Дисертації з теми "Computationnal social choice"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-24 дисертацій для дослідження на тему "Computationnal social choice".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Gross-Humbert, Nathanaël. "Étude des notions de diversité et d'envie dans le cadre de problèmes d'affectation avec groupes d'agents." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS257.
Повний текст джерелаThe purpose of this thesis is to study the notions of fairness and diversity in resource allocation problems where the agent set is partitionned into types. These concepts have numberous applications, first among them being the Singapour housing allocation problem, which inspired our model. Other applications include allocating students to schools or medical resources to hospital.This work follow to main axis, the first one is about allocation mechanism within the context of a model with diversity constraints, while the second one is about equity between types of agents using the notion en envy.In the first part, we study a model for which, just as the agent set is partitionned into a set of types, the item set is partitionned into a set of blocks, and there are diversity quotas between these types and these blocks. We introduce a dynamic of individual improvement in which agents are allowed to improve their allocation by swapping their item with an other (willing) agent.This dynamic create a notion of stability, for which an allocation is stable if no pair of agent wish to swap their item. We then study the theoretical property of this notion of stability, before considering two different methods for generating allocation. The first one, the lotery mechanism, consists in ordering the set of agents, then allowing each one in turn to pick their favorite item. The second one relies on the dynamic we just introduced: we start from a random allocation, and we apply improving swap between agents until we reach a stable allocation. We then describe several series of experiments made using these mechanisms, and discuss their results.The second main contribution is about the notion of equity, which we consider through the lens of envy and envy-freeness. We define 4 axioms which stands for properties we consider to be critical to a relevant definition of envy. We then list the definitions of envy commonly used in the litterature, and we check whether or not they satisfy the axioms. We then define our own notions of envy, which relies on comparison using subgroups. We first study whether or not they satisfy the axioms, then their computationnal aspects. We then discuss the different possible interpretations of the concept of monotony.We then relax our notions of envy by defining the degree of envy,. However, we show that it is hard to compute, we thus bring forward two ways to approximate its computation. The first and most efficient one relies on a reduction to a variant of the knapsack problem, while the second one uses a succession of samples made using a Markov chain.While the theoretical complexity of this second method is very high, experimental results suggest convergence is in practice much faster
Durand, Martin. "Axiomatic and computational aspects of discrete optimization problems in collective settings : from Multi-Agent Scheduling to Participatory Budgeting." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS290.
Повний текст джерелаThis thesis focuses on several collective decision making problems, from multi agent scheduling to participatory budgeting. There are several agents, that can represent companies, citizens of a city, members of a research lab dots, for which a common solution has to be found. Such a solution can be a schedule of tasks of interest for the agents, a ranking of items that the agents have to sort or a selection of projects approved by the agents. Each agent has different interest over the possible solutions. This can be because the solution impacts directly the agents or because the agents express preferences over the possible solutions. Any solution can be evaluated thanks to different tools. We will mostly focus on fairness and efficiency. Fairness and efficiency can be formulated in different ways, depending on the context, from objective functions to binary properties. In all cases, our goal will be to find a solution that corresponds as much as possible to the interests or preferences of the agents. A solution is collectively satisfying if it is "close" to the preferences of the agents, according to some definition of closeness, or if the overall benefit of the agents is high. The solution should also be fair in the sense that no agent should be treated better than any other. We study different problems, especially scheduling problems, in which we have to find fair solution or fair decision making processes while guaranteeing some notion of efficiency
Wilczynski, Anaëlle. "Interaction entre agents modélisée par un réseau social dans des problématiques de choix social computationnel Strategic Voting in a Social Context: Considerate Equilibria Object Allocation via Swaps along a Social Network Local Envy-Freeness in House Allocation Problems Constrained Swap Dynamics over a Social Network in Distributed Resource Reallocation Poll-Confident Voters in Iterative Voting." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED073.
Повний текст джерелаSocial choice is the study of collective decision making, where a set of agents must make a decision over a set of alternatives, according to their preferences. The question relies on how aggregating the preferences of the agents in order to end up with a decision that is commonly acceptable for the group. Typically, agents can interact by collaborating, or exchanging some information. It is usually assumed in computational social choice that every agent is able to interact with any other agent. However, this assumption looks unrealistic in many concrete situations. We propose to relax this assumption by considering that the possibility of interaction is given by a social network, represented by a graph over the agents.In this context, we study two particular problems of computational social choice: strategic voting and resource allocation of indivisible goods. The focus is on two types of interaction: collaboration and information gathering. We explore how the social network,modelingapossibilityofcollaboration or a visibility relation among the agents, can impact the resolution and the solution of voting and resource allocation problems. These questions are addressed via computational social choice by using tools from algorithmic game theory and computational complexity
Ayadi, Manel. "Winner Determination under Common Voting Rules using Truncated Ballots." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED030.
