Добірка наукової літератури з теми "CONDUCTING POLYMERS (CPs)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "CONDUCTING POLYMERS (CPs)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "CONDUCTING POLYMERS (CPs)"

1

Acosta, Mariana, Marvin D. Santiago, and Jennifer A. Irvin. "Electrospun Conducting Polymers: Approaches and Applications." Materials 15, no. 24 (December 9, 2022): 8820. http://dx.doi.org/10.3390/ma15248820.

Повний текст джерела
Анотація:
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Abel, Silvestre Bongiovanni, Evelina Frontera, Diego Acevedo, and Cesar A. Barbero. "Functionalization of Conductive Polymers through Covalent Postmodification." Polymers 15, no. 1 (December 31, 2022): 205. http://dx.doi.org/10.3390/polym15010205.

Повний текст джерела
Анотація:
Organic chemical reactions have been used to functionalize preformed conducting polymers (CPs). The extensive work performed on polyaniline (PANI), polypyrrole (PPy), and polythiophene (PT) is described together with the more limited work on other CPs. Two approaches have been taken for the functionalization: (i) direct reactions on the CP chains and (ii) reaction with substituted CPs bearing reactive groups (e.g., ester). Electrophilic aromatic substitution, SEAr, is directly made on the non-conductive (reduced form) of the CPs. In PANI and PPy, the N-H can be electrophilically substituted. The nitrogen nucleophile could produce nucleophilic substitutions (SN) on alkyl or acyl groups. Another direct reaction is the nucleophilic conjugate addition on the oxidized form of the polymer (PANI, PPy or PT). In the case of PT, the main functionalization method was indirect, and the linking of functional groups via attachment to reactive groups was already present in the monomer. The same is the case for most other conducting polymers, such as poly(fluorene). The target properties which are improved by the functionalization of the different polymers is also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sharma, Shubham, P. Sudhakara, Abdoulhdi A. Borhana Omran, Jujhar Singh, and R. A. Ilyas. "Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications." Polymers 13, no. 17 (August 28, 2021): 2898. http://dx.doi.org/10.3390/polym13172898.

Повний текст джерела
Анотація:
Electrically-conducting polymers (CPs) were first developed as a revolutionary class of organic compounds that possess optical and electrical properties comparable to that of metals as well as inorganic semiconductors and display the commendable properties correlated with traditional polymers, like the ease of manufacture along with resilience in processing. Polymer nanocomposites are designed and manufactured to ensure excellent promising properties for anti-static (electrically conducting), anti-corrosion, actuators, sensors, shape memory alloys, biomedical, flexible electronics, solar cells, fuel cells, supercapacitors, LEDs, and adhesive applications with desired-appealing and cost-effective, functional surface coatings. The distinctive properties of nanocomposite materials involve significantly improved mechanical characteristics, barrier-properties, weight-reduction, and increased, long-lasting performance in terms of heat, wear, and scratch-resistant. Constraint in availability of power due to continuous depletion in the reservoirs of fossil fuels has affected the performance and functioning of electronic and energy storage appliances. For such reasons, efforts to modify the performance of such appliances are under way through blending design engineering with organic electronics. Unlike conventional inorganic semiconductors, organic electronic materials are developed from conducting polymers (CPs), dyes and charge transfer complexes. However, the conductive polymers are perhaps more bio-compatible rather than conventional metals or semi-conductive materials. Such characteristics make it more fascinating for bio-engineering investigators to conduct research on polymers possessing antistatic properties for various applications. An extensive overview of different techniques of synthesis and the applications of polymer bio-nanocomposites in various fields of sensors, actuators, shape memory polymers, flexible electronics, optical limiting, electrical properties (batteries, solar cells, fuel cells, supercapacitors, LEDs), corrosion-protection and biomedical application are well-summarized from the findings all across the world in more than 150 references, exclusively from the past four years. This paper also presents recent advancements in composites of rare-earth oxides based on conducting polymer composites. Across a variety of biological and medical applications, the fact that numerous tissues were receptive to electric fields and stimuli made CPs more enticing.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sołoducho, Jadwiga, Dorota Zając, Kamila Spychalska, Sylwia Baluta, and Joanna Cabaj. "Conducting Silicone-Based Polymers and Their Application." Molecules 26, no. 7 (April 1, 2021): 2012. http://dx.doi.org/10.3390/molecules26072012.

Повний текст джерела
Анотація:
Over the past two decades, both fundamental and applied research in conducting polymers have grown rapidly. Conducting polymers (CPs) are unique due to their ease of synthesis, environmental stability, and simple doping/dedoping chemistry. Electrically conductive silicone polymers are the current state-of-the-art for, e.g., optoelectronic materials. The combination of inorganic elements and organic polymers leads to a highly electrically conductive composite with improved thermal stability. Silicone-based materials have a set of extremely interesting properties, i.e., very low surface energy, excellent gas and moisture permeability, good heat stability, low-temperature flexibility, and biocompatibility. The most effective parameters constructing the physical properties of CPs are conjugation length, degree of crystallinity, and intra- and inter-chain interactions. Conducting polymers, owing to their ease of synthesis, remarkable environmental stability, and high conductivity in the doped form, have remained thoroughly studied due to their varied applications in fields like biological activity, drug release systems, rechargeable batteries, and sensors. For this reason, this review provides an overview of organosilicon polymers that have been reported over the past two decades.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ramanavicius, Simonas, and Arunas Ramanavicius. "Conducting Polymers in the Design of Biosensors and Biofuel Cells." Polymers 13, no. 1 (December 25, 2020): 49. http://dx.doi.org/10.3390/polym13010049.

Повний текст джерела
Анотація:
Fast and sensitive determination of biologically active compounds is very important in biomedical diagnostics, the food and beverage industry, and environmental analysis. In this review, the most promising directions in analytical application of conducting polymers (CPs) are outlined. Up to now polyaniline, polypyrrole, polythiophene, and poly(3,4-ethylenedioxythiophene) are the most frequently used CPs in the design of sensors and biosensors; therefore, in this review, main attention is paid to these conducting polymers. The most popular polymerization methods applied for the formation of conducting polymer layers are discussed. The applicability of polypyrrole-based functional layers in the design of electrochemical biosensors and biofuel cells is highlighted. Some signal transduction mechanisms in CP-based sensors and biosensors are discussed. Biocompatibility-related aspects of some conducting polymers are overviewed and some insights into the application of CP-based coatings for the design of implantable sensors and biofuel cells are addressed. New trends and perspectives in the development of sensors based on CPs and their composites with other materials are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Anand Kumar. "Role of conducting polymers in corrosion protection." World Journal of Advanced Research and Reviews 17, no. 2 (February 28, 2023): 045–47. http://dx.doi.org/10.30574/wjarr.2023.17.2.0238.

Повний текст джерела
Анотація:
Corrosion is an environmental evil related to metal and their alloys. Researchers trying their best to overcome it with traditional and new techniques. Recently Conducting polymers (CPs) such as polyaniline (PANI), polypyrrole (PPy) etc. are used for the corrosion protection of metals and metal alloys. Various mechanisms have been suggested to explain anticorrosion properties of CPs. These include anodic protection, controlled inhibitor release as well as barrier protection mechanisms. The presenting review is mainly focused on Different approaches that have been developed for the use of CPs in protective coatings.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Luong, John H. T., Tarun Narayan, Shipra Solanki, and Bansi D. Malhotra. "Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications." Journal of Functional Biomaterials 11, no. 4 (September 25, 2020): 71. http://dx.doi.org/10.3390/jfb11040071.

Повний текст джерела
Анотація:
Conducting polymers (CPs) have been at the center of research owing to their metal-like electrochemical properties and polymer-like dispersion nature. CPs and their composites serve as ideal functional materials for diversified biomedical applications like drug delivery, tissue engineering, and diagnostics. There have also been numerous biosensing platforms based on polyaniline (PANI), polypyrrole (PPY), polythiophene (PTP), and their composites. Based on their unique properties and extensive use in biosensing matrices, updated information on novel CPs and their role is appealing. This review focuses on the properties and performance of biosensing matrices based on CPs reported in the last three years. The salient features of CPs like PANI, PPY, PTP, and their composites with nanoparticles, carbon materials, etc. are outlined along with respective examples. A description of mediator conjugated biosensor designs and enzymeless CPs based glucose sensing has also been included. The future research trends with required improvements to improve the analytical performance of CP-biosensing devices have also been addressed.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bubniene, Urte Samukaite, Vilma Ratautaite, Arunas Ramanavicius, and Vytautas Bucinskas. "Conducting Polymers for the Design of Tactile Sensors." Polymers 14, no. 15 (July 23, 2022): 2984. http://dx.doi.org/10.3390/polym14152984.

Повний текст джерела
Анотація:
This paper provides an overview of the application of conducting polymers (CPs) used in the design of tactile sensors. While conducting polymers can be used as a base in a variety of forms, such as films, particles, matrices, and fillers, the CPs generally remain the same. This paper, first, discusses the chemical and physical properties of conducting polymers. Next, it discusses how these polymers might be involved in the conversion of mechanical effects (such as pressure, force, tension, mass, displacement, deformation, torque, crack, creep, and others) into a change in electrical resistance through a charge transfer mechanism for tactile sensing. Polypyrrole, polyaniline, poly(3,4-ethylenedioxythiophene), polydimethylsiloxane, and polyacetylene, as well as application examples of conducting polymers in tactile sensors, are overviewed. Attention is paid to the additives used in tactile sensor development, together with conducting polymers. There is a long list of additives and composites, used for different purposes, namely: cotton, polyurethane, PDMS, fabric, Ecoflex, Velostat, MXenes, and different forms of carbon such as graphene, MWCNT, etc. Some design aspects of the tactile sensor are highlighted. The charge transfer and operation principles of tactile sensors are discussed. Finally, some methods which have been applied for the design of sensors based on conductive polymers, are reviewed and discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Armel, Vanessa, Orawan Winther-Jensen, Meng Zhang, and Bjorn Winther-Jensen. "Electrochemical Reactivity on Conducting Polymer Alloys." Advanced Materials Research 747 (August 2013): 489–92. http://dx.doi.org/10.4028/www.scientific.net/amr.747.489.

Повний текст джерела
Анотація:
Embedding macromolecules and active centers such as inorganic nanoparticles into conducting polymers (CPs) has been an ongoing challenge due to the normally harsh conditions required during chemical or electrochemical polymerization that limits the selection of the functional molecules to be incorporated. By developing alternative approaches for incorporating various organic and inorganic materials into CPs it has been possible to obtain efficient charge transfer within the alloys. In this report, two facile techniques are discussed for obtaining such composites: 1) In-situ polymerisation of poly (3,4-ethylenedioxythiophene) (PEDOT) in the presence of non-conducting polymers and 2) electrochemical deposition in-organic nanoparticles inside PEDOT.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Park, Yohan, Jaehan Jung, and Mincheol Chang. "Research Progress on Conducting Polymer-Based Biomedical Applications." Applied Sciences 9, no. 6 (March 14, 2019): 1070. http://dx.doi.org/10.3390/app9061070.

Повний текст джерела
Анотація:
Conducting polymers (CPs) have attracted significant attention in a variety of research fields, particularly in biomedical engineering, because of the ease in controlling their morphology, their high chemical and environmental stability, and their biocompatibility, as well as their unique optical and electrical properties. In particular, the electrical properties of CPs can be simply tuned over the full range from insulator to metal via a doping process, such as chemical, electrochemical, charge injection, and photo-doping. Over the past few decades, remarkable progress has been made in biomedical research including biosensors, tissue engineering, artificial muscles, and drug delivery, as CPs have been utilized as a key component in these fields. In this article, we review CPs from the perspective of biomedical engineering. Specifically, representative biomedical applications of CPs are briefly summarized: biosensors, tissue engineering, artificial muscles, and drug delivery. The motivation for use of and the main function of CPs in these fields above are discussed. Finally, we highlight the technical and scientific challenges regarding electrical conductivity, biodegradability, hydrophilicity, and the loading capacity of biomolecules that are faced by CPs for future work. This is followed by several strategies to overcome these drawbacks.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "CONDUCTING POLYMERS (CPs)"

1

Balogun, Yunusa A. "Enhanced Percolative Properties from Controlled Filler Dispersion in Conducting Polymer Composites (CPCs)." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1245352889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BHARGAVA, SUMEET. "TEMPERATURE AND GAS SENSING CHARACTERISTICS OF GRAPHITE/POLYMER (PEO) BASED COMPOSITE STRUCTURES." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1152821559.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumar, Bijandra. "Development of smart textiles with low environmental footprint from Conductive polymer nanoComposites." Lorient, 2010. http://www.theses.fr/2010LORIS195.

Повний текст джерела
Анотація:
Ce travail concerne le développement de textiles multifonctionnels innovants basés sur les composites polymères conducteurs (CPC), travail réalisé dans le cadre du projet européen intitulé « INTELTEX ». Des nanotubes de carbones multi-parois ont été utilisés pour leurs excellentes propriétés électriques afin de créer un réseau de charges conductrices au sein de matrices thermoplastiques synthétiques mais également bio-sourcées. La détection de composés organiques volatiles (COV) par ces systèmes sous forme de film mince exposé à des vapeurs de solvants a été démontrée. De nouvelles stratégies sont présentées pour développer et contrôler l’architecture multi-échelles du réseau conducteur. Les capteurs ainsi développés sont capables de détecter et de discriminer différentes vapeurs de solvants. Ces résultats ont ensuite aboutis à la réalisation d’échantillons textiles mono- et bi-phasiques capables de répondre à la présence de vapeurs. Enfin des systèmes di-phasiques textiles, basés sur le principe de double-percolation ont été préparés. Ces composites présentent une transition nette (PTC) dans la gamme de température visée (30-60°C). Pour les deux applications (vapeur et température) des formulations à base de matrices diminuant l’impact environnemental ont été proposées. Pour conclure, les composites polymères conducteurs (CPC) basés sur les nanotubes de carbones ont prouvés leur potentiel et intérêt d’utilisation comme matériaux intelligents sous forme de textile pour la détection de vapeurs et de température
This research work concerns the investigation and development of innovative eco-friendly smart multi-reactive textiles made of Conductive Polymer nanoComposite (CPC) within the frame of the European Union Commission funded project entitled “INTELTEX”. Multiwalled Carbon Nanotubes (CNT) have been used as conductive nanofiller to create conductive networks within both synthetic and bio-sourced polymer matrices. The ability of CPC thin films based sensor to detect Volatile Organic Compound (VOC) has been investigated by exposing them to a wide set of solvent vapours. Novel strategies have been introduced to fabricate vapour sensor with controlled hierarchical condictive architecture. The sensors developed were found to have a high potential to detect as well as to discriminate the studied vapours. In a second part the knowledge developed with CPC thin film was transferred to both mono-phasic and bi-phasic conductive textiles, which were demonstrated to be sensitive to vapours and temperature. In particular novel bi-phasic CPC textiles structured using double percolation were found to exhibit a sharp positive temperature coefficient (PTC) characteristic in the range 30 - 60°C. In the last part it has been shown that eco-friendly matrices could be proposed in substitution of synthetic polymers to decrease their environmental footprint. Finally, it has been demonstrated that CNT based CPC had a high potential as smart material to develop multi-reactive smart textile for vapour and temperature sensing
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lu, Jianbo. "Development of intelligent textiles from conductive polymer composites (CPC) for vapour and temperature sensing." Lorient, 2009. http://www.theses.fr/2009LORIS149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hashemi, Sanatgar Razieh. "FDM 3D printing of conductive polymer nanocomposites : A novel process for functional and smart textiles." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I052/document.

Повний текст джерела
Анотація:
Le but de cette étude est d’exploiter les fonctionnalités des nano-Composites Polymères Conducteurs (CPC) imprimés en utilisant la technologie FDM (modélisation par dépôt de monofilament en fusion) pour le développement de textiles fonctionnels et intelligents. L’impression 3D présente un fort potentiel pour la création d’une nouvelle classe de nanocomposites multifonctionnels. Par conséquent, le développement et la caractérisation des polymères et nanocomposites fonctionnels et imprimables en 3D sont nécessaires afin d’utiliser l’impression 3D comme nouveau procédé de dépôt de ces matériaux sur textiles. Cette technique introduira des procédés de fonctionnalisation de textiles plus flexibles, économes en ressources et très rentables, par rapport aux procédés d'impression conventionnels tels que la sérigraphie et le jet d'encre. L’objectif est de développer une méthode de production intégrée et sur mesure pour des textiles intelligents et fonctionnels, afin d’éviter toute utilisation d'eau, d'énergie et de produits chimiques inutiles et de minimiser les déchets dans le but d’améliorer l'empreinte écologique et la productivité. La contribution apportée par cette thèse consiste en la création et la caractérisation de filaments CPC imprimables en 3D, le dépôt de polymères et de nanocomposites sur des tissus et l’étude des performances en termes de fonctionnalité des couches de CPC imprimées en 3D. Dans un premier temps, nous avons créé des filaments de CPC imprimables en 3D, notamment des nanotubes de carbone à parois multiples (MWNT) et du noir de carbone à haute structure (Ketjenblack) (KB), incorporés dans de l'acide polylactique (PLA) à l'aide d'un procédé de mélange à l'état fondu. Les propriétés morphologiques, électriques, thermiques et mécaniques des filaments et des couches imprimées en 3D ont été étudiées. Deuxièmement, nous avons déposé les polymères et les nanocomposites sur des tissus à l’aide d’une impression 3D et étudié leur adhérence aux tissus. Enfin, les performances des couches de CPC imprimées en 3D ont été analysées sous tension et force de compression appliquées. La variation de la valeur de la résistance correspondant à la charge appliquée permet d’évaluer l'efficacité des couches imprimées en tant que capteur de pression / force. Les résultats ont montré que les nanocomposites à base de PLA, y compris MWNT et KB, sont imprimables en 3D. Les modifications des propriétés morphologiques, électriques, thermiques et mécaniques des nanocomposites avant et après l’impression 3D nous permettent de mieux comprendre l’optimisation du procédé. De plus, différentes variables du procédé d’impression 3D ont un effet significatif sur la force d'adhérence des polymères et des nanocomposites déposés sur les tissus. Nous avons également développé des modèles statistiques fiables associés à ces résultats valables uniquement pour le polymère et le tissu de l’étude. Enfin, les résultats démontrent que les mélanges PLA/MWNT et PLA/KB sont de bonnes matières premières piézorésistives pour l’impression 3D. Elles peuvent être potentiellement utilisées dans l’électronique portable, la robotique molle et la fabrication de prothèses, où une conception complexe, multidirectionnelle et personnalisable est nécessaire
The aim of this study is to get the benefit of functionalities of fused deposition modeling (FDM) 3D printed conductive polymer nanocomposites (CPC) for the development of functional and smart textiles. 3D printing holds strong potential for the formation of a new class of multifunctional nanocomposites. Therefore, development and characterization of 3D printable functional polymers and nanocomposites are needed to apply 3D printing as a novel process for the deposition of functional materials on fabrics. This method will introduce more flexible, resource-efficient and cost-effective textile functionalization processes than conventional printing process like screen and inkjet printing. The goal is to develop an integrated or tailored production process for smart and functional textiles which avoid unnecessary use of water, energy, chemicals and minimize the waste to improve ecological footprint and productivity. The contribution of this thesis is the creation and characterization of 3D printable CPC filaments, deposition of polymers and nanocomposites on fabrics, and investigation of the performance of the 3D printed CPC layers in terms of functionality. Firstly, the 3D printable CPC filaments were created including multi-walled carbon nanotubes (MWNT) and high-structured carbon black (Ketjenblack) (KB) incorporated into a biobased polymer, polylactic acid (PLA), using a melt mixing process. The morphological, electrical, thermal and mechanical properties of the 3D printer filaments and 3D printed layers were investigated. Secondly, the performance of the 3D printed CPC layers was analyzed under applied tension and compression force. The response for the corresponding resistance change versus applied load was characterized to investigate the performance of the printed layers in terms of functionality. Lastly, the polymers and nanocomposites were deposited on fabrics using 3D printing and the adhesion of the deposited layers onto the fabrics were investigated. The results showed that PLA-based nanocomposites including MWNT and KB are 3D printable. The changes in morphological, electrical, thermal, and mechanical properties of nanocomposites before and after 3D printing give us a great understanding of the process optimization. Moreover, the results demonstrate PLA/MWNT and PLA/KB as a good piezoresistive feedstock for 3D printing with potential applications in wearable electronics, soft robotics, and prosthetics, where complex design, multi-directionality, and customizability are demanded. Finally, different variables of the 3D printing process showed a significant effect on adhesion force of deposited polymers and nanocomposites onto fabrics which has been presented by the best-fitted model for the specific polymer and fabric
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hout, Jamal el. "Etude des mouvements moleculaires dans le polyacetylene par courant thermostimule." Toulouse 3, 1986. http://www.theses.fr/1986TOU30061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

PANERU, SAROJ. "STUDIES ON CONDUCTING POLYMER-BASED NANOCOMPOSITES FOR PESTICIDE DETECTION." Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/20436.

Повний текст джерела
Анотація:
The research work reported in the thesis speaks about the development of biosensors that provides quantitative information about pesticide detection by utilizing a bio-component (enzyme) in a direct contact with a transducer. Pesticides are extensively used to enhance productivity in the agriculture field due to their high insecticidal property and potency for pest control. However, their careless use on a large scale can lead to severe health issues, making it a global concern. Pesticides leave behind residues in agricultural resources, soil, and water which can enter the human body and lead to serious health problems, such as Alzheimer's, Parkinson's, cognitive disorders, thyroid problems, etc. Thus, there is an urgent need to develop a sensitive and effective technique for monitoring the concentration of these harmful substances to protect living beings from their injurious effects. Among the various pesticides, organophosphate pesticides (OPs) are commonly used because of their unique characteristics, including high insecticidal activity, low persistence, low bioaccumulation, and rapid degradation in the environment. In the literature, various chromatographic methods are available for detecting the presence of OPs. High-performance liquid chromatography (HPLC) and gas chromatography (GC) are the most popular methods in this domain. Although these methods are reliable, few shortcomings are still there. These methods are time-consuming and usually very rigid to implement. Therefore, we require a new technique that is authentic, possesses a low detection limit, cost-effective, rapid and easy to use. In this context, biosensors can be an attractive alternative to these conventional techniques for the detection of pesticides. Biosensors are analytical devices having biological sensing elements that are attached to a transducer and produce an electronic signal. The acetylcholinesterase (AChE)-based electrochemical biosensors have become increasingly popular for detecting OPs due to their on-site convenience, low-cost instrumentation, excellent selectivity, and rapid analysis. Their sensitivity significantly depends on the efficiency of enzyme immobilization and the electron transfer rate between the enzyme and electrode surface. To address these critical factors, researchers have explored various transducers in their studies. In recent years, conducting polymers (CPs) have been widely used as a supporting material for fabricating effective transducers. CPs contain π-electron backbone responsible for their unusual electronic properties such as electrical conductivity, low energy optical transitions, low ionization potential and high electron affinity. CPs based biosensors are cost-effective, easy to fabricate and offer a direct electrical readout for the detection of biological analytes with high sensitivity and selectivity. Various CPs such as polypyrrole, polythiophene, polyaniline, etc. have been widely used in biosensor fabrication. Apart from the merits, pure CPs have a few shortcomings like low sensitivity and poor selectivity. Nanomaterials based CPs nanocomposites overcome these issues. Nanomaterials have their own characteristics like high conductivity, large surface area, biocompatibility and excellent catalytic activity. Metal oxides (CuO, TiO2, MnO2, ZnO), graphene, carbon nanotube, etc. are some widely used nanomaterials. The incorporation of these nanomaterials effectively enhances the effective specific surface area, density, and catalytic power of nanocomposite. CPs nanocomposites increase electron transfer in an electrochemical reaction which further improves the sensitivity and selectivity of the biosensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Joseph, Alex. "Synthesis and Characterization of Functionalized Electroactive Polymers for Metal Ion Sensing." Thesis, 2014. http://etd.iisc.ac.in/handle/2005/3056.

Повний текст джерела
Анотація:
Metal ion contamination in surface and ground water is a major threat as it has a direct implication on the health of terrestrial and aquatic flora and fauna. Lead (Pb2+), mercury (Hg2+), cadmium (Cd2+), nickel (Ni2+), copper (Cu2+) and cobalt (Co2+) are few of these metal ions which are classified under the high risk category. Of these, lead and mercury are of greater concern, as even nanomolar concentrations can be lethal, as they can be bio-accumulated and result in physiological as well as neurological disorders. In Asian countries like India and China, heavy metal pollution is more prevalent, as a consequence of poor governmental policies or ineffective or inadequate measures to combat this problem. In recent times, the monitoring and assessment of water pollution is a critical area of study, as it has a direct implication for its prevention and control. The major techniques used for metal ion detection are atomic absorption spectroscopy (AAS), X-ray fluorescence, ion chromatography, neutron activation, etc. Alternatively, the electrochemical, optical and electrical methods provide a platform for the fabrication of portable devices, which can facilitate the on-site analysis of samples in a rapid and cost-effective manner. This has led to a new field of research called chemical sensors or chemo sensory devices. The main aim of this study is to develop various chemosensory materials and test their response towards metal ion sensing. In this study, electroactive polymers have been synthesized for various sensor applications. The focus has been to design synthesize and test various functionalized electroactive polymers (FEAP) for the development of electrochemical, optical and chemoresistive sensors. Electroactive polymers like polyaniline, polypyrrole, polypyrrole grafted to exfoliated graphite oxide and dipyrromethene conjugated with p-(phenylene vinylene) have been synthesized and evaluated after functionalizing with metal coordinating ligands. These metal coordinating ligands were selected, in order to enhance their metal uptake capacity. Various metal ligands like imidazole, tertiary amine group, iminodiacetic acid, and dipyrromethene incorporated either in the polymer backbone or as a part of the backbone have been chosen for the metal binding. These functionalized electroactive polymers (FEAP) served as active material for metal ion sensing. The present investigation is subdivided into three sections. The first part includes design and chemical synthesis of the functionalized polymers by a series of organic reactions. The synthesis has been followed up by characterization using spectroscopic methods including NMR, FTIR, GCMS and Mass spectrometry. In the second part of the investigation, the synthesized polymer has been characterized for the changes in electronic, electric and optical properties after interaction with the selected metal ions. For this, the FEAP is allowed to interact with various metal ions and the changes in the relevant properties have been measured. This includes the study of changes in the conductivity, electronic properties like absorption or emission of the polymer, changes in the redox properties, etc. The third phase of investigation deals with the fabrication of the devices using the active FEAP. The sensor devices comprised of either films, or electrode modified with FEAP or solution of the FEAP, in combination with an appropriate technique has been used for the sensing. The major objectives are enumerated below 1. Functionalzation of polyaniline with imidazole functional group to get imidazole functionalized polyaniline (IMPANI) and study of the electronic, electrical and optical properties of the same. 2. Preparation of films of IMPANI and study of the change in conductivity of the film upon interaction with various metal ions, namely Cu2+, Co2+ and Ni2+ in their chloride form. 3. Synthesis of amine functionalized aniline monomer and chemical graft polymerization onto exfoliated graphite oxide as a substrate to synthesise the amine funtionalised polyaniline grafted to exfoliated graphite oxide (EGAMPANI). Modification of the carbon paste electrode (CPE) with EGAMPANI and study of the electrode characteristic. 4. Study of the electrode properties of EGAMPANI modified carbon paste electrode. 5. Evaluation of the EGAMPANI modified carbon paste electrode as a multi-elemental voltammetric sensor for Pb2+, Hg2+ and Cd2+ in aqueous system. 6. Functionalization of polypyrrole with iminodiacetic acid and characterization of the polymer to synthesis iminodiacetic acid functionalized polypyrrole (IDA-PPy). 7. Modification of the CPE with IDA-PPy by drop casting method and evaluation of the Pb2+ sensing properties. 8. Study of the effect of other metal ions say Hg2+, Co2+, Ni2+, Zn2+, Cu2+ and Cd2+ on the anodic stripping current of Pb2+ using EGAMPANI modified CPE. 9. Synthesis of dipyrromethene-p-(phenylene vinylene) conjugated polymer for heavy metal ion sensing. 10. Study of the changes in the optical absorption and emission properties of the polymer in THF and evaluation of the change in these optical properties upon interaction with the metal ions as analyte. The salient findings of the research work are highlighted as follows, In the first synthesis, aniline has been functionalized with imidazole group and this monomer has been chemical oxidatively polymerized to obtain imidazole functionalized polyaniline (IMPANI). The synthesized polymer possesses a nano-spherical structure, as confirmed from the morphological characterisation using scanning electron microscopy. The IMPANI has been interacted with a representative metal ion, copper (II) chloride, and the copper complexed polymer (Cu-IMPANI) has been subjected to various studies. The coordination of copper with IMPANI results in an increase of molecular weight of the polymer as a result of aggregation, as observed from dynamic light scattering measurements. Apart from this, a significant finding is the decrease of the pH of the system after copper ion coordination attesting to the generation of a secondary hydrochloride ion during the coordination of the copper to the imidazole side chain. This is further confirmed by an increase in conductivity of the Cu-IMPANI compared to IMPANI, measured using the four-probe technique. The increase of conductivity due to copper coordination is one order of magnitude higher. The films which have been prepared from IMPANI and Cu-IMPANI exhibit different morphology. The Cu-IMPANI film prepared by prior co-ordination of Cu ion with IMPANI powder shows a flaky structure, which is not preferable for the conductivity measurements, as a consequence of discontinuity in the medium. To overcome this problem, IMPANI films were initially prepared and then interacted with copper ions for a desired duration, before measurement of the conductivity. This latter procedure enabled the preparation of smooth films for the development of chemoresistive sensors. In continuation of the initial study highlighted above, IMPANI films of thickness 0.02 ± 0.001 mm have been prepared using IMPANI and PANI in DMPU in the ratio of 7:3 by mass. After exposure of the films with respective metal chlorides, such as Ni2+, Co2+ and Cu2+, a change in conductivity is observed in the concentration range of 10-2 to 1 M of metal chlorides. The sensor response may be arranged in the sequence: Ni2+ > Cu2+ > Co2+ at 1M concentration. On the contrary, films prepared from PANI-EB under identical conditions do not exhibit any appreciable change in conductivity. The optimum exposure time is determined to be 10 min for a maximum change in conductivity, after exposure to the chosen metal ions. In the second system taken up for investigation, a tertiary amine containing polyaniline (AMPANI) has been grafted to exfoliated graphite oxide. The amine containing polyaniline grafted to exfoliated graphite oxide (EGAMPANI) has been characterised for structural, morphological and elemental composition. The grafting percentage has been determined to be 7 % by weight of AMPANI on the EGO surface. The synthesized EGAMPANI (5 weight %) has been used to modify carbon paste electrode (CPE) for electrochemical sensor studies. Based on the differential pulse anodic stripping voltammetric studies, the electrochemical response may be arranged in the following sequence: Pb 2+>Cd 2+>Hg 2+ The minimum detection levels obtained are 5×10-6, 5×10-7, and 1.0×10-7 M for Hg2+, Cd2+ and Pb2+ ions respectively. In the next study, an iminodiacetic acid functionalized polypyrrole (IDA-PPy) has been synthesized and characterised for its elemental and structural properties. This has been further used to modify the CPE by drop casting method and used for the specific detection of Pb2+ in acetate buffer. Various parameters governing the electrode performance such as concentration of depositing solution, pH of depositing solution, deposition potential, deposition time, and scan rate, have been optimized to achieve maximum performance and found to be 20 μl, 4.5, -1.3 V, 11 min, 8 mV s-1 respectively for the chosen parameters. Additionally, the influence of other heavy metal ions on the lead response has been studied and it is observed that Co, Cu and Cd ions are found to be interfering. Further, the response of Cd, Co, Cu, Hg, Ni and Zn on IDA-PPy functionalized electrode has been evaluated. The selectivity of IDA-PPy modified electrode for Pb2+ is observed in the concentration range of 1 × 10-7 M and below. The IDA-PPy modified CPE shows a linear correlation for Pb2+ concentration in the range from 1×10-6 to 5×10-9 M and with a lowest limit of detection (LLOD) of 9.6×10-9 M concentration. The efficacy of the electrode for lead sensing has also been evaluated with an industrial effluent sample obtained from a lead battery manufacturing unit. The fourth synthesis pertained to the development of an optical sensor for Fe2+, and Co2+ ions. For this, dipyrromethene as a metal coordinating ligand in conjugation with p-phenylenevinylene has been synthesized and tested for its structural as well as optical properties. It is observed that the polymer shows three absorptions, namely at 294 nm, 357 nm and a major absorption observed as a broad band ranging from 484 to 670 nm. The emission spectrum of the polymer excited at 357 nm shows a characteristic blue emission with a maximum intensity centered at 425 nm. The emission quenching in the presence of various metal ions have been tested and are found to be quenched in presence of Fe2+ and Co2+ ions. All the other metal ions tested namely, Cr3+, Cu2+, and Zn2+ are not found to exhibit any change in the emission spectra below the concentration of 1 × 10-4 M. The linear correlation of the emission intensity with the concentration of the Co2+ and Fe2+ ions has been determined using Stern-Volmer plot. For Co2+ the Stern-Volmer regime is observed from 1×10-4 to 9×10-4 M concentration and the quenching constant Ksv is determined to be 8.67 ×103 M-1. For Fe2+, the linearity is found to be in the regime of 1×10-5 to 9×10-5 M and the quenching constant Ksv is determined to be 7.90 × 103 M-1. In conclusion, different electroactive polymers functionalized with metal coordinating ligands have been synthesized, characterised and evaluated for metal sensing applications. Techniques like electrochemical, optical and conductivity have been used to characterise the response of these FEAP towards metal sensing. It is can be concluded that the electrochemical sensors are more reliable for sensing especially at very low concentrations of metal ions such as Pb, Cd and other techniques like optical and conductimetric are good for detecting metal ions namely Fe, Co, Ni, Cu. The selectivity towards the metal ions is a function of the metal chelating ligand and the extent of sensitivity is dependent upon the technique employed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Joseph, Alex. "Synthesis and Characterization of Functionalized Electroactive Polymers for Metal Ion Sensing." Thesis, 2014. http://hdl.handle.net/2005/3056.

Повний текст джерела
Анотація:
Metal ion contamination in surface and ground water is a major threat as it has a direct implication on the health of terrestrial and aquatic flora and fauna. Lead (Pb2+), mercury (Hg2+), cadmium (Cd2+), nickel (Ni2+), copper (Cu2+) and cobalt (Co2+) are few of these metal ions which are classified under the high risk category. Of these, lead and mercury are of greater concern, as even nanomolar concentrations can be lethal, as they can be bio-accumulated and result in physiological as well as neurological disorders. In Asian countries like India and China, heavy metal pollution is more prevalent, as a consequence of poor governmental policies or ineffective or inadequate measures to combat this problem. In recent times, the monitoring and assessment of water pollution is a critical area of study, as it has a direct implication for its prevention and control. The major techniques used for metal ion detection are atomic absorption spectroscopy (AAS), X-ray fluorescence, ion chromatography, neutron activation, etc. Alternatively, the electrochemical, optical and electrical methods provide a platform for the fabrication of portable devices, which can facilitate the on-site analysis of samples in a rapid and cost-effective manner. This has led to a new field of research called chemical sensors or chemo sensory devices. The main aim of this study is to develop various chemosensory materials and test their response towards metal ion sensing. In this study, electroactive polymers have been synthesized for various sensor applications. The focus has been to design synthesize and test various functionalized electroactive polymers (FEAP) for the development of electrochemical, optical and chemoresistive sensors. Electroactive polymers like polyaniline, polypyrrole, polypyrrole grafted to exfoliated graphite oxide and dipyrromethene conjugated with p-(phenylene vinylene) have been synthesized and evaluated after functionalizing with metal coordinating ligands. These metal coordinating ligands were selected, in order to enhance their metal uptake capacity. Various metal ligands like imidazole, tertiary amine group, iminodiacetic acid, and dipyrromethene incorporated either in the polymer backbone or as a part of the backbone have been chosen for the metal binding. These functionalized electroactive polymers (FEAP) served as active material for metal ion sensing. The present investigation is subdivided into three sections. The first part includes design and chemical synthesis of the functionalized polymers by a series of organic reactions. The synthesis has been followed up by characterization using spectroscopic methods including NMR, FTIR, GCMS and Mass spectrometry. In the second part of the investigation, the synthesized polymer has been characterized for the changes in electronic, electric and optical properties after interaction with the selected metal ions. For this, the FEAP is allowed to interact with various metal ions and the changes in the relevant properties have been measured. This includes the study of changes in the conductivity, electronic properties like absorption or emission of the polymer, changes in the redox properties, etc. The third phase of investigation deals with the fabrication of the devices using the active FEAP. The sensor devices comprised of either films, or electrode modified with FEAP or solution of the FEAP, in combination with an appropriate technique has been used for the sensing. The major objectives are enumerated below 1. Functionalzation of polyaniline with imidazole functional group to get imidazole functionalized polyaniline (IMPANI) and study of the electronic, electrical and optical properties of the same. 2. Preparation of films of IMPANI and study of the change in conductivity of the film upon interaction with various metal ions, namely Cu2+, Co2+ and Ni2+ in their chloride form. 3. Synthesis of amine functionalized aniline monomer and chemical graft polymerization onto exfoliated graphite oxide as a substrate to synthesise the amine funtionalised polyaniline grafted to exfoliated graphite oxide (EGAMPANI). Modification of the carbon paste electrode (CPE) with EGAMPANI and study of the electrode characteristic. 4. Study of the electrode properties of EGAMPANI modified carbon paste electrode. 5. Evaluation of the EGAMPANI modified carbon paste electrode as a multi-elemental voltammetric sensor for Pb2+, Hg2+ and Cd2+ in aqueous system. 6. Functionalization of polypyrrole with iminodiacetic acid and characterization of the polymer to synthesis iminodiacetic acid functionalized polypyrrole (IDA-PPy). 7. Modification of the CPE with IDA-PPy by drop casting method and evaluation of the Pb2+ sensing properties. 8. Study of the effect of other metal ions say Hg2+, Co2+, Ni2+, Zn2+, Cu2+ and Cd2+ on the anodic stripping current of Pb2+ using EGAMPANI modified CPE. 9. Synthesis of dipyrromethene-p-(phenylene vinylene) conjugated polymer for heavy metal ion sensing. 10. Study of the changes in the optical absorption and emission properties of the polymer in THF and evaluation of the change in these optical properties upon interaction with the metal ions as analyte. The salient findings of the research work are highlighted as follows, In the first synthesis, aniline has been functionalized with imidazole group and this monomer has been chemical oxidatively polymerized to obtain imidazole functionalized polyaniline (IMPANI). The synthesized polymer possesses a nano-spherical structure, as confirmed from the morphological characterisation using scanning electron microscopy. The IMPANI has been interacted with a representative metal ion, copper (II) chloride, and the copper complexed polymer (Cu-IMPANI) has been subjected to various studies. The coordination of copper with IMPANI results in an increase of molecular weight of the polymer as a result of aggregation, as observed from dynamic light scattering measurements. Apart from this, a significant finding is the decrease of the pH of the system after copper ion coordination attesting to the generation of a secondary hydrochloride ion during the coordination of the copper to the imidazole side chain. This is further confirmed by an increase in conductivity of the Cu-IMPANI compared to IMPANI, measured using the four-probe technique. The increase of conductivity due to copper coordination is one order of magnitude higher. The films which have been prepared from IMPANI and Cu-IMPANI exhibit different morphology. The Cu-IMPANI film prepared by prior co-ordination of Cu ion with IMPANI powder shows a flaky structure, which is not preferable for the conductivity measurements, as a consequence of discontinuity in the medium. To overcome this problem, IMPANI films were initially prepared and then interacted with copper ions for a desired duration, before measurement of the conductivity. This latter procedure enabled the preparation of smooth films for the development of chemoresistive sensors. In continuation of the initial study highlighted above, IMPANI films of thickness 0.02 ± 0.001 mm have been prepared using IMPANI and PANI in DMPU in the ratio of 7:3 by mass. After exposure of the films with respective metal chlorides, such as Ni2+, Co2+ and Cu2+, a change in conductivity is observed in the concentration range of 10-2 to 1 M of metal chlorides. The sensor response may be arranged in the sequence: Ni2+ > Cu2+ > Co2+ at 1M concentration. On the contrary, films prepared from PANI-EB under identical conditions do not exhibit any appreciable change in conductivity. The optimum exposure time is determined to be 10 min for a maximum change in conductivity, after exposure to the chosen metal ions. In the second system taken up for investigation, a tertiary amine containing polyaniline (AMPANI) has been grafted to exfoliated graphite oxide. The amine containing polyaniline grafted to exfoliated graphite oxide (EGAMPANI) has been characterised for structural, morphological and elemental composition. The grafting percentage has been determined to be 7 % by weight of AMPANI on the EGO surface. The synthesized EGAMPANI (5 weight %) has been used to modify carbon paste electrode (CPE) for electrochemical sensor studies. Based on the differential pulse anodic stripping voltammetric studies, the electrochemical response may be arranged in the following sequence: Pb 2+>Cd 2+>Hg 2+ The minimum detection levels obtained are 5×10-6, 5×10-7, and 1.0×10-7 M for Hg2+, Cd2+ and Pb2+ ions respectively. In the next study, an iminodiacetic acid functionalized polypyrrole (IDA-PPy) has been synthesized and characterised for its elemental and structural properties. This has been further used to modify the CPE by drop casting method and used for the specific detection of Pb2+ in acetate buffer. Various parameters governing the electrode performance such as concentration of depositing solution, pH of depositing solution, deposition potential, deposition time, and scan rate, have been optimized to achieve maximum performance and found to be 20 μl, 4.5, -1.3 V, 11 min, 8 mV s-1 respectively for the chosen parameters. Additionally, the influence of other heavy metal ions on the lead response has been studied and it is observed that Co, Cu and Cd ions are found to be interfering. Further, the response of Cd, Co, Cu, Hg, Ni and Zn on IDA-PPy functionalized electrode has been evaluated. The selectivity of IDA-PPy modified electrode for Pb2+ is observed in the concentration range of 1 × 10-7 M and below. The IDA-PPy modified CPE shows a linear correlation for Pb2+ concentration in the range from 1×10-6 to 5×10-9 M and with a lowest limit of detection (LLOD) of 9.6×10-9 M concentration. The efficacy of the electrode for lead sensing has also been evaluated with an industrial effluent sample obtained from a lead battery manufacturing unit. The fourth synthesis pertained to the development of an optical sensor for Fe2+, and Co2+ ions. For this, dipyrromethene as a metal coordinating ligand in conjugation with p-phenylenevinylene has been synthesized and tested for its structural as well as optical properties. It is observed that the polymer shows three absorptions, namely at 294 nm, 357 nm and a major absorption observed as a broad band ranging from 484 to 670 nm. The emission spectrum of the polymer excited at 357 nm shows a characteristic blue emission with a maximum intensity centered at 425 nm. The emission quenching in the presence of various metal ions have been tested and are found to be quenched in presence of Fe2+ and Co2+ ions. All the other metal ions tested namely, Cr3+, Cu2+, and Zn2+ are not found to exhibit any change in the emission spectra below the concentration of 1 × 10-4 M. The linear correlation of the emission intensity with the concentration of the Co2+ and Fe2+ ions has been determined using Stern-Volmer plot. For Co2+ the Stern-Volmer regime is observed from 1×10-4 to 9×10-4 M concentration and the quenching constant Ksv is determined to be 8.67 ×103 M-1. For Fe2+, the linearity is found to be in the regime of 1×10-5 to 9×10-5 M and the quenching constant Ksv is determined to be 7.90 × 103 M-1. In conclusion, different electroactive polymers functionalized with metal coordinating ligands have been synthesized, characterised and evaluated for metal sensing applications. Techniques like electrochemical, optical and conductivity have been used to characterise the response of these FEAP towards metal sensing. It is can be concluded that the electrochemical sensors are more reliable for sensing especially at very low concentrations of metal ions such as Pb, Cd and other techniques like optical and conductimetric are good for detecting metal ions namely Fe, Co, Ni, Cu. The selectivity towards the metal ions is a function of the metal chelating ligand and the extent of sensitivity is dependent upon the technique employed.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "CONDUCTING POLYMERS (CPs)"

1

Chandrasekhar, Prasanna. "Introducing Conducting Polymers (CPs)." In Conducting Polymers, Fundamentals and Applications, 159–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69378-1_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chandrasekhar, Prasanna. "Electrochemistry of CPs." In Conducting Polymers, Fundamentals and Applications, 77–99. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chandrasekhar, Prasanna. "Basics of Conducting Polymers (CPs)." In Conducting Polymers, Fundamentals and Applications, 3–22. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chandrasekhar, Prasanna. "Semiconductor Models for CPs." In Conducting Polymers, Fundamentals and Applications, 23–42. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chandrasekhar, Prasanna. "Basic Electrochromics of CPs." In Conducting Polymers, Fundamentals and Applications, 43–76. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chandrasekhar, Prasanna. "Conduction Models for CPs." In Conducting Polymers, Fundamentals and Applications, 143–72. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chandrasekhar, Prasanna. "Theoretical Treatments of CPs." In Conducting Polymers, Fundamentals and Applications, 173–206. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chandrasekhar, Prasanna. "Basic Electrochromics of CPs." In Conducting Polymers, Fundamentals and Applications, 251–82. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69378-1_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chandrasekhar, Prasanna. "Basic Electrochemistry of CPs." In Conducting Polymers, Fundamentals and Applications, 283–309. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-69378-1_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chandrasekhar, Prasanna. "Classes of CPs: Part 1." In Conducting Polymers, Fundamentals and Applications, 371–91. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5245-1_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "CONDUCTING POLYMERS (CPs)"

1

Talwar, Brijpal Singh, Kambiz Chizari, Shuangzhuang Guo, and Daniel Therriault. "Investigation of Carbon Nanotubes Mixing Methods and Functionalizations for Electrically Conductive Polymer Composites." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39970.

Повний текст джерела
Анотація:
The growing popularity of Poly lactic acid (PLA) is related to its biocompatibility, good mechanical properties, and its synthesis from renewable resources. PLA can be compounded with electrically conductive fillers (e.g., carbon nanotubes (CNTs)) to form carbon polymer composites (CPC). These fillers provide the conductive functionality by forming percolative paths. Featuring very low weight densities, CPCs have the potential to replace metals in the electronic industry if they exhibit similar electrical conductivities. The current challenges being faced during the mixing of CNTs in a polymer matrix are the formation of aggregates due to the strong van der Waals forces and the breakage of the CNTs during dispersion. In this study, we compare: (1) two fabrication methods to create CPCs (i.e., solution mixing by sonication and extrusion) and (2) effects of various CNT functionalization techniques (i.e., acid and plasma treatments) on the conductivity of the CPCs. First, the composites comprising of 30% PLA by weight in Dichloromethane (DCM) and CNTs in different concentrations (up to 5wt.%) are fabricated by two step sonication method (i.e., dissolving PLA in DCM and then dispersing the CNTs in the polymer solution). Second, CPCs are fabricated using a micro twin screw extruder operating at 180°C. To verify the effects of functionalization of the CNTs on the conductivity of composites, the CNTs are functionalized via three methods: - HNO3 acid functionalization, 3:1 ratio HNO3 + H2SO4 acid (stronger) functionalization and N2 plasma functionalization. CPC fibers are drawn using the solvent-cast printing method. These fibers are then tested for their electrical conductivity using the two probe method. The maximum electrical conductivity is showed by the 5% CNT concentration samples at 3.97 S/m and 25.16 S/m for the CPC fibers obtained via the solution blend and the extrusion methods, respectively. Regarding the functionalized CNTs, conductivity measurements show a negative effect of the CNTs functionalization on the electrical properties of the CPC.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Borriello, C., S. Masala, V. Bizzarro, G. Nenna, M. Re, E. Pesce, C. Minarini, et al. "Luminescent nanocomposites of conducting polymers and in-situ grown CdS quantum dots." In V INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) AND COMPOSITES. AIP, 2010. http://dx.doi.org/10.1063/1.3455549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anitha, Bahuleyan, Bhaskaran Vilasini Vibitha, Prabhakaran Sreedevi Prabha Jyothi, and John Nisha Tharayil. "Structural and morphological studies of conducting polymer nanocomposites." In 16TH INTERNATIONAL CONFERENCE ON CONCENTRATOR PHOTOVOLTAIC SYSTEMS (CPV-16). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0030089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Naji, Ahmed, Petra Pötschke, and Amir Ameli. "Electrical Conductivity of Multifunctional Blend Composites of Polycarbonate and Polyethylene With Hybrid Fillers." In ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/smasis2022-97843.

Повний текст джерела
Анотація:
Abstract Multifunctional composites are in high demand where a material needs to simultaneously satisfy several functional requirements. Bipolar plates of polymer electrolyte membrane fuel cells are great examples of this kind, requiring very high electrical and thermal conductivities together with good mechanical properties and environmental durability. Conductive filler/polymer composites (CPCs) have shown some promise towards this application. However, achieving high levels of through-plane and in-plane electrical conductivities in CPCs while maintaining scalable processability and satisfactory level of mechanical performance is challenging. In this work, a polymeric blend system together with hybrid conductive fillers was designed, manufactured, and characterized in an attempt to obtain melt-processable, highly conductive composites. Polycarbonate (PC) and high-density polyethylene (HDPE) were employed as the blend matrix with polyethylene glycol (PEG) as the compatibilizer. Carbon nanotubes (CNT), carbon fibers (CF), and graphite (G) were utilized as the conductive fillers. The HDPE was used as the minor component of blend matrix at 30 wt.% of the major matrix PC, with PC having the better affinity to the fillers. This was done to localize the conductive fillers in the major PC component of the blend. CF and G were used in ranges of 10–30 wt. % and 30–50 wt. % of the composites, respectively. CNT and PEG were fixed at 3 wt. % and 1.5 wt. %, respectively. The composites were first compounded using a twin-screw extrusion system and the test specimens were then made using compression molding process. The results showed that due to the preferential localization of the fillers in PC component of the PC/HDPE blend, the electrical conductivities were increased by about three times, compared to that of CPCs made with PC-only matrix. Consequently, high through-plane and in-plane conductivities of 10.0 and 61.1 S/cm, respectively, were achieved, which are superior to most of the previously reported results. The findings suggest that integrating blending and hybrid filler strategies could be a promising approach towards scalable manufacturing of highly conductive CPCs for applications such as bipolar plates.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rowberry, P. J. "Intrinsically conductive polymers for electromagnetic screening." In 9th International Conference on Electromagnetic Compatibility. IEE, 1994. http://dx.doi.org/10.1049/cp:19940687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mazlan, N. A., S. Shahabuddin, S. N. A. Baharin, A. K. Pandey, and R. Saidur. "Conducting Polymers: New Arena in Dye-sensitized Solar Cells." In 5th IET International Conference on Clean Energy and Technology (CEAT2018). Institution of Engineering and Technology, 2018. http://dx.doi.org/10.1049/cp.2018.1324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Albright, Tyler B., and Jared D. Hobeck. "Development of Manufacturing and Characterization Methods for Carbon Black-Based Conductive Polymer Composite Sensors." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24060.

Повний текст джерела
Анотація:
Abstract This research details the process and methodology deployed to better understand the arrangement of colloidal carbon black (CB) nanoparticles in a spray-layer-by-layer (SLBL) manufactured conductive polymer composite (CPC). The effects of various SLBL parameters on the qualitative consistency and electromechanical performance of the resulting sensors are experimentally examined. Microscopy techniques are used to investigate the distribution and resulting CB structures of CPC films deposited on different types of substrates. Various substrate preparation methods and effects are discussed. Electrical characteristics of CPC films are investigated via deposition between copper electrode pairs on printed circuit boards. Practical applications of the characterized films are discussed along with future works regarding such sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Guo, Qingchuan, Reza Ghadiri, Thomas Weigel, Andreas Aumann, Evgeny L. Gurevich, Cemal Esen, Yan Li, Wei Cheng, Boris Chichkov, and Andreas Ostendorf. "Ex-situ preparation of high-conductive polymer/SWNTs nanocomposites for structure fabrication." In SPIE/COS Photonics Asia, edited by Zhiping Zhou and Kazumi Wada. SPIE, 2014. http://dx.doi.org/10.1117/12.2071870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ghosh, Dipannita, Md Ashiqur Rahman, Ali Ashraf, and Nazmul Islam. "Graphene-Conductive Polymer-Based Electrochemical Sensor for Dopamine Detection." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-96193.

Повний текст джерела
Анотація:
Abstract The central nervous system’s (CNS) dopaminergic system dysfunction has been linked to neurological illnesses like schizophrenia and Parkinson’s disease. As a result, sensitive and selective detection of dopamine is critical for the early diagnosis of illnesses associated with aberrant dopamine levels. In this research, we have investigated the performance of electrochemical screen-printed sensors for different concentrations of dopamine detection using graphene-based conductive PEDOT: PSS(G-PEDOT: PSS) and Polyaniline(G-PANI) inks on the working electrode and compared the sensitivity. SEM characterization technique has been performed to visualize the microstructures of the proposed inks. We have investigated cyclic voltammetry (CV) electrochemical techniques with ferri/ferrocyanide redox couple to assess the efficiency of the designed electrodes in detecting dopamine. G-PANI ink has shown to have better LOD and stability to detect dopamine with screen-printed electrodes. Further, we have also studied electrochemical analysis for the selective detection of dopamine without the interference of Ascorbic Acid (AA).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Naji, Ahmed, Petra Pötschke, and Amir Ameli. "Melt Processed Conductive Polycarbonate Composites With Ternary Fillers Towards Bipolar Plate Applications." In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8046.

Повний текст джерела
Анотація:
The demand for clean and sustainable energy sources continuously increases. One of the promising ways to provide electrical power is using fuel cells. Polymer electrolyte membrane fuel cell (PEMFC) represents the most common type of fuel cells. However, PEMFCs have not yet been fully commercialized because of the high cost and low performance. A main part of PEMFC, which significantly contributes to the cost and weight is the bipolar plate (BPP). The US Department of Energy (DOE) has recommended some physical properties for BPP for sustainable commercialization of PEMFC. Those set properties have yet to be met. Conductive polymer composites (CPCs) use conductive fillers such as carbon nanotube (CNT), carbon fiber (CF), and graphite (Gr) to impart electrical and thermal conductivities and can potentially provide an optimum combination of weight, cost, mechanical properties and conductivity characteristics for BPPs. In the current work, CPCs of polycarbonate (PC) filled with singular filler of CNT, binary fillers of CNT and CF and ternary fillers of CNT, CF and Gr were fabricated using melt mixing method followed by compression molding. The through-plane and in-plane electrical conductivities of the CPCs were investigated. The results showed that the electrical percolation thresholds for the PC-CNT is ∼1 wt. % CNT in both the through-plane and in-plane directions. Addition of 3 wt. % CNT to PC composites with 10 - 30 wt. % CF improved the conductivity performance. It was noticed increasing CF content from 20 to 30 wt. % did not yield a big change in conductivity, so that at 20 wt. % CF, the through-plane and in-plane electrical conductivities are 0.11 S.cm−1 and 6.4 S.cm−1 respectively. Moreover, using 20 wt. % CF will allow for higher loading of graphite. To further enhance the conductivities towards the DOE recommendations, 30 wt. % Gr was introduced to the PC composite with binary filler (i.e., 3 wt. % CNT and 20 wt. % CF). The results showed that the through-plane and in-plane electrical conductivities were increased to 1.5 S.cm−1 and 13.5 S.cm−1, respectively. These properties recommend a potential application of polycarbonate based CPCs for BPP manufacturing.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії