgDPic(A) of an associative algebra A and develop what we call a singular infinitesimal deformation theory. Then we realize HH_sg(A,A) as the graded Lie algebra of the ‘graded algebraic group’ associated to sgDPic(A)
Brandin, Karen. "Autour d'une conjecture de Gross pour les corps de fonctions." Bordeaux 1, 2006. http://www.theses.fr/2006BOR13341.
Повний текст джерелаКниги з теми "Conjectures mathématiques"
Kepler's Conjecture. New York: John Wiley & Sons, Ltd., 2003.
Знайти повний текст джерелаMathematical reasoning: Patterns, problems, conjectures, and proofs. New York: Psychology Press, 2010.
Знайти повний текст джерелаSobolev inequalities, heat kernels under Ricci flow, and the Poincaré conjecture. Boca Raton: CRC Press, 2011.
Знайти повний текст джерелаO'Shea, Donal. Poincaré Conjecture: In Search of the Shape of the Universe. Penguin Books, Limited, 2008.
Знайти повний текст джерелаPoincaré Conjecture: In Search of the Shape of the Universe. Penguin Books, Limited, 2009.
Знайти повний текст джерелаPoincaré Conjecture: In Search of the Shape of the Universe. Penguin Books, Limited, 2007.
Знайти повний текст джерелаThe Poincare Conjecture: In Search of the Shape of the Universe. Walker & Company, 2007.
Знайти повний текст джерелаThe Poincare Conjecture: In Search of the Shape of the Universe. Walker & Company, 2007.
Знайти повний текст джерелаThe Poincaré conjecture: In search of the shape of the universe. New York: Walker & Co., 2007.
Знайти повний текст джерелаKepler's Conjecture: How Some of the Greatest Minds in History Helped Solve One of the Oldest Math Problems in the World. Wiley, 2003.
Знайти повний текст джерела