Повний текст джерелаClassical voting rules assume that voters’ ballots are complete preference orders over candidates. However, when the number of candidates is large enough, it is too costly to ask the voters to rank all candidates. There is therefore a trade-off between the efficiency of an aggregation method and the communication burden it places on voters.In this thesis, we address this problem by suggesting to ask voters to report only their k preferred candidates (where k may vary depending on the voters and/or during the process). The obtained ballots are then said to be k-truncated. We study the amount of information needed to determine the outcome of the election (exact or approximate) from truncated ballots with respect to different voting rules and we propose and analyze different methods allowing a compromise between the accuracy of the result and the amount of communication required; some require only one round of communication, while others are interactive
Shams, Parham. "Procedures based on Exchanges and new Relaxations of Envy-Freeness in Fair Division of Indivisible Goods." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS477.
Повний текст джерелаThe work of this thesis is in the scope of Computational Social Choice. It is a field at the intersection of Social Choice, Computer Science and Artificial Intelligence. In particular, we study the problem of Fair Division of Indivisible Goods where the the objective is to find a fair and efficient allocation of a set of (valuable) objects among a set of agents. While efficiency is usually brought by the minimal requirement of completeness (all the objects have to be allocated in order not to waste anything), or the more demanding notion of Pareto-Optimality (an allocation is Pareto-Optimal if there is no allocation such that all the agents are not worse off and one agent is strictly better off), several notions have been proposed to define the fairness of an allocation.One of the most prominent fairness measures is called envy-freeness. An allocation is said to be envy-free if no agent would like to exchange her bundle of resources with another agent. However, envy-freeness is not guaranteed to exist when considering indivisible goods so various relaxations have been proposed recently in the literature to overcome this limitation.In this thesis, we first thoroughly study a family of decentralized allocation procedures related to exchanges of goods. We analyze how these procedures behave and the desirable properties they exhibit. More specifically, we study sequence of sincere choices and cycle exchanges of resources. We then propose new relaxations of the envy-freeness notion (and also of other fairness measures) and thoroughly study them. Our first relaxation aims at balancing the envy among the agents (when it cannot be avoided) and is based on the Order Weighted Average (OWA) aggregator usually used in multi-criteria optimisation to bring fairness. The second relaxation focuses on the social approval of the envy and is more related to voting theory, as it lets agents vote about the envy of the other agents. We investigate computational issues related to these new relaxations, their link with existing fairness and efficiency notions and we experimentally test them
ABOUEIMEHRIZI, MOHAMMAD. "Election Control via Social Influence." Doctoral thesis, Gran Sasso Science Institute, 2021. http://hdl.handle.net/20.500.12571/21656.
Повний текст джерелаNovaro, Arianna. "Collective decision-making with goals." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30179.
Повний текст джерелаAgents having to take a collective decision are often motivated by individual goals. In such scenarios, two key aspects need to be addressed. The first is defining how to select a winning alternative from the expressions of the agents. The second is making sure that agents will not manipulate the outcome. Agents should also be able to state their goals in a way that is expressive, yet not too burdensome. This dissertation studies the aggregation and the strategic component of multi-agent collective decisions where the agents use a compactly represented language. The languages we study are all related to logic: from propositional logic, to generalized CP-nets and linear temporal logic (LTL). Our main contribution is the introduction of the framework of goal-based voting, where agents submit individual goals expressed as formulas of propositional logic. Classical aggregation functions from voting, judgment aggregation, and belief merging are adapted to this setting and studied axiomatically and computationally. Desirable axiomatic properties known in the literature of social choice theory are generalized to this new type of propositional input, as well as the standard complexity problems aimed at determining the result. Another important contribution is the study of the aggregation of generalized CP-nets coming from multiple agents, i.e., CP-nets where the precondition of the preference statement is a propositional formula. We use different aggregators to obtain a collective ordering of the possible outcomes. Thanks to this thesis, two lines of research are thus bridged: the one on the aggregation of complete CP-nets, and the one on the generalization of CP-nets to incomplete preconditions. We also contribute to the study of strategic behavior in both collective decision-making and game-theoretic settings. The framework of goal-based voting is studied again under the assumption that agents can now decide to submit an untruthful goal if by doing so they can get a better outcome. The focus is on three majoritarian voting rules which are found to be manipulable. Therefore, we study restrictions on both the language of the goals and on the strategies allowed to the agents to discover islands of strategy-proofness. We also present a game-theoretic extension of a recent model of opinion diffusion over networks of influence. In the influence games defined here, agents hold goals expressed as formulas of LTL and they can choose whether to use their influence power to make sure that their goal is satisfied. Classical solution concepts such as weak dominance and winning strategy are studied for influence games, in relation to the structure of the network and the goals of the agents. Finally, we introduce a novel class of concurrent game structures (CGS) in which agents can have shared control over a set of propositional variables. Such structures are used for the interpretation of formulas of alternating-time temporal logic, thanks to which we can express the existence of a winning strategy for an agent in a repeated game (as, for instance, the influence games mentioned above). The main result shows by means of a clever construction that a CGS with shared control can be represented as a CGS with exclusive control. In conclusion, this thesis provides a valuable contribution to the field of collective decision-making by introducing a novel framework of voting based on individual propositional goals, it studies for the first time the aggregation of generalized CP-nets, it extends a framework of opinion diffusion by modelling rational agents who use their influence power as they see fit, and it provides a reduction of shared to exclusive control in CGS for the interpretation of logics of strategic reasoning. By using different logical languages, agents can thus express their goals and preferences over the decision to be taken, and desirable properties of the decision process can be ensured
Barrot, Nathanaël. "Sur les aspects computationnels du vote par approbation." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLED006/document.
Повний текст джерелаThe subject of this thesis is the study of computational aspects of approval voting. Most of the works are theoretical results about computational issues raised by approval voting, in many different settings. However, I also study some questions that are more related to classical choice theory, and some problems are investigated through experimental analysis.Firstly, I study a general family of rules for approval voting in the context of committee elections and multiple referenda. Secondly, I focus on a more general setting, approval voting in combinatorial domains, based on conditional preferences. Finally, I consider approval voting in the context of incomplete preferences, to study the possible and necessary winner problems
Baumeister, Dorothea [Verfasser], Jörg [Akademischer Betreuer] Rothe, Egon [Akademischer Betreuer] Wanke, and Ulle [Akademischer Betreuer] Endriss. "Computational Complexity in Three Areas of Computational Social Choice: Possible Winners, Unidirectional Covering Sets, and Judgment Aggregation / Dorothea Baumeister. Gutachter: Egon Wanke ; Ulle Endriss. Betreuer: Jörg Rothe." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2012. http://d-nb.info/1027368913/34.
Повний текст джерелаLoreggia, Andrea. "Iterative Voting, Control and Sentiment Analysis." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424803.
Повний текст джерелаNei sistemi multi agente spesso nasce la necessità di prendere decisioni collettive basate sulle preferenze dei singoli individui. A tal fine può essere utilizzata una regola di voto che, aggregando le preferenze dei singoli agenti, trovi una soluzione che rappresenti la collettività. In questi scenari la possibilità di agire in modo strategico può essere vista da due diversi e opposti punti di vista. Da una parte può essere desiderabile che gli agenti non abbiano alcun incentivo ad agire strategicamente, ovvero che gli agenti non abbiano incentivi a riportare in modo scorretto le proprie preferenze per influenzare il risultato dell'elezione a proprio favore, oppure che non agiscano sulla struttura del sistema elettorale stesso per cambiarne il risultato finale. D'altra parte l'azione strategica può essere utilizzata per migliorare la qualità del risultato o per incrementare il consenso del vincitore. Questi due diversi scenari sono studiati ed analizzati nella tesi. Il primo modellando e descrivendo una forma naturale di controllo chiamato "replacement control" descrivendo la complessità computazione di tale azione strategica per diverse regole di voto. Il secondo scenario è studiato nella forma dei sistemi di voto iterativi nei quali i singoli individui hanno la possibilità di cambiare le proprie preferenze al fine di influenzare il risultato dell'elezione. Le tecniche di Computational Social Choice inoltre possono essere usate in diverse situazioni. Il lavoro di tesi riporta un primo tentativo di introdurre l'uso di sistemi elettorali nel campo dell'analisi del sentimento. In questo contesto i ricercatori estraggono le opinioni della comunità riguardanti un particolare elemento di interesse. L'opinione collettiva è estratta aggregando le opinioni espresse dai singoli individui che discutono o parlano dell'elemento di interesse attraverso testi pubblicati in blog o social network. Il lavoro di tesi studia una nuova procedura di aggregazione proponendo una nuova variante di una regola di voto ben conosciuta qual è Borda. Tale nuova procedura di aggregazione migliora le performance dell'analisi del sentimento classica.
Brill, Markus [Verfasser], Felix [Akademischer Betreuer] Brandt, and Jérôme [Akademischer Betreuer] Lang. "Set-Valued Solution Concepts in Social Choice and Game Theory : Axiomatic and Computational Aspects / Markus Brill. Gutachter: Felix Brandt ; Jérôme Lang. Betreuer: Felix Brandt." München : Universitätsbibliothek der TU München, 2012. http://d-nb.info/1031512683/34.
Повний текст джерелаDennig, Francis. "On the welfare economics of climate change." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:aefca5e4-147e-428b-b7a1-176b7daa0f85.
Повний текст джерелаRiquelme, Csori Fabián. "Structural and computational aspects of simple and influence games." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/283144.
Повний текст джерелаLos juegos simples son una clase fundamental de juegos cooperativos, que tiene una enorme relevancia en diversas áreas de ciencias de la computación, ciencias sociales y matemáticas discretas aplicadas. En los últimos años, los distintos aspectos algorítmicos y de complejidad computacional de los juegos simples ha ido ganando notoriedad. En esta tesis revisamos los distintos problemas computacionales relacionados con propiedades, parámetros y conceptos de solución de juegos simples. Primero consideramos distintas formas de representación de juegos simples, juegos regulares y juegos de mayoría ponderada, y estudiamos la complejidad computacional requerida para transformar un juego desde una representación a otra. También analizamos la complejidad de varios problemas abiertos bajo diferentes formas de representación. En este sentido, demostramos que el problema de decidir si un juego simple en forma ganadora minimal es decisivo (un problema asociado al problema de dualidad de hipergrafos y funciones booleanas monótonas) puede resolverse en tiempo cuasi-polinomial, y que este problema puede reducirse polinomialmente al mismo problema pero restringido a juegos regulares en forma ganadora shift-minimal. También demostramos que el problema de decidir si un juego regular en forma ganadora shift-minimal es fuerte (strong) es coNP-completo. Adicionalmente, para juegos simples en forma ganadora minimal demostramos que el parámetro de anchura (width) puede computarse en tiempo polinomial. Independientemente de la forma de representación, también estudiamos problemas de enumeración y conteo para varias subfamilias de juegos simples. Luego introducimos los juegos de influencia, un nuevo enfoque para estudiar juegos simples basado en un modelo de dispersión de influencia en redes sociales, donde la influencia se dispersa de acuerdo con el modelo de umbral lineal (linear threshold model). Demostramos que los juegos de influencia abarcan la totalidad de la clase de los juegos simples. Para estos juegos también estudiamos la complejidad de los problemas relacionados con parámetros, propiedades y conceptos de solución considerados para los juegos simples. Además consideramos casos extremos con respecto a la demanda de influencia, y probamos que para ciertas subfamilias, varios de estos problemas se vuelven polinomiales. Finalmente estudiamos algunas aplicaciones inspiradas en los juegos de influencia. El primer conjunto de estos resultados tiene que ver con la definición de modelos de decisión colectiva. Para sistemas de mediación, varios de los problemas de propiedades mencionados anteriormente son polinomialmente resolubles. Para los sistemas de influencia, demostramos que computar la satisfacción (una medida equivalente al índice de Rae y similar al valor de Banzhaf) es difícil a menos que consideremos algunas restricciones en el modelo. Para los sistemas OLFM, una generalización de los sistemas OLF (van den Brink et al. 2011, 2012) proporcionamos una axiomatización para la medida de satisfacción. El segundo conjunto de resultados se refiere al análisis de redes sociales, y en particular con la definición de nuevas medidas de centralidad de redes sociales, que comparamos en redes reales con otras medidas de centralidad clásicas
Maudet, Nicolas. "Reaching Agreement in Multiagent Systems." Habilitation à diriger des recherches, Université Paris Dauphine - Paris IX, 2010. http://tel.archives-ouvertes.fr/tel-00563437.
Повний текст джерелаTydrichová, Magdaléna. "Structural and algorithmic aspects of preference domain restrictions in collective decision making : contributions to the study of single-peaked and Euclidean preferences." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS048.
Повний текст джерелаThis thesis studies structural and algorithmic aspects of preference domain restrictions, namely single-peaked preferences and Euclidean preferences. In the first part of the thesis, we first introduce a generalization of the notion of single-peakedness on an arbitrary graph. We focus, in particular, on algorithmic aspects, namely the problem of recognition. The notion of nearly single-peakedness is then studied. More precisely, we introduce a new metric of nearly single-peakedness, and we study its theoretical and computational properties. The second part of the thesis is devoted to the study of d-Euclidean preferences (where d is the dimension of the real space) with respect to different norms. We first propose a heuristic algorithm for recognizing 2-Euclidean preferences with respect to the l_2 norm, and study its practical efficiency in practice. Finally, we focus on structural aspects of 2-Euclidean preferences with respect to the l_1 norm
Liu, Xudong. "MODELING, LEARNING AND REASONING ABOUT PREFERENCE TREES OVER COMBINATORIAL DOMAINS." UKnowledge, 2016. http://uknowledge.uky.edu/cs_etds/43.
Повний текст джерелаHunt, Laurence T. "Modelling human decision under risk and uncertainty." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:244ce799-7397-4698-8dac-c8ca5d0b3e28.
Повний текст джерелаDufton, Lachlan Thomas. "Stochastic Mechanisms for Truthfulness and Budget Balance in Computational Social Choice." Thesis, 2013. http://hdl.handle.net/10012/7231.
Повний текст джерелаDey, Palash. "Resolving the Complexity of Some Fundamental Problems in Computational Social Choice." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/2923.
Повний текст джерелаDey, Palash. "Resolving the Complexity of Some Fundamental Problems in Computational Social Choice." Thesis, 2016. http://hdl.handle.net/2005/2923.
Повний текст джерелаLOREGGIA, ANDREA. "Iterative Voting, Control and Sentiment Analysis." Doctoral thesis, 2016. http://hdl.handle.net/11577/3235115.
Повний текст джерелаΚαρανικόλας, Νικόλαος. "Υπολογιστικά ζητήματα στην κοινωνική επιλογή". Thesis, 2014. http://hdl.handle.net/10889/7999.
Повний текст джерелаIn this PhD thesis we study computational problems arising from the theory of social choice. One main aspect of Computational Social Choice is voting theory. The most important problem of voting theory is the computation of the winner of the elections when we have as input the preferences of the voters. In the literature there are many voting rules according to which the computation of the winner of the elections is done. Voting theory is a seminal subject in the Computational Social Choice theory with applications in the society. Voting rules are widely used in government and municipal or local elections and also in committees for taking decisions. In this thesis we start by considering voting rules proposed by Dodgson and Young. These rules are both designed to find an alternative closest to being a Condorcet winner. According to the Condorcet criterion, the winner of the elections should be the one that the majority of the voters prefer in relation to every other candidate. Unfortunately, the preferences of the majority may be circular. For example, in an election with 3 candidates, candidate a is preferred to b by the majority and b is preferred in relation to c, but c is preferred to a. Then a Condorcet winner does not exist. Each of these voting rules provide a different notion of proximity of how close they are to Condorcet rule. In the Dodgson rule the score of a candidate, given a set of preferences, is the minimum number of exchanges between adjacent candidates in order for the specific candidate to become a Condorcet winner. The Dodgson winner is the candidate with the minimum Dodgson score. In the Young rule the score of a candidate is the size of the largest subset of voters, when taking in account only these votes, the specific candidate becomes a Condorcet winner. The Young winner is the candidate with the maximum Young score. The score of a given alternative is known to be hard to compute under either rule and so the computational problems that arise and we consider are related to the approximation of the voting rules proposed by Dodgson and Young. We put forward two algorithms for approximating the Dodgson score: a combinatorial, greedy algorithm and an LP-based algorithm, both of which yield an approximation ratio of H_{m-1}, where m is the number of alternatives and H_{m-1} is the (m-1)st harmonic number. We also prove that there is no polynomial time algorithm that approximates the Dodgson score by (1/2-ε)lnm, unless problems in NP have quasi-polynomial time algorithms. Despite the intuitive appeal of the greedy algorithm, we argue that the LP-based algorithm has an advantage from a social choice point of view. Further, we demonstrate that computing any reasonable approximation of the ranking produced by Dodgson's rule is NP-hard. This result provides a complexity-theoretic explanation of sharp discrepancies that have been observed in the social choice theory literature when comparing Dodgson elections with simpler voting rules. Also, we show that the problem of calculating the Young score is NP-hard to approximate by any factor. This leads to an inapproximability result for the Young ranking. Although Dodgson's rule is one of the most well-studied voting rules, it suffers from serious deficiencies, both from the computational point of view --- it is NP-hard even to approximate the Dodgson score within sublogarithmic factors --- and from the social choice point of view --- it fails basic social choice desiderata such as monotonicity and homogeneity. However, this does not preclude the existence of approximation algorithms for Dodgson that are monotonic or homogeneous, and indeed it is natural to ask whether such algorithms exist. In this thesis we give definitive answers to these questions. We design a monotonic exponential-time algorithm that yields a 2-approximation to the Dodgson score, while matching this result with a tight lower bound. We also present a monotonic polynomial-time O(logm)-approximation algorithm (where m is the number of alternatives); