Добірка наукової літератури з теми "Concentrated solar thermal"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Concentrated solar thermal".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Concentrated solar thermal"

1

Panchenko, Vladimir. "Photovoltaic Thermal Module With Paraboloid Type Solar Concentrators." International Journal of Energy Optimization and Engineering 10, no. 2 (April 2021): 1–23. http://dx.doi.org/10.4018/ijeoe.2021040101.

Повний текст джерела
Анотація:
The article presents the results of the development and research of the solar photovoltaic thermal module with paraboloid type solar radiation concentrators. The structure of the solar module includes a composite concentrator, which provides uniform illumination by concentrated solar radiation on the surface of the cylindrical photovoltaic thermal photoreceiver in the form of the aluminum radiator with photovoltaic converters. When exposed in concentrated solar radiation, the electrical efficiency of specially designed matrix photovoltaic converters increases, and the heat taken by the heat carrier increases the overall efficiency of the solar module. Uniform illumination of photovoltaic converters with concentrated solar radiation provides an optimal mode of operation. The consumer can use the received electric and thermal energy in an autonomous or parallel power supply with the existing power grid.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thirunavukkarasu, V., and M. Cheralathan. "Thermal Performance of Solar Parabolic Dish Concentrator with Hetero-Conical Cavity Receiver." Applied Mechanics and Materials 787 (August 2015): 197–201. http://dx.doi.org/10.4028/www.scientific.net/amm.787.197.

Повний текст джерела
Анотація:
Concentrated solar collectors have high efficiency as compared to flat plate and evacuated tube solar collectors. Cavity receivers are mainly used on the parabolic dish concentrators and tower type concentrator systems. The heat transfer surfaces of cavity receiver are composed by coiled metal tube. Heat transfer fluid flows in the internal spaces of coiled metal tube, and the external surfaces would absorb the highly concentrated solar energy. This paper explains the thermal performance of parabolic dish concentrator system with hetero-conical cavity receiver. The experimental analysis was done during the month of April 2014 on clear sunny days at Chennai [Latitude: 13.08oN, Longitude: 80.27oE] to study its thermal performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shao, Limin, and Shuli Yang. "Concentrating System’s Design and Performance Analysis for Spacial Solar Array." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 36, no. 3 (June 2018): 471–79. http://dx.doi.org/10.1051/jnwpu/20183630471.

Повний текст джерела
Анотація:
A large area of sunlight onto solar cells is gathered by concentrating system for spacial concentrating solar array, which reduces the amount of solar cells by increasing light intensity onto the solar cells of the unit area. Under concentrating conditions, the short-circuit current, open-circuit voltage, fill factor, efficiency, operating temperature and strong thermal-electrical coupling characteristics of concentrating solar cells are different from the conventional solar cells because of the high intensity and high operating temperature. The concentrating module design, solar cell selection, and design of solar cell heat-dissipation have been carried out. The thermal-electric coupling model of special concentrating photovoltaic system has been established. The relationships among concentrated ratio, substrate-thickness, thermal conductivity of substrate-material and solar cell’s temperature, density of short-circuit current, open-circuit voltage, maximum output power have been analyzed, which provide a view to a reasonabl0e match and selection of multi-parameters in engineering design. Results show that the concentrated ratio has an overall effect on the open-circuit voltage, short-circuit current, efficiency and operating temperature of the solar cell. There is a strong coupling relationship among the parameters, and the positive and negative impacts caused by the concentrating characteristics should be weighed in the engineering design. The short-circuit current density of concentrating solar cells is proportional to the concentrated ratio. Under the lower concentrated ratio circumstance, fill factor and efficiency is not substantially affected by the concentrated ratio. The maximum output power and open-circuit voltage increase with the increase of concentrated ratio. Temperature of concentrating solar cells has an adverse effect on the open-circuit voltage, efficiency and output power, which needs high efficient radiator measures to be taken. The operating temperature of solar cells could be decreased significantly by the high thermal conductivity of the substrate-material. The concentrated ratio between 9~15 is recommended for spacial solar array, which not only embodies the advantage of concentrator like improving the cell-efficiency and decreasing the cost, but also doesn’t exact the deploying precision of concentrating system.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Murat Cekirge, Huseyin, Serdar Eser Erturan, and Richard Stanley Thorsen. "CSP (Concentrated Solar Power) - Tower Solar Thermal Desalination Plant." American Journal of Modern Energy 6, no. 2 (2020): 51. http://dx.doi.org/10.11648/j.ajme.20200602.11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Singh, Harwinder, and R. S. Mishra. "Perfortmance Evaluations of Concentrated Solar Thermal Power Technology." International Journal of Advance Research and Innovation 4, no. 1 (2016): 263–71. http://dx.doi.org/10.51976/ijari.411638.

