Добірка наукової літератури з теми "Computer Modelling - Silicon Solar Cells"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Computer Modelling - Silicon Solar Cells".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Computer Modelling - Silicon Solar Cells"

1

Nitoi, Dan, Florin Samer, Constantin Gheorghe Opran, and Constantin Petriceanu. "Finite Element Modelling of Thermal Behaviour of Solar Cells." Materials Science Forum 957 (June 2019): 493–502. http://dx.doi.org/10.4028/www.scientific.net/msf.957.493.

Повний текст джерела
Анотація:
Engineering Science Based on Modelling and Simulation (M & S) is defined as the discipline that provides the scientific and mathematical basis for simulation of engineering systems. These systems range from microelectronic devices to automobiles, aircraft, and even oilfield and city infrastructure. In a word, M & S combines knowledge and techniques in the fields of traditional engineering - electrical, mechanical, civil, chemical, aerospace, nuclear, biomedical and materials science - with the knowledge and techniques of fields such as computer science, mathematics and physics, and social sciences. One of the problems that arise during solar cell operation is that of heating them because of permanent solar radiation. Since the layers of which they are made are very small and thick it is almost impossible to experimentally determine the temperature in each layer. In this sense, the finite element method comes and provides a very good prediction and gives results impossible to obtain by other methods. This article models and then simulates the thermal composition of two types of solar cells, one of them having an additional layer of silicon carbide that aims to lower the temperature in the lower layer, where the electronic components stick to degradable materials under the influence of heat.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Blome, Mark, Kevin McPeak, Sven Burger, Frank Schmidt, and David Norris. "Back-reflector design in thin-film silicon solar cells by rigorous 3D light propagation modeling." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33, no. 4 (July 1, 2014): 1282–95. http://dx.doi.org/10.1108/compel-12-2012-0367.

Повний текст джерела
Анотація:
Purpose – The purpose of this paper is to find an optimized thin-film amorphous silicon solar cell design by numerically optimizing the light trapping efficiency of a pyramid-structured back-reflector using a frequency-domain finite element Maxwell solver. For this purpose short circuit current densities and absorption spectra within the investigated solar cell model are systematically analyzed. Furthermore, the authors employ a topology simulation method to accurately predict the material layer interfaces within the investigated solar cell model. The method simulates the chemical vapor deposition (CVD) process that is typically used to fabricate thin-film solar cells by combining a ballistic transport and reaction model (BTRM) with a level-set method in an iterative approach. Predicted solar cell models are far more realistic compared to solar cell models created assuming conformal material growth. The purpose of the topology simulation method is to increase the accuracy of thin-film solar cell models in order to facilitate highly accurate simulation results in solar cell design optimizations. Design/methodology/approach – The authors perform numeric optimizations using a frequency domain finite element Maxwell solver. Topology simulations are carried out using a BTRM combined with a level-set method in an iterative fashion. Findings – The simulation results reveal that the employed pyramid structured back-reflectors effectively increase the light path in the absorber mainly by exciting photonic waveguide modes. In using the optimization approach, the authors have identified solar cell models with cell periodicities around 480 nm and pyramid base widths around 450 nm to yield the highest short circuit current densities. Compared to equivalent solar cell models with flat back-reflectors, computed short circuit current densities are significantly increased. Furthermore, the paper finds that the solar cell models computed using the topology simulation approach represent a far more realistic approximation to a real solar cell stack compared to solar cell models computed by a conformal material growth assumption. Research limitations/implications – So far in the topology simulation approach the authors assume CVD as the material deposition process for all material layers. However, during the fabrication process sputtering (i.e. physical vapor deposition) will be employed for the Al:ZnO and ITO layers. In the framework of this ongoing research project the authors will extend the topology simulation approach to take the different material deposition processes into account. The differences in predicted material interfaces will presumably be only minor compared to the results shown here and certainly be insignificant relative to the differences the authors observe for solar cell models computed assuming conformal material growth. Originality/value – The authors systematically investigate and optimize the light trapping efficiency of a pyramid nano-structured back-reflector using rigorous electromagnetic field computations with a 3D finite element Maxwell solver. To the authors’ knowledge such an investigation has not been carried out yet in the solar cell research literature. The topology simulation approach (to the best of the authors’ knowledge) has previously not been applied to the modelling of solar cells. Typically a conformal layer growth assumption is used instead.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tobbeche, S., and M. N. Kateb. "Two-Dimensional Modelling and Simulation of Crystalline Silicon n+pp+ Solar Cell." Applied Mechanics and Materials 260-261 (December 2012): 154–62. http://dx.doi.org/10.4028/www.scientific.net/amm.260-261.154.

Повний текст джерела
Анотація:
In this work, we present the simulation results of the technological parameters and the electrical characteristics of a crystalline silicon n+pp+ solar cell, using two-dimension (2D) software, namely TCAD Silvaco (Technology Computer Aided Design). TCAD Silvaco Athena is used to simulate various stages of the technology manufacturing, while TCAD Silvaco Atlas is used for the simulation of the electrical characteristics and the spectral response of the solar cell. The J-V characteristics and the external quantum efficiency (EQE) are simulated under AM 1.5 illumination. The conversion efficiency(η)of 16.06% is reached and the other characteristic parameters are simulated: the open circuit voltage (Voc) is of 0.63 V, the short circuit current density (Jsc) equals 30.54 mA/cm² and the form factor (FF) is of 0.83 for the n+pp+ solar cell with a silicon nitride antireflection layer (Si3N4). In order to highlight the importance of the back surface field (BSF), a comparison between two cells, one without BSF (structure n+p), the other with one BSF (structure n+pp+), was made. By creating a BSF on the rear face of the cell the short circuit current density increases from 28.55 to 30.54 mA/cm2, the open circuit voltage from 0.6 to 0.63 V and the conversion efficiency from 14.19 to 16.06%. A clear improvement of the spectral response is obtained in wavelengths ranging from 0.65 to 1.1 µm for the solar cell with BSF.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dobrzański, L. A., and A. Drygała. "Laser processing of multicrystalline silicon for texturization of solar cells." Journal of Materials Processing Technology 191, no. 1-3 (August 2007): 228–31. http://dx.doi.org/10.1016/j.jmatprotec.2007.03.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ogbonnaya, Chukwuma, Chamil Abeykoon, Adel Nasser, and Ali Turan. "Radiation-Thermodynamic Modelling and Simulating the Core of a Thermophotovoltaic System." Energies 13, no. 22 (November 23, 2020): 6157. http://dx.doi.org/10.3390/en13226157.

Повний текст джерела
Анотація:
Thermophotovoltaic (TPV) systems generate electricity without the limitations of radiation intermittency, which is the case in solar photovoltaic systems. As energy demands steadily increase, there is a need to improve the conversion dynamics of TPV systems. Consequently, this study proposes a novel radiation-thermodynamic model to gain insights into the thermodynamics of TPV systems. After validating the model, parametric studies were performed to study the dependence of power generation attributes on the radiator and PV cell temperatures. Our results indicated that a silicon-based photovoltaic (PV) module could produce a power density output, thermal losses, and maximum voltage of 115.68 W cm−2, 18.14 W cm−2, and 36 V, respectively, at a radiator and PV cell temperature of 1800 K and 300 K. Power density output increased when the radiator temperature increased; however, the open circuit voltage degraded when the temperature of the TPV cells increased. Overall, for an 80 W PV module, there was a potential for improving the power generation capacity by 45% if the TPV system operated at a radiator and PV cell temperature of 1800 K and 300 K, respectively. The thermal efficiency of the TPV system varied with the temperature of the PV cell and radiator.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gandı́a, J. J., J. Cárabe, and M. T. Gutiérrez. "Influence of TCO dry etching on the properties of amorphous-silicon solar cells." Journal of Materials Processing Technology 143-144 (December 2003): 358–61. http://dx.doi.org/10.1016/s0924-0136(03)00456-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yang, Hong, He Wang, Xiandao Lei, Chuanke Chen, and Dingyue Cao. "Interface modeling between the printed thick-film silver paste and emitter for crystalline silicon solar cells." International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 27, no. 4 (August 16, 2013): 649–55. http://dx.doi.org/10.1002/jnm.1925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Peters, Marius, Ma Fajun, Guo Siyu, Bram Hoex, Benedikt Blaesi, Stefan Glunz, Armin Aberle, and Joachim Luther. "Advanced Modelling of Silicon Wafer Solar Cells." Japanese Journal of Applied Physics 51 (October 22, 2012): 10NA06. http://dx.doi.org/10.1143/jjap.51.10na06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Peters, Marius, Ma Fajun, Guo Siyu, Bram Hoex, Benedikt Blaesi, Stefan Glunz, Armin Aberle, and Joachim Luther. "Advanced Modelling of Silicon Wafer Solar Cells." Japanese Journal of Applied Physics 51, no. 10S (October 1, 2012): 10NA06. http://dx.doi.org/10.7567/jjap.51.10na06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dugas, J., and J. Oualid. "3D-Modelling of polycrystalline silicon solar cells." Revue de Physique Appliquée 22, no. 7 (1987): 677–85. http://dx.doi.org/10.1051/rphysap:01987002207067700.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Computer Modelling - Silicon Solar Cells"

1

Thomas, Trevor. "The computer modelling of amorphous silicon solar cells." Thesis, Cardiff University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.361326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shariff, A. "Computer simulation of amorphous silicon solar cells." Thesis, Swansea University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638814.

Повний текст джерела
Анотація:
A detailed numerical model of the electronic properties of hydrogenated amorphous silicon has been developed and shown to be a useful tool for the analysis of the performance and optimization of the design of solar cells. The method of simulation involves solving Poissons's equation, and the electron and hole continuity equations, in conjunction with the transport equations for the electrons and holes. From the solutions of these equations we obtained the electrostatic potential, the electron and hole concentrations and the current densities. A set of realistic material parameters has been used. We have modelled the density of states to consist of two exponential band tails and the dangling bonds. Recombination in both the band tails and the dangling bonds has been taken into consideration in the model. We investigated the effect of the cell performance on varying dangling bond densities (1016cm-3-1017cm-3) for various cell thicknesses of p-i-n hydrogenated amorphous silicon solar cells, for incident blue and red light. Our results agree well with experiments for solar cells in the undegraded state. However for the degraded state the fill factors appear to be higher than the experimental values. This might be because we have only assumed a single level dangling bond density in our model. It is suggested that future work might undertake the incorporation of the spatial dependence of the dangling bond density in the model.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Al-Juffali, Abdullah Ali S. "Modelling, simulation and optimisation of back contact silicon solar cells." Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Davidson, Lauren Michel. "Strategies for high efficiency silicon solar cells." Thesis, University of Iowa, 2017. https://ir.uiowa.edu/etd/5452.

Повний текст джерела
Анотація:
The fabrication of low cost, high efficiency solar cells is imperative in competing with existing energy technologies. Many research groups have explored using III-V materials and thin-film technologies to create high efficiency cells; however, the materials and manufacturing processes are very costly as compared to monocrystalline silicon (Si) solar cells. Since commercial Si solar cells typically have efficiencies in the range of 17-19%, techniques such as surface texturing, depositing a surface-passivating film, and creating multi-junction Si cells are used to improve the efficiency without significantly increasing the manufacturing costs. This research focused on two of these techniques: (1) a tandem junction solar cell comprised of a thin-film perovskite top cell and a wafer-based Si bottom cell, and (2) Si solar cells with single- and double-layer silicon nitride (SiNx) anti-reflection coatings (ARC). The perovskite/Si tandem junction cell was modeled using a Matlab analytical program. The model took in material properties such as doping concentrations, diffusion coefficients, and band gap energy and calculated the photocurrents, voltages, and efficiencies of the cells individually and in the tandem configuration. A planar Si bottom cell, a cell with a SiNx coating, or a nanostructured black silicon (bSi) cell can be modeled in either an n-terminal or series-connected configuration with the perovskite top cell. By optimizing the bottom and top cell parameters, a tandem cell with an efficiency of 31.78% was reached. Next, planar Si solar cells were fabricated, and the effects of single- and double-layer SiNx films deposited on the cells were explored. Silicon nitride was sputtered onto planar Si samples, and the refractive index and thicknesses of the films were measured using ellipsometry. A range of refractive indices can be reached by adjusting the gas flow rate ratios of nitrogen (N2) and argon (Ar) in the system. The refractive index and thickness of the film affect where the minimum of the reflection curve is located. For Si, the optimum refractive index of a single-layer passivation film is 1.85 with a thickness of 80nm so that the minimum reflection is at 600nm, which is where the photon flux is maximized. However, using a double-layer film of SiNx, the Si solar cell performance is further improved due to surface passivation and lowered surface reflectivity. A bottom layer film with a higher refractive index passivates the Si cell and reduces surface reflectivity, while the top layer film with a smaller refractive index further reduces the surface reflectivity. The refractive indices and thicknesses of the double-layer films were varied, and current-voltage (IV) and external quantum efficiency (EQE) measurements were taken. The double-layer films resulted in an absolute value increase in efficiency of up to 1.8%.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ekhagen, Sebastian. "Silicon solar cells: basics of simulation and modelling : Using the mathematical program Maple to simulate and model a silicon solar cell." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-62611.

Повний текст джерела
Анотація:
The main goal of this thesis was to simulate a solar cell with the symbolic manipulation tool Maple and discuss the strength and weaknesses of using Maple instead of the already known simulation program PC1D. This was done mainly by solving the three essential differential equations governing the current density and excess electron and hole densities in the solar cell. This could be done easily by using known simplifications especially the low injection assumption. However it was also a success without using this particular simplification but the solutions had to be achieved using a numerical method instead of direct methods. The results were confirmed by setting up the same solar cell with PC1D. The conclusion is that Maple gives the user increased freedom when setting up the solar cell, however PC1D is easier to use if this freedom is not needed. At the end of this thesis a brief introduction is also made on the possibility of using Maple with a tandem cell setup instead of single junction.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fallisch, Arne Jürgen [Verfasser]. "Fabrication, Analysis and Modelling of Emitter Wrap-Through Silicon Solar Cells / Arne Fallisch." München : Verlag Dr. Hut, 2013. http://d-nb.info/103184466X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ahmed, Fatema. "Structural properties and optical modelling of SiC thin films." University of the Western Cape, 2020. http://hdl.handle.net/11394/7284.

Повний текст джерела
Анотація:
>Magister Scientiae - MSc
Amorphous silicon carbide (a-SiC) is a versatile material due to its interesting mechanical, chemical and optical properties that make it a candidate for application in solar cell technology. As a-SiC stoichiometry can be tuned over a large range, consequently is its bandgap. In this thesis, amorphous silicon carbide thin films for solar cells application have been deposited by means of the electron-beam physical vapour deposition (e-beam PVD) technique and have been isochronally annealed at varying temperatures. The structural and optical properties of the films have been investigated by Fourier transform Infrared and Raman spectroscopies, X-ray diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and UV-VIS-NIR spectroscopy. The effect of annealing is a gradual crystallization of the amorphous network of as-deposited silicon carbide films and consequently the microstructural and optical properties are altered. We showed that the microstructural changes of the as-deposited films depend on the annealing temperature. High temperature enhances the growth of Si and SiC nanocrystals in amorphous SiC matrix. Improved stoichiometry of SiC comes with high band gap of the material up to 2.53 eV which makes the films transparent to the visible radiation and thus they can be applied as window layer in solar cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Temple, Tristan Leigh. "Optical properties of metal nanoparticles and their influence on silicon solar cells." Thesis, University of Southampton, 2009. https://eprints.soton.ac.uk/66674/.

Повний текст джерела
Анотація:
The optical properties of metal nanoparticles have been investigated by simulation and experimental techniques. The aim of this investigation was to identify how to use metal nanoparticles to improve light-trapping in silicon solar cells. To do this we require nanoparticles that exhibit a high scattering efficiency and low absorption (i.e. high radiative efficiency) at near-infrared wavelengths. The simulation results identified Ag, Au, Cu and Al as potential candidates for use with silicon solar cells. The optical properties of Ag, Au and Cu nanoparticles are very similar above 700 nm. Below this wavelength Ag was found to be the preferred choice due to a decreased effect from interband transitions in comparison with Au and Cu. Al nanoparticles were found to exhibit markedly different optical properties to identical noble metal nanoparticles, with broader, weaker resonances that can be excited further into the UV. However, Al nanoparticles were found to exhibit higher absorption than noble metals in the NIR due to a weak interband region centred at around 825 nm. Tuning of the resonance position into the NIR was demonstrated by many methods, and extinction peaks exceeding 1200 nm can be achieved by all of the metals studied. However, it is important that the method used to red-shift the extinction peak does not also decrease the radiative efficiency. Core-shell nanoparticles, triangular nanoparticles and platelet-type nanoparticles were found to be unsuitable for silicon solar cells applications due their low radiative efficiencies. Instead, we propose the use of large (> 150 nm) Ag spheroids with moderate aspect ratios. A maximum radiative efficiency of 0.98 was found for noble metal nanospheres when the diameter exceeded 150 nm. The optical properties of Au and Al nanoparticles fabricated by electron-beam lithography were found to be in good agreement with simulations, provided that the substrate and local dielectric environment were accounted for by inclusion of an effective medium in the model. Cr adhesion layers were found to substantially weaken the extinction peaks of Au nanoparticles, and also result in a strong decrease of radiative efficiency. Adhesion layers were not required for Al nanoparticles. The morphological and optical properties of Ag island films were found to be highly dependent on the layer thickness, deposition speed and anneal temperature. Dense arrays containing average particle sizes ranging from 25 nm to 250 nm were achieved using anneal temperatures lower than 200oC. The largest nanoparticles were found to exhibit high extinction from 400 nm to 800 nm. Depositing Ag nanoparticles onto a-Si:H solar cells was found two have two effects on the spectral response. At short wavelengths the QE was decreased due to absorption by small particles or back-scattering by larger particles. At longer wavelengths large maxima and minima are present in the QE spectra. This latter effect is not due to excitation of surface plasmons, but is instead related to modification of interference effects in the thin-film layer stack.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mailoa, Jonathan P. "Anti-reflection zinc oxide nanocones for higher efficiency thin-film silicon solar cells." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/77250.

Повний текст джерела
Анотація:
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 77-80).
Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar cells. However, the low solar efficiency of these thin film cells has become a major problem, which prevents thin film silicon cells from being able to compete with other solar cells in the market. One source of inefficiency is the light reflection off the interface between the thin film cell's top Transparent Conducting Oxide (TCO) and the light absorbing silicon. In this work, we demonstrate the use of nanocone textured ZnO as the anti-reflection surface that mitigates this problem. The tapered structure of the nanocone forms a smooth transition of refractive index on the interface between the TCO (ZnO) and the silicon, effectively acting as a wideband Anti-Reflection coating (AR coating). Finite Difference Time Domain simulation is used to estimate the optimal ZnO nanocone parameter (periodicity and height) to be applied on a single junction microcrystalline silicon ([mu]c-Si) solar cell. Relative improvement over 25% in optical performance is achieved in the simulated structure when compared to state-of-the-art [mu]c-Si cell structure. Cheap and scalable colloidal lithography method is then developed to fabricate ZnO nanocone with the desired geometry. Since the ZnO texturing technique works by depositing ZnO on nanocone-textured glass substrate, the technique is potentially applicable to Transparent Conducting Oxides other than ZnO as well, making it a useful TCO texturing technique for solar cell applications.
by Jonathan P. Mailoa.
M.Eng.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ning, Steven. "Simulation and process development for ion-implanted N-type silicon solar cells." Thesis, Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47684.

Повний текст джерела
Анотація:
As the efficiency potential for the industrial P-type Al-BSF silicon solar cell reaches its limit, new solar cell technologies are required to continue the pursuit of higher efficiency solar power at lower cost. It has been demonstrated in literature that among possible alternative solar cell structures, cells featuring a local BSF (LBSF) have demonstrated some of the highest efficiencies seen to date. Implementation of this technology in industry, however, has been limited due to the cost involved in implementing the photolithography procedures required. Recent advances in solar cell doping techniques, however, have identified ion implantation as a possible means of performing the patterned doping required without the need for photolithography. In addition, past studies have examined the potential for building solar cells on N-type silicon substrates, as opposed to P-type. Among other advantages, it is possible to create N-type solar cells which do not suffer from the efficiency degradation under light exposure that boron-doped P-type solar cells are subject to. Industry has not been able to capitalize on this potential for improved solar cell efficiency, in part because the fabrication of an N-type solar cell requires additional masking and doping steps compared to the P-type solar cell process. Again, however, recent advances in ion implantation for solar cells have demonstrated the possibility for bypassing these process limitations, fabricating high efficiency N-type cells without any masking steps. It is clear that there is potential for ion implantation to revolutionize solar cell manufacturing, but it is uncertain what absolute efficiency gains may be achieved by moving to such a process. In addition to development of a solar specific ion implant process, a number of new thermal processes must be developed as well. With so many parameters to optimize, it is highly beneficial to have an advanced simulation model which can describe the ion implant, thermal processes, and cell performance accurately. Toward this goal, the current study develops a process and device simulation model in the Sentaurus TCAD framework, and calibrates this model to experimentally measured cells. The study focuses on three main tasks in this regard: Task I - Implant and Anneal Model Development and Validation This study examines the literature in solar and microelectronics research to identify features of ion implant and anneal processes which are pertinent to solar cell processing. It is found that the Monte Carlo ion implant models used in IC fabrication optimization are applicable to solar cell manufacture, with adjustments made to accommodate for the fact that solar cell wafers are often pyramidally textured instead of polished. For modeling the thermal anneal processes required after ion implant, it is found that the boron and phosphorus cases need to be treated separately, with their own diffusion models. In particular, boron anneal simulation requires accurate treatment of boron-interstitial clusters (BICs), transient enhanced diffusion, and dose loss. Phosphorus anneal simulation requires treatment of vacancy and interstitial mediated diffusion, as well as dose loss and segregation. The required models are implemented in the Sentaurus AdvancedModels package, which is used in this study. The simulation is compared to both results presented in literature and physical measurements obtained on wafers implanted at the UCEP. It is found that good experimental agreement may be obtained for sheet resistance simulations of implanted wafers, as well as simulations of boron doping profile shape. The doping profiles of phosphorus as measured by the ECV method, however, contain inconsistencies with measured sheet resistance values which are not explained by the model. Task II - Device Simulation Development and Calibration This study also develops a 3D model for simulation of an N-type LBSF solar cell structure. The 3D structure is parametrized in terms of LBSF dot width and pitch, and an algorithm is used to generate an LBSF structure mesh with this parametrization. Doping profiles generated by simulations in Task I are integrated into the solar cell structure. Boundary conditions and free electrical parameters are calibrated using data from similar solar cells fabricated at the UCEP, as well as data from lifetime test wafers. This simulation uses electrical models recommended in literature for solar cell simulation. It is demonstrated that the 3D solar cell model developed for this study accurately reproduces the performance of an implanted N-type full BSF solar cell, and all parameters fall within ranges expected from theoretical calculations. The model is then used to explore the parameter space for implanted N-type local BSF solar cells, and to determine conditions for optimal solar cell performance. It is found that adding an LBSF to the otherwise unchanged baseline N-type cell structure can produce almost 1% absolute efficiency gain. An optimum LBSF dot pitch of 450um at a dot size of 100um was identified through simulation. The model also reveals that an LBSF structure can reduce the fill factor of the solar cell, but this effect can be offset by a gain in Voc. Further efficiency improvements may be realized by implementing a doping-dependent SRV model and by optimizing the implant dose and thermal anneal. Task III - Development of a Procedure for Ion Implanted N-type LBSF Cell Fabrication Finally, this study explores a method for fabrication of ion-implanted N-type LBSF solar cells which makes use of photolithographically defined nitride masks to perform local phosphorus implantation. The process utilizes implant, anneal, and metallization steps previously developed at the UCEP, as well as new implant masking steps developed in the course of this study. Although an LBSF solar cell has not been completely fabricated, the remaining steps of the process are successfully tested on implanted N-type full BSF solar cells, with efficiencies reaching 20.0%.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Computer Modelling - Silicon Solar Cells"

1

Krumbein, Ulrich. Simulation of carrier generation in advanced silicon devices. Konstanz: Hartung-Gorre, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Staats, Richard L. Forward-bias current annealing of radiation damaged gallium arsenide and silicon solar cells. 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Computer Modelling - Silicon Solar Cells"

1

Krc, Janez, Martin Sever, Benjamin Lipovsek, Andrej Campa, and Marko Topic. "Optical Modelling and Simulations of Thin-Film Silicon Solar Cells." In Photovoltaic Modeling Handbook, 93–140. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119364214.ch4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chaudhary, Jatin Kumar, Jiaqing Liu, Jukka-Pekka Skön, Yen Wie Chen, Rajeev Kumar Kanth, and Jukka Heikkonen. "Optimization of Silicon Tandem Solar Cells Using Artificial Neural Networks." In Lecture Notes in Computer Science, 392–403. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-34885-4_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Suganya, T., V. Rajendran, and P. Mangaiyarkarasi. "Parameters Extraction of the Double Diode Model for the Polycrystalline Silicon Solar Cells." In Communications in Computer and Information Science, 47–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81462-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kumari, Juhi, Rahul, and Pratima Agarwal. "Modelling of p-a-Si:H/i-a-Si:H/(n)c-Si Silicon Solar Cells by AFORS-HET Software." In Sustainable Energy Generation and Storage, 127–33. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2088-4_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rizwan, M. "Simulation Models for Solar Photovoltaic Materials." In Materials Research Foundations, 114–33. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901410-5.

Повний текст джерела
Анотація:
Semiconducting materials have dominated the photovoltaic industry for a long time. The advancement in solar cell technology is significantly influenced by computer modelling, designing and simulations of the semiconductor materials used for the device operation. Different modelling techniques including one, two and three dimensional models had been employed to comprehend the device operation of solar cell and other electronic devices based on semiconductor materials such as silicon and gallium arsenide. The performance of computing power is increasing with the passage of time in order to improve modelling and designing of different semiconductor materials for solar cell devices. In this chapter, different reported semiconductor materials, their standard characteristics and basic history of modelling, standard models used in photovoltaic industry and principles of modelling such as carrier statistics, transitions, band structure and mobility are explained in detail. Different characteristics of semiconductor material like the carrier transportation, carrier statistics, band structure, and heavy doping effect and carrier generations are described with respect to material modelling.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Edmiston, S. A., G. Heiser, A. B. Sproul, and M. A. Green. "Improved Modelling of Grain Boundary Recombination in Bulk and p–n Junction Regions of Polycrystalline Silicon Solar Cells." In Renewable Energy, 92–113. Routledge, 2018. http://dx.doi.org/10.4324/9781315793245-48.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Singh, M. "Piezoelectric Materials based Phototronics." In Materials Research Foundations, 117–37. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644902097-4.

Повний текст джерела
Анотація:
In 2010, the fundamentals of piezo-phototronics were introduced. By applying stress, a piezo potential is formed in a non-central symmetrical crystal due to ion polarisation. Due to the co-existence of semiconductor and piezoelectricity characteristics, piezo potential induced in the crystal is of significant impact on charge transfer at the junction/interface. The phototronic product uses the piezo capability to manage carrier formation, separation, transportation, and recombination to improve the performance of optoelectronic devices such as photon detectors, solar cells and LED. Today, most of the unique applications in this field can be found in sensing, human-computer interfacing, actuating nanorobotics by effectively integrating piezo-phototronic devices and piezotronic with silicon-based CMOS technology. This chapter gives an insight into the fundamentals of piezo-phototronics.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Singh, M. "Piezoelectric Materials based Phototronics." In Materials Research Foundations, 117–37. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644902073-4.

Повний текст джерела
Анотація:
In 2010, the fundamentals of piezo-phototronics were introduced. By applying stress, a piezo potential is formed in a non-central symmetrical crystal due to ion polarisation. Due to the co-existence of semiconductor and piezoelectricity characteristics, piezo potential induced in the crystal is of significant impact on charge transfer at the junction/interface. The phototronic product uses the piezo capability to manage carrier formation, separation, transportation, and recombination to improve the performance of optoelectronic devices such as photon detectors, solar cells and LED. Today, most of the unique applications in this field can be found in sensing, human-computer interfacing, actuating nanorobotics by effectively integrating piezo-phototronic devices and piezotronic with silicon-based CMOS technology. This chapter gives an insight into the fundamentals of piezo-phototronics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Computer Modelling - Silicon Solar Cells"

1

Baker-Finch, Simeon C., Keith R. McIntosh, Daniel Inns, and Mason L. Terry. "Modelling isotextured silicon solar cells and modules." In 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC). IEEE, 2012. http://dx.doi.org/10.1109/pvsc.2012.6317599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hussein, Mohamed, M. F. O. Hameed, S. S. A. Obayya, and Mohamed A. Swillam. "Effective modelling of silicon nanowire solar cells." In 2017 International Applied Computational Electromagnetics Society Symposium - Italy (ACES). IEEE, 2017. http://dx.doi.org/10.23919/ropaces.2017.7916023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Reis, F., J. Wemans, G. Sorasio, N. Pereira, and M. C. Brito. "Modelling CPV silicon solar cells under inhomogeneous irradiation." In 8TH INTERNATIONAL CONFERENCE ON CONCENTRATING PHOTOVOLTAIC SYSTEMS: CPV-8. AIP, 2012. http://dx.doi.org/10.1063/1.4753863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Paetzold, Ulrich W., Robert Gehlhaar, Jeffrey G. Tait, Weiming Qiu, Joao Bastos, Maarten Debucquoy, Manoj Jaysankar, Tom Aernouts, and Jef Poortmans. "Optical loss analyses and energy yield modelling of perovskite/silicon multijunction solar cells." In Optics for Solar Energy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/ose.2016.sow2c.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tomšic, Špela, Benjamin Lipovšek, Matevž Bokalic, and Marko Topič. "Thermal modelling and simulation of crystalline silicon solar cells and modules." In Physics, Simulation, and Photonic Engineering of Photovoltaic Devices X, edited by Alexandre Freundlich, Karin Hinzer, and Stéphane Collin. SPIE, 2021. http://dx.doi.org/10.1117/12.2583024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Volk, Anne-Kristin, William Glover, Johannes Greulich, Simon Gutscher, Winfried Wolke, Martin Zimmer, Jochen Rentsch, and Holger Reinecke. "Optical modelling of the front surface for honeycomb-textured silicon solar cells." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6925144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Catchpole, Kylie. "Optical and electrical modelling for high efficiency perovskite/silicon tandem solar cells." In 2016 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2016. http://dx.doi.org/10.1109/nusod.2016.7547093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lehr, Jonathan, Malte Langenhorst, Raphael Schmager, Uli Lemmer, Bryce Richards, and Ulrich Paetzold. "Energy Yield Modelling of Textured Perovskite/Silicon Two-Terminal Tandem Photovoltaic Modules." In nanoGe International Conference on Perovskite Solar Cells, Photonics and Optoelectronics. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nipho.2019.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wright, Brendan, and Brett Hallam. "Unsupervised machine learning for photovoltaic systems: Modelling LID dynamics in SHJ solar cells." In SiliconPV 2021, The 11th International Conference on Crystalline Silicon Photovoltaics. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0089218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rahman, Tasmiat, and Kristel Fobelets. "Simulation of Rough Silicon Nanowire Array for Use in Spin-on-Doped PN Core-Shell Solar Cells." In 2013 European Modelling Symposium (EMS). IEEE, 2013. http://dx.doi.org/10.1109/ems.2013.122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Computer Modelling - Silicon Solar Cells"

1

Rohatgi, A., A. W. Smith, and J. Salami. Modelling and fabrication of high-efficiency silicon solar cells. Office of Scientific and Technical Information (OSTI), October 1991. http://dx.doi.org/10.2172/10104501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії