Добірка наукової літератури з теми "Condensation frosting"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Condensation frosting".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Condensation frosting"
Yang, Siyan, Chenyang Wu, Guanlei Zhao, Jing Sun, Xi Yao, Xuehu Ma, and Zuankai Wang. "Condensation frosting and passive anti-frosting." Cell Reports Physical Science 2, no. 7 (July 2021): 100474. http://dx.doi.org/10.1016/j.xcrp.2021.100474.
Повний текст джерелаSimonson, C. J., and R. W. Besant. "Heat and Moisture Transfer in Energy Wheels During Sorption, Condensation, and Frosting Conditions." Journal of Heat Transfer 120, no. 3 (August 1, 1998): 699–708. http://dx.doi.org/10.1115/1.2824339.
Повний текст джерелаZhang, Long, Mengjie Song, Christopher Yu Hang Chao, Chaobin Dang, and Jun Shen. "Localized Characteristics of the First Three Typical Condensation Frosting Stages in the Edge Region of a Horizontal Cold Plate." Micromachines 13, no. 11 (November 4, 2022): 1906. http://dx.doi.org/10.3390/mi13111906.
Повний текст джерелаNath, Saurabh, S. Farzad Ahmadi, and Jonathan B. Boreyko. "A Review of Condensation Frosting." Nanoscale and Microscale Thermophysical Engineering 21, no. 2 (November 2, 2016): 81–101. http://dx.doi.org/10.1080/15567265.2016.1256007.
Повний текст джерелаChen, Xintao, Xian Wu, Fang Li, Xiaofeng Zhao, and Shanlin Wang. "Enhancement of Condensation Heat Transfer, Anti-Frosting and Water Harvesting by Hybrid Wettability Coating." Nano 16, no. 08 (July 2021): 2150086. http://dx.doi.org/10.1142/s1793292021500867.
Повний текст джерелаYang, Kai-Shing, Wei Lu, and Yu-Lieh Wu. "Visualization of Patterned Modified Surfaces in Condensation and Frosting States." Energies 12, no. 23 (November 23, 2019): 4471. http://dx.doi.org/10.3390/en12234471.
Повний текст джерелаHuang, Chengzhi, Yugang Zhao, and Tian Gu. "Ice Dendrite Growth Atop a Frozen Drop under Natural Convection Conditions." Crystals 12, no. 3 (February 25, 2022): 323. http://dx.doi.org/10.3390/cryst12030323.
Повний текст джерелаQUAN, YUN-YUN, PEI-GUO JIANG, and LI-ZHI ZHANG. "DEVELOPMENT OF FRACTAL ULTRA-HYDROPHOBIC COATING FILMS TO PREVENT WATER VAPOR DEWING AND TO DELAY FROSTING." Fractals 22, no. 03 (September 2014): 1440002. http://dx.doi.org/10.1142/s0218348x14400027.
Повний текст джерелаNath, Saurabh, S. Farzad Ahmadi, and Jonathan B. Boreyko. "How ice bridges the gap." Soft Matter 16, no. 5 (2020): 1156–61. http://dx.doi.org/10.1039/c9sm01968e.
Повний текст джерелаZuo, Zichao, Yugang Zhao, Kang Li, Hua Zhang, and Chun Yang. "Suppressing condensation frosting using micropatterned ice walls." Applied Thermal Engineering 224 (April 2023): 120099. http://dx.doi.org/10.1016/j.applthermaleng.2023.120099.
Повний текст джерелаДисертації з теми "Condensation frosting"
Nath, Saurabh. "Condensation Frosting: From Ice Bridges to Dry Zones." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/79129.
Повний текст джерелаMaster of Science
Di, Novo Nicolò Giuseppe. "Water self-ejection, frosting, harvesting and viruses viability on surfaces: modelling and fabrication." Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/355461.
Повний текст джерелаLo, Ching-Wen, and 羅景文. "Enhancing Condensation and Anti-frosting/De-frosting Performances Using Micro-/Nano-structured Surfaces." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/hrt4rp.
Повний текст джерела國立交通大學
機械工程系所
105
Phase change is a commonly seen process in a wide range of systems, including desalination, power generation, water-harvesting, and electronics cooling. Micro/nanostructured surfaces have been recognized to have a huge potential in promoting the efficiency of phases interaction in phase change processes. This thesis aims to improve the heat and mass transfer in condensation by using micro/nanostructured surfaces, and to promote the anti-frosting and de-frosting abilities by using micro/nanostructured surfaces. Condensation is a common phenomenon and is widely exploited in power generation and refrigeration systems. We reported a new concept to enhance condensation by controlling heterogeneous nucleation on superhydrophobic (SHB) surfaces. Condensation on plain silicon surface (plain Si), silicon nanowire coated (SiNW) surface and microgroove with silicon nanowire coated (MG/SiNW) surfaces have been examined. Heterogeneous nucleation on the MG/SiNW surface could be spatially controlled by manipulating the free energy barrier to nucleation through parameterizing regional roughness scale. Moreover, the nucleation site density (NSD) can also be manipulated by tailoring the density of the microgroove on the surface. Our experimental results show that the MG/SiNW surfaces can effectively promote condensation by utilizing the spatial control of nucleation. This suggests that potentially high heat and mass transfer rates can be achieved on the MG/SiNW surfaces. It is worth noting that utilizing micro/nanostructured surface is not necessarily advantageous because the apparent Cassie droplets are usually in fact partial Wenzel in condensation. The Wenzel droplets would result in an increase in droplet departure diameter and thereby deteriorating the condensation performance on the micro/nanostructured surfaces. To attain the efficient shedding of Cassie droplets in condensation on a SHB surface, a Bond number (a dimensionless number for appraising dropwise condensation) and a solid−liquid fraction smaller than 0.1 and 0.3, respectively, were suggested. Ice formation is a catastrophic problem affecting our daily life in a number of ways. At present, de-icing methods are costly, inefficient, and environmentally unfriendly. Ice can be formed on a solid surface either by condensation-freezing process or by frosting process. Although SHB surfaces can potentially be an ice-phobic surface in the condensation-freezing process, frosting is expected at a very cold temperature. Thus, indiscriminate frost formation is found everywhere on the solid surfaces through the frosting process, eliminating the ice-phobic function on the SHB surfaces. Frosting on plain Si surface, SiNW surface, v-shaped microgroove (VMG) surfaces and trapezoid microgroove (TMG) surface have been systematically investigated. It was found that ice embryos could preferentially nucleate at the microgroove on the VMG surfaces and TMG surface. Ice NSD could also be manipulated by tailoring the number of microgrooves on the surfaces. Besides, ice crystals grew and stacked along the direction of grooves on VMG surfaces. The spatial control of frost formation and the confinement of ice growing kinetics on VMG surfaces could effectively improve the anti-frosting and de-frosting performances. The VMG surface possessed the longest ice-covering time (the time required for ice to cover the whole surface area in the frosting experiments) and the shortest dwell time (the time period during which ice covered the whole surface area after switching off the Peltier cooler in the de-frosting experiments) among various kinds of surfaces. This implied that v-shaped microgroove surface exhibited the best anti-frosting and de-frosting performances among the studied surfaces. This thesis has demonstrated the concepts of designing micro/nanostructured surfaces, which can improve condensation performance and anti-frosting/de-frosting abilities. We anticipate that the concept could be adopted in the other phase change process such as boiling or evaporation process.
Тези доповідей конференцій з теми "Condensation frosting"
Shi, R., W. Chen, C. Li, X. Han, and Q. Cheng. "A numerical simulation of frosting and condensation in aviation electronic devices based on nielsen dynamic frosting model." In CSAA/IET International Conference on Aircraft Utility Systems (AUS 2020). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2021.0341.
Повний текст джерелаRahman, M. A., and A. M. Jacobi. "Experimental Study of Wetting Anisotropy and Condensate Drainage Enhancement on Microgrooved Aluminum Surface." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64247.
Повний текст джерелаZhao, Yugang, and Chun Yang. "Suppression of Frost Propagation With Micropillar Structure Engineered Surface." In ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6402.
Повний текст джерелаYu, Rong, and Anthony M. Jacobi. "Water-Repellent Slippery Surfaces for HVAC&R Systems." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-9065.
Повний текст джерелаQuach, Nhi V., Jewoo Park, Yonghwi Kim, Ruey-Hwa Cheng, Michal Jenco, Alex K. Lee, Chenxi Yin, and Yoonjin Won. "Machine Learning Enables Autonomous Vehicles Under Extreme Environmental Conditions." In ASME 2022 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/ipack2022-96542.
Повний текст джерела