Повний текст джерела
Анотація:
This review work consists of detailed description on various types of research in the field of solar thermal systems and various methods to improve the performance of the collector systems. Concentrated solar thermal systems are the highly advanced and large scale technology, which is used to generate the thermal energy and converted it in to electric energy through the application of power producing device coupled with the collector systems, therefore from the research point of view improvement in the working performance of the solar thermal system is highly important to achieve the better efficient device.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vighas, V. R., S. Bharath Subramaniam, and G. Harish. "Advances in concentrated solar absorber designs." Journal of Physics: Conference Series 2054, no. 1 (October 1, 2021): 012038. http://dx.doi.org/10.1088/1742-6596/2054/1/012038.

Повний текст джерела
Анотація:
Abstract Concentrated solar power (CSP) with thermal storage (TES) can generate continuous power output. It can be used for various applications by overcoming the intermittent solar radiation. As heat losses occur in absorber because of heat flux, tracking, optical errors. Hence, improving efficiency arises. Reducing heat loss is vital. The absorbers are volumetric, cavity, tubular liquid, solid particle-type. The occurrence of heat flux on absorbers from heliostats. Performance affects because of clouds in transient conditions. The review focuses on advances in solar absorber designs. It concentrates on meeting sustainable development’s energy and power requirements.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ahmad, S. Q. S., R. J. Hand, and C. Wieckert. "Glass melting using concentrated solar thermal energy." Glass Technology: European Journal of Glass Science and Technology Part A 58, no. 2 (April 11, 2017): 41–48. http://dx.doi.org/10.13036/17533546.58.2.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Al-Kouz, Wael, Jamal Nayfeh, and Alberto Boretti. "Design of a parabolic trough concentrated solar power plant in Al-Khobar, Saudi Arabia." E3S Web of Conferences 160 (2020): 02005. http://dx.doi.org/10.1051/e3sconf/202016002005.

Повний текст джерела
Анотація:
The paper discusses the design options for a concentrated solar power plant in Al-Khobar, Saudi Arabia. The specific conditions, in terms of weather and sun irradiance, are considered, including sand and dust, humidity, temperature and proximity to the sea. Different real-world experiences are then considered, to understand the best design to adapt to the specific conditions. Concentrated solar power solar tower with thermal energy storage such as Crescent Dunes, or concentrated solar power solar tower without thermal energy storage but boost by natural gas combustion such as Ivanpah are disregarded for the higher costs, the performances well below the design, and the extra difficulties for the specific location such as temperatures, humidity and sand/dust that suggest the use of an enclosed trough. Concentrated solar power parabolic trough without thermal energy storage such as Genesis or Mojave, of drastically reduced cost and much better performances, do not provide however the added value of thermal energy storage and dispatchability that can make interesting Concentrated solar power vs. alternatives such as wind and solar photovoltaic. Thus, the concentrated solar power parabolic trough with thermal energy storage of Solana, of intermediate costs and best performances, albeit slightly lower than the design values, is selected. This design will have to be modified to enclosed trough and adopt a Seawater, Once-trough condenser. Being the development peculiar, a small scale pilot plant is suggested before a full-scale development.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cañadas, Inmaculada, Victor M. Candelario, Giulia De Aloysio, Jesús Fernández, Luca Laghi, Santiago Cuesta-López, Yang Chen, et al. "Characterization of Solar-Aged Porous Silicon Carbide for Concentrated Solar Power Receivers." Materials 14, no. 16 (August 17, 2021): 4627. http://dx.doi.org/10.3390/ma14164627.

Повний текст джерела
Анотація:
Porous silicon carbide is a promising material for ceramic receivers in next-generation concentrated solar power receivers. To investigate its tolerance to thermal shock, accelerated ageing of large coupons (50 × 50 × 5 mm) was conducted in a solar furnace to investigate the effects of thermal cycling up to 1000 °C, with gradients of up to 22 °C/mm. Non-destructive characterization by computed X-ray tomography and ultrasonic inspection could detect cracking from thermal stresses, and this informed the preparation of valid specimens for thermophysical characterization. The effect of thermal ageing on transient thermal properties, as a function of temperature, was investigated by using the light-flash method. The thermophysical properties were affected by increasing the severity of the ageing conditions; thermal diffusivity decreased by up to 10% and specific heat by up to 5%.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Powell, Kody M., Khalid Rashid, Kevin Ellingwood, Jake Tuttle, and Brian D. Iverson. "Hybrid concentrated solar thermal power systems: A review." Renewable and Sustainable Energy Reviews 80 (December 2017): 215–37. http://dx.doi.org/10.1016/j.rser.2017.05.067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Concentrated solar thermal"

1

Onigbajumo, Adetunji. "Integration of concentrated solar thermal energy for industrial hydrogen production." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235889/1/Adetunji%2BOnigbajumo_Thesis%281%29.pdf.

Повний текст джерела
Анотація:
The research demonstrated a balanced process, energy, and techno-economic argument for the utilisation of concentrated solar thermal energy, essentially, for hydrogen production and other industrial process systems. The representative case studies undertaken in the research addressed process and solar thermal energy modelling, energy integration, process optimisation, exergy assessment, and techno-economic evaluation as it relates to renewable hydrogen and hydrogen-based fuel production. The research established that economic assessment studies, process-energy configuration, choice of renewable energy, and mixed energy options are key to the shift from fossil fuel to green energy and industrial production to significantly reduce the impact of climate change.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Javadian-Deylami, Seyd Payam. "Metal Hydrides as Energy Storage for Concentrated Solar Thermal Applications." Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/58986.

Повний текст джерела
Анотація:
Hydrogen storage properties of LiBH4 may be changed by interaction with other complex hydrides due to an intimate interaction between the respective alkaline metals and boron which facilitate a relatively larger hydrogen storage capacity. The cyclic stability of the following binary complex hydride systems LiBH4-Ca(BH4)2, LiBH4-NaBH4 and LiBH4-NaAlH4 shows significant reversibility and due to their relative high gravimetric H2 storage capacity and specific heat storage capacity, they may potentially act as heat storage materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Miranda, Gilda. "Dispatch Optimizer for Concentrated Solar Power Plants." Thesis, Uppsala universitet, Byggteknik och byggd miljö, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-402436.

Повний текст джерела
Анотація:
Concentrating solar power (CSP) plant is a promising technology that exploits direct normal irradiation (DNI) from the sun to be converted into thermal energy in the solar field. One of the advantages of CSP technology is the possibility to store thermal energy in thermal energy storage (TES) for later production of electricity. The integration of thermal storage allows the CSP plant to be a dispatchable system which is defined as having a capability to schedule its operation using an innovative dispatch planning tool. Considering weather forecast and electricity price profile in the market, dispatch planning tool uses an optimization algorithm. It aims to shift the schedule of electricity delivery to the hours with high electricity price. These hours are usually reflected by the high demand periods. The implementation of dispatch optimizer can benefit the CSP plants economically from the received financial revenues. This study proposes an optimization of dispatch planning strategies for the parabolic trough CSP plant under two dispatch approaches: solar driven and storage driven. The performed simulation improves the generation of electricity which reflects to the increase of financial revenue from the electricity sale in both solar and storage driven approaches. Moreover, the optimization also proves to reduce the amount of dumped thermal energy from the solar field.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guerreiro, Luís. "Energy optimization of a concentrated solar power plant with thermal storage." Doctoral thesis, Universidade de Évora, 2016. http://hdl.handle.net/10174/25594.

Повний текст джерела
Анотація:
One of the most relevant problems to solve at a planetary scale is the access to an affordable clean source of energy as CO2 equivalent emissions should be reduced significantly. Some authors aim for a zero emissions target for 2050. Renewable energies will play a leading role in this energy transition, and solar energy with storage is a promising technology exploring a renewable and worldwide available resource. Within the present thesis component development like a new thermal storage thermocline tank design or having latent heat storage capability are technological developments that have been pursued and analyzed on a system perspective basis, focusing on reducing the LCOE value of a commercial STE plant using TRNSYS software. Material research with molten salts mixtures and cement based materials has been performed at lab scale. A fully validation should occur through a 13 partners pan-European H2020 project called NEWSOL which has been developed supported on the laboratory data obtained. Moreover, incorporation of local available material, “modern slag” from an old mine of Alentejo region, was also studied. The material could be used as an aggregate incorporated into calcium aluminate cement (CAC) or as filler. This would help to solve a local environmental complex problem related to soil, air and water pollution due to heavy metals and mining activity in Mina de São Domingos, Southeast of Portugal. The integration of these results underlies a broad energy transition model, a proposal is presented in this thesis, with the aim to foster development towards a sustainable usage of resources and promote clean technologies especially in the energy sector. This model can be locally adapted depending on the pattern of existing industries. The goal is to achieve a smooth transition into a clean tech energy society in line with the target of achieving zero emissions for 2050; Optimização Energética de uma Central de Concentração Solar com Armazenamento de Energia Resumo: Um dos problemas mais relevantes a resolver a uma escala planetária é o acesso, com um custo moderado, a fontes limpas de energia considerando que as emissões equivalentes de CO2 derão ser reduzidas drasticamente. Alguns autores ambicionam mesmo um objetivo de zero emissões em 2050. As energias renováveis irão desempenhar um papel preponderante nesta transição energética, sendo que a energia solar com armazenamento é uma tecnologia promissora que aproveita um recurso renovável e disponível em boa parte do Planeta. Na presente tese foi realizado o desenvolvimento de componentes nomeadamente o design que um novo tanque do tipo termocline, ou de novos elementos recorrendo ao calor latente, desenvolvimentos tecnológicos que foram analizados de uma perspectiva de sistema, dando o enfoque na redução do custo nivelado da electricidade (LCOE) para uma planta Termosolar usando o software TRNSYS. Foi também realizada investigação em laboratório ao nível dos materiais com várias misturas de sais fundidos inclusivé em contacto directo com materiais de base cimenticia. Uma validação completa deverá ocorrer no projeto NEWSOL do programa H2020 que reúne um consórcio de 13 parceiros europeus e que foi preparado e submetido tendo por base os resultados laboratoriais obtidos. Adicionalmente, incorporação de material disponível (escória de minério) de uma mina abandonada da região do Alentejo foi outro dos aspectos estudados. Verificou-se que este material poderá ser utilizado como agregado num ligante do tipo cimento de aluminato de cálcio (CAC) ou como “filler”. Este re-aproveitamento resolveria um problema ambiental complexo derivado do elevado conteúdo de metais pesados resultantes da actividade de mineração e que actualamente provocam poluição do solo, água e ar na área da Mina de São Domingos, Sudeste de Portugal. Estes progressos deverão ser integrados num modelo de transição energética mais amplo. Na presente tese, uma proposta concreta é apresentada, com o objectivo de incentivar o desenvolvimento na direção de uma utilização sustentável dos recursos e a promoção de tecnologias limpas nomeadamente no sector da energia. Este modelo poderá ser adaptado localmente dependendo do padrão de indústrias existente. O objectivo é atingir uma transição suave para uma sociedade de energias limpas em linha com o objectivo de atingir zero emissões de CO2 equivalente em 2050.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Desai, Ranjit. "Thermo-Economic Analysis of a Solar Thermal Power Plant with a Central Tower Receiver for Direct Steam Generation." Thesis, KTH, Kraft- och värmeteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-131764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Noone, Corey J. (Corey James). "Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/69782.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 65-67).
In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants and (ii) optimization of heliostat field layouts for any terrain. Additionally, optimization of heliostat canting, is presented as an application of the heliostat layout optimization model. Using the site selection model, suitable sites are located based on heliostat field efficiency and average annual insolation. By iteratively defining the receiver location and evaluating the corresponding site efficiency, by sampling elevation data points from within the defined heliostat field boundary, efficiency can be mapped as a function of the receiver location. The case studies presented illustrate the use of the tool for two field configurations, both with ground-level receivers. The heliostat layout optimization model includes a detailed calculation of the annual average optical efficiency accounting for projection losses, shading & blocking, aberration and atmospheric attenuation. The model is based on a discretization of the heliostats and can be viewed as ray tracing with a carefully selected distribution of rays. The prototype implementation is sufficiently fast to allow for field optimization. In addition, inspired by the spirals of the phyllotaxis disc pattern, a new biomimetic placement heuristic is described and evaluated which generates layouts of both higher efficiency and better ground coverage than radially staggered designs. Case studies demonstrate that the new pattern achieves a better trade-off between land area usage and efficiency, i.e., it can reduce the area requirement significantly for any desired efficiency. Finally, heliostat canting is considered. Traditionally, canting has been parabolic, in which the focal point of the heliostat lies on the axis of symmetry. Two alternative off-axis canting methods are compared in this thesis, fixed facet (static) canting in which the facet alignment is optimized for a single design day and time and then rigidly mounted to the frame and dynamic canting in which the facets are actively controlled such that the center of each facet is always perfectly focusing. For both methods, two case studies are considered, a power tower with planar heliostat field and a hillside heliostat field which directs light down to a ground-level salt pond.
by Corey J. Noone.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wagner, Sharon J. "Environmental and Economic Implications of Thermal Energy Storage for Concentrated Solar Power Plants." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mahdavi, Mahboobe. "NUMERICAL AND EXPERIMENTAL ANALYSIS OF HEAT PIPES WITH APPLICATION IN CONCENTRATED SOLAR POWER SYSTEMS." Diss., Temple University Libraries, 2016. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/400193.

Повний текст джерела
Анотація:
Mechanical Engineering
Ph.D.
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. Due to the different geometry of the heat pipe network, a new numerical procedure was developed. The model is axisymmetric and accounts for the compressible vapor flow in the vapor chamber as well as heat conduction in the wall and wick regions. Because of the large expansion ratio from the adiabatic section to the primary condenser, the vapor flow leaving the adiabatic pipe section of the primary heat pipe to the disk-shaped condenser behaves similarly to a confined jet impingement. Therefore, the condensation is not uniform over the main condenser. The feature that makes the numerical procedure distinguished from other available techniques is its ability to simulate non-uniform condensation of the working fluid in the condenser section. The vapor jet impingement on the condenser surface along with condensation is modeled by attaching a porous layer adjacent to the condenser wall. This porous layer acts as a wall, lets the vapor flow to impinge on it, and spread out radially while it allows mass transfer through it. The heat rejection via the vapor condensation is estimated from the mass flux by energy balance at the vapor-liquid interface. This method of simulating heat pipe is proposed and developed in the current work for the first time. Laboratory cylindrical and complex heat pipes and an experimental test rig were designed and fabricated. The measured data from cylindrical heat pipe were used to evaluate the accuracy of the numerical results. The effects of the operating conditions of the heat pipe, heat input, and portion of heat transferred to the phase change material, main condenser geometry, primary heat pipe adiabatic radius and its location as well as secondary heat pipe configurations have been investigated on heat pipe performance. The results showed that in the case with a tubular adiabatic section in the center, the complex interaction of convective and viscous forces in the main condenser chamber, caused several recirculation zones to form in this region, which made the performance of the heat pipe convoluted. The recirculation zone shapes and locations affected by the geometrical features and the heat input, play an important role in the condenser temperature distributions. The temperature distributions of the primary condenser and secondary heat pipe highly depend on the secondary heat pipe configurations and main condenser spacing, especially for the cases with higher heat inputs and higher percentages of heat transfer to the PCM via secondary heat pipes. It was found that changing the entrance shape of the primary condenser and the secondary heat pipes as well as the location and quantity of the secondary heat pipes does not diminish the recirculation zone effects. It was also concluded that changing the location of the adiabatic section reduces the jetting effect of the vapor flow and curtails the recirculation zones, leading to higher average temperature in the main condenser and secondary heat pipes. The experimental results of the conventional heat pipe are presented, however the data for the heat pipe network is not included in this dissertation. The results obtained from the experimental analyses revealed that for the transient operation, as the heat input to the system increases and the conditions at the condenser remains constant, the heat pipe operating temperature increases until it reaches another steady state condition. In addition, the effects of the working fluid and the inclination angle were studied on the performance of a heat pipe. The results showed that in gravity-assisted orientations, the inclination angle has negligible effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases which results in higher thermal resistance. It was also found that if the heat pipe is under-filled with the working fluid, the capillary limit of the heat pipe decreases dramatically. However, overfilling of the heat pipe with working fluid degrades the heat pipe performance due to interfering with the evaporation-condensation mechanism.
Temple University--Theses
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Strand, Anna. "Optimization of energy dispatch in concentrated solar power systems : Design of dispatch algorithm in concentrated solar power tower system with thermal energy storage for maximized operational revenue." Thesis, KTH, Kraft- och värmeteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264410.

Повний текст джерела
Анотація:
Concentrated solar power (CSP) is a fast-growing technology for electricity production. With mirrors (heliostats) irradiation of the sun is concentrated onto a receiver run through by a heat transfer fluid (HTF). The fluid by that reaches high temperatures and is used to drive a steam turbine for electricity production. A CSP power plant is most often coupled with an energy storage unit, where the HTF is stored before it is dispatched and used to generate electricity. Electricity is most often sold at an open market with a fluctuating spot-prices. It is therefore of high importance to generate and sell the electricity at the highest paid hours, increasingly important also since the governmental support mechanisms aimed to support renewable energy production is faded out since the technology is starting to be seen as mature enough to compete by itself on the market. A solar power plant thus has an operational protocol determining when energy is dispatched, and electricity is sold. These protocols are often pre-defined which means an optimal production is not achieved since irradiation and electricity selling price vary. In this master thesis, an optimization algorithm for electricity sales is designed (in MATLAB). The optimization algorithm is designed by for a given timeframe solve an optimization problem where the objective is maximized revenue from electricity sales from the solar power plant. The function takes into consideration hourly varying electricity spot price, hourly varying solar field efficiency, energy flows in the solar power plant, start-up costs (from on to off) plus conditions for the logic governing the operational modes. Two regular pre-defined protocols were designed to be able to compare performance in a solar power plant with the optimized dispatch protocol. These three operational protocols were evaluated in three different markets; one with fluctuating spot price, one regulated market of three fixed price levels and one in spot market but with zero-prices during sunny hours. It was found that the optimized dispatch protocol gave both bigger electricity production and revenue in all markets, but with biggest differences in the spot markets. To evaluate in what type of powerplant the optimizer performs best, a parametric analysis was made where size of storage and power block, the time-horizon of optimizer and the cost of start-up were varied. For size of storage and power block it was found that revenue increased with increased size, but only up to the level where the optimizer can dispatch at optimal hours. After that there is no increase in revenue. Increased time horizon gives increased revenue since it then has more information. With a 24-hour time horizon, morning price-peaks will be missed for example. To change start-up costs makes the power plant less flexible and with fewer cycles, without affect income much.
Koncentrerad solkraft (CSP) är en snabbt växande teknologi för elektricitets-produktion. Med speglar (heliostater) koncentreras solstrålar på en mottagare som genomflödas av en värmetransporteringsvätska. Denna uppnår därmed höga temperaturer vilket används för att driva en ångturbin för att generera el. Ett CSP kraftverk är oftast kopplat till en energilagringstank, där värmelagringsvätskan lagras innan den används för att generera el. El säljs i de flesta fall på en öppen elmarknad, där spotpriset fluktuerar. Det är därför av stor vikt att generera elen och sälja den vid de timmar med högst elpris, vilket också är av ökande betydelse då supportmekanismerna för att finansiellt stödja förnybar energiproduktion används i allt mindre grad för denna teknologi då den börjar anses mogen att konkurrera utan. Ett solkraftverk har således ett driftsprotokoll som bestämmer när el ska genereras. Dessa protokoll är oftast förutbestämda, vilket innebär att en optimal produktion inte fås då exempelvis elspotpriset och solinstrålningen varierar. I detta examensarbete har en optimeringsalgoritm för elförsäljning designats (i MATLAB). Optimeringsscriptet är designat genom att för en given tidsperiod lösa ett optimeringsproblem där objektivet är maximerad vinst från såld elektricitet från solkraftverket. Funktionen tar hänsyn till timvist varierande elpris, timvist varierande solfältseffektivitet, energiflöden i solkraftverket, kostnader för uppstart (on till off) samt villkor för att logiskt styra de olika driftlägena. För att jämföra prestanda hos ett solkraftverk med det optimerade driftsprotokollet skapades även två traditionella förutbestämda driftprotokoll. Dessa tre driftsstrategier utvärderades i tre olika marknader, en med ett varierande el-spotpris, en i en reglerad elmarknad med tre prisnivåer och en i en marknad med spotpris men noll-pris under de soliga timmarna. Det fanns att det optimerade driftsprotokollet gav både större elproduktion och högre vinst i alla marknader, men störst skillnad fanns i de öppna spotprismarknaderna. För att undersöka i vilket slags kraftverk som protokollet levererar mest förbättring i gjordes en parametrisk analys där storlek på lagringstank och generator varierades, samt optimerarens tidshorisont och kostnad för uppstart. För lagringstank och generator fanns att vinst ökar med ökande storlek upp tills den storlek optimeraren har möjlighet att fördela produktion på dyrast timmar. Ökande storlek efter det ger inte ökad vinst. Ökande tidshorisont ger ökande vinst eftersom optimeraren då har mer information. Att ändra uppstartkostnaden gör att solkraftverket uppträder mindre flexibelt och har färre cykler, dock utan så stor påverkan på inkomst.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Khan, Fahad. "Spherical Tanks for Use in Thermal Energy Storage Systems." Digital WPI, 2015. https://digitalcommons.wpi.edu/etd-dissertations/187.

Повний текст джерела
Анотація:
Thermal energy storage (TES) systems play a crucial part in the success of concentrated solar power as a reliable thermal energy source. The economics and operational effectiveness of TES systems are the subjects of continuous research for improvement, in order to lower the localized cost of energy (LCOE). This study investigates the use of spherical tanks and their role in sensible heat storage in liquids. In the two tank system, typical cylindrical tanks were replaced by spherical tanks of the same volume and subjected to heat loss, stress analysis, and complete tank cost evaluation. The comparison revealed that replacing cylindrical tanks by spherical tanks in two tank molten salt storage systems could result in a 30% reduction in heat loss from the wall, with a comparable reduction in total cost. For a one tank system (or thermocline system), a parametric computational fluid dynamic (CFD) study was performed in order to obtain fluid flow parameters that govern the formation and maintenance of a thermocline in a spherical tank. The parametric study involved the following dimensionless numbers: Re (500-7500), Ar (0.5-10), Fr (0.5-3), and Ri (1-100). The results showed that within the examined range of flow characteristics, the inlet Fr number is the most influential parameter in spherical tank thermocline formation and maintenance, and the largest tank thermal efficiency in a spherical tank is achieved at Fr = 0.5. Experimental results were obtained to validate the CFD model used in the parametric study. For the flow parameters within the current model, the use of an eddy viscosity turbulence model with variable turbulence intensity delivered the best agreement with experimental results. Overall, the experimental study using a spherical one tank setup validated the results of the CFD model with acceptable accuracy.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Concentrated solar thermal"

1

Chandra, Laltu, and Ambesh Dixit, eds. Concentrated Solar Thermal Energy Technologies. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-4576-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Piszczor, Michael F. A high-efficiency refractive secondary solar concentrator for high temperature solar thermal applications. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chandra, Laltu, and Ambesh Dixit. Concentrated Solar Thermal Energy Technologies: Recent Trends and Applications. Springer, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chandra, Laltu, and Ambesh Dixit. Concentrated Solar Thermal Energy Technologies: Recent Trends and Applications. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chandra, Laltu, and Ambesh Dixit. Concentrated Solar Thermal Energy Technologies: Recent Trends and Applications. Springer, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Garduño Ruiz, E. P., A. García Huante, Y. Rodríguez Cueto, J. F. Bárcenas Graniel, M. A. Alatorre Mendieta, E. Cerezo Acevedo, G. Tobal Cupul, V. M. Romero Medina, and R. Silva Casarin. Ocean Thermal Energy Conversion (OTEC) State of the Art. EPOMEX-UAC, 2017. http://dx.doi.org/10.26359/epomex.cemie012017.

Повний текст джерела
Анотація:
The oceans function as large collectors of solar energy, which recently the human has had the interest to study. Ocean water retains approximately 15% of the totalof solar energy as thermal energy. The technology that allows generatingenergy through temperature differences the ocean is called Conversion Ocean Thermal Energy (otec). This type of energy is concentrated in the surface part of seawater and decreases exponentially with increasing depth, as the sea ​​bottom
Стилі APA, Harvard, Vancouver, ISO та ін.
7

A high-efficiency refractive secondary solar concentrator for high temperature solar thermal applications. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

P, Macosko Robert, and NASA Glenn Research Center, eds. A high-efficiency refractive secondary solar concentrator for high temperature solar thermal applications. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

A high-efficiency refractive secondary solar concentrator for high temperature solar thermal applications. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

J, Trudell Jeffrey, and United States. National Aeronautics and Space Administration., eds. Thermal distortion analysis of the space station solar dynamic concentrator. [Washington, D.C.]: National Aeronautics and Space Administration, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Concentrated solar thermal"

1

Krothapalli, Anjaneyulu, and Brenton Greska. "Concentrated Solar Thermal Power." In Handbook of Climate Change Mitigation and Adaptation, 1503–36. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14409-2_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Krothapalli, Anjaneyulu, and Brenton Greska. "Concentrated Solar Thermal Power." In Handbook of Climate Change Mitigation and Adaptation, 1–27. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6431-0_33-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Atchuta, S. R., B. Mallikarjun, and S. Sakthivel. "Optically Enhanced Solar Selective and Thermally Stable Absorber Coating for Concentrated Solar Thermal Application." In Advances in Energy Research, Vol. 2, 217–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2662-6_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Maduabuchi, Chika, Ravita Lamba, Chigbogu Ozoegwu, Howard O. Njoku, Mkpamdi Eke, and Emenike C. Ejiogu. "Electro-thermal and Mechanical Optimization of a Concentrated Solar Thermoelectric Generator." In Springer Proceedings in Energy, 65–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92148-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Babu, S., R. Sriram, S. Gopikrishnan, and A. Praveen. "Solar Energy Simulation of Fresnel Lens Concentrated System for Thermal Electric Generator." In Lecture Notes in Mechanical Engineering, 833–39. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0698-4_91.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Soheila, Riahi, Evans Michael, Ming Liu, Rhys Jacob, and Frank Bruno. "Evolution of Melt Path in a Horizontal Shell and Tube Latent Heat Storage System for Concentrated Solar Power Plants." In Solid–Liquid Thermal Energy Storage, 257–73. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003213260-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ait Lahoussine Ouali, Hanane, Benyounes Raillani, Samir Amraqui, Mohammed Amine Moussaoui, Abdelhamid Mezrhab, and Ahmed Mezrhab. "Analysis and Optimization of SM and TES Hours of Central Receiver Concentrated Solar Thermal with Two-Tank Molten Salt Thermal Storage." In Advances in Smart Technologies Applications and Case Studies, 666–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53187-4_73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ahmed, Sara Iyad, Yusuf Bicer, and Hicham Hamoudi. "Design and Thermodynamic Analysis of a Concentrated Solar–Thermal-Based Multigeneration System for a Sustainable Laundry Facility." In Green Energy and Technology, 117–37. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8278-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Leutz, Ralf, and Akio Suzuki. "Solar Thermal Concentrator Systems." In Springer Series in OPTICAL SCIENCES, 217–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-45290-4_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Meshram, Rohit, and P. D. Sawarkar. "CFD Analysis in the Design of Diffuser for Air Cooling of Low-Concentrated Photovoltaic/Thermal (LCPV/T) Solar Collector." In Advances in Applied Mechanical Engineering, 191–98. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1201-8_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Concentrated solar thermal"

1

Yazawa, Kazuaki, Vernon K. Wong, and Ali Shakouri. "Thermal challenges on solar concentrated thermoelectric CHP systems." In 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, 2012. http://dx.doi.org/10.1109/itherm.2012.6231552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wagner, Sharon J., and Edward S. Rubin. "Economic Implications of Thermal Energy Storage for Concentrated Solar Thermal Power." In World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp110573821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hosouli, Sahand, Diogo Cabral, João Gomes, George Kosmadakis, Emmanouil Mathioulakis, Hadi Mohammadi, Alexander Loris, and Adeel Naidoo. "Performance Assessment of Concentrated Photovoltaic Thermal (CPVT) Solar Collector at Different Locations." In ISES Solar World Congress 2021. Freiburg, Germany: International Solar Energy Society, 2021. http://dx.doi.org/10.18086/swc.2021.22.05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yazawa, Kazuaki, and Ali Shakouri. "Material Optimization for Concentrated Solar Photovoltaic and Thermal Co-Generation." In ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/ipack2011-52190.

Повний текст джерела
Анотація:
We conducted an analytic study of concentrated solar photovoltaic and hot water co-generation based on various solar cell technologies and micro channel heat sinks. By co-optimizing the electricity generation and heat transport in the system, one can minimize the cost of the key materials and compare different tradeoffs as a function of concentration ratio or other parameters. Concentrated solar Photovoltaic (PV) based on multi junction cells can yield around 35–40% efficiency. They are suitable for high photon energy flux and they are already available in the market. However, due to high heat fluxes at large concentrations, such as 100–1000 Suns, heat sinks could be costly in terms of material mass, space, energy for pumping fluid, and system complexity. In addition, since the efficiency of solar cells decreases as the ambient temperature increases, there is a tradeoff between electricity and hot water cogeneration. Similar to our previous analysis of thermoelectric (TE) and hot water co-generation, PV/solar thermal system is also optimized. The results are compared with thermoelectric systems as a function of the concentration ratio. The solar concentrated co-generation system using either PV or TE for direct electricity generation collects more than 80% of solar energy when it is optimized. We calculate the overall cost minima as a function of concentration ratio. Although there are some differences between PV and TE, the optimum concentration ratio for the system is in the range of 100–300 Suns for both.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Diaz, Gerardo. "LOW-GRADE STEAM GENERATION WITH NON-CONCENTRATED MINICHANNEL-BASED SOLAR COLLECTOR." In Second Thermal and Fluids Engineering Conference. Connecticut: Begellhouse, 2017. http://dx.doi.org/10.1615/tfec2017.rce.018244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stoynov, L. A., and Prasad K. D. V. Yarlagadda. "Development and Modification of a Cassegrainian Solar Concentrator for Utilization of Solar Thermal Power." In ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44071.

Повний текст джерела
Анотація:
Almost all life on Earth has been using solar energy in many ways, but when high temperatures are desired, concentration of the incident solar radiation (insolation) becomes necessary. The present work is an attempt to improve and experimentally compare alternative beam delivering and focusing energy systems of a small solar concentrator. The researched solar energy concentrator (SEC) facility consists of modified two mirror Cassegrainian solar concentrator, two-speed sun-tracking manual and automatic control, concentrated insolation transmitting and continuous beam focusing systems. A number of system modifications during the development of the two stage, point focusing type solar concentrator arrangement for solar thermal power utilization have also been explored and are reported in this paper. Some of the experimental testing results obtained using single polymer fiber 14 mm in diameter, a truncated conical concentrator, and auxiliary lens system alternatives, have been compared. In addition, some details about various improvements of the sun-tracking sensor and automatics, beam transmission and continuous focusing capabilities of the SEC facility have been described.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fonseca do Canto, Luma, and José Roberto Simões Moreira. "Thermal modeling of cavity-receiver for concentrated solar energy." In 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-0861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Riggs, Brian, Nick D. Farrar-Foley, Skylar Deckoff-Jones, Qi Xu, Vince Romanin, Daniel Codd, and Matthew D. Escarra. "Thermal characterization of concentrated solar absorbance using resistive heaters." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7750233.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Silva Medeiros, Vítor, Solidônio Carvalho, and Valério Luiz Borges. "INTEGRATING CONCENTRATED SOLAR POWER WITH DESALINATION: MODELING AND THERMODYNAMIC ANALYSIS." In 18th Brazilian Congress of Thermal Sciences and Engineering. ABCM, 2020. http://dx.doi.org/10.26678/abcm.encit2020.cit20-0656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Singh, Pankaj Kumar, Anil Kumar, Prashant Mishra, and V. K. Sethi. "Study On Future of Solar Thermal Storage System Using Concentrated Solar Power." In 2019 International Conference on Power Electronics, Control and Automation (ICPECA). IEEE, 2019. http://dx.doi.org/10.1109/icpeca47973.2019.8975636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Concentrated solar thermal"

1

Muralidharan, Govindarajan, Shivakant Shukla, Roger Miller, Donovan Leonard, Jim Myers, and Paul Enders. Cast Components for High Temperature Concentrated Solar Power Thermal Systems. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1890293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tschoppa, Daniel, Zhiyong Tianb, Magdalena Berberichc, Jianhua Fand, Bengt Perersd, and Simon Furbo. LSEVIER paper: Large Scale Solar Thermal Systems in Leading Countries. IEA SHC Task 55, January 2020. http://dx.doi.org/10.18777/ieashc-task55-2020-0001.

Повний текст джерела
Анотація:
Large-scale solar thermal systems are a cost-efficient technology to provide renewable heat. The rapid market growth in the last decade has been concentrated on a small number of countries, with the outstanding position of Denmark followed by China, Germany and Austria. This paper provides a comprehensive overview of the market and common technological solutions for large-scale solar thermal systems in these countries.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumar, Vinod. Computational Analysis of Nanoparticles-Molten Salt Thermal Energy Storage for Concentrated Solar Power Systems. Office of Scientific and Technical Information (OSTI), May 2017. http://dx.doi.org/10.2172/1355304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yu, Wenhua, and Dileep Singh. Prototype Testing of Encapsulated Phase Change Material Thermal Energy Storage (EPCM-TES) for Concentrated Solar Power. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1512771.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ehrhart, Brian, and David Gill. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage. Office of Scientific and Technical Information (OSTI), July 2013. http://dx.doi.org/10.2172/1090218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Thornton, J. Solar thermal technologies in support of an urgent national need: Opportunities for the photon-enhanced decomposition of concentrated and dilute hazardous wastes. Office of Scientific and Technical Information (OSTI), December 1988. http://dx.doi.org/10.2172/6502955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nene, Anita A., Solaisamy Ramachandran, and Sivalingam Suyambazhahan. Design and Analysis of Solar Thermal Energy Storage System for Scheffler Solar Concentrator. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, October 2019. http://dx.doi.org/10.7546/crabs.2019.10.03.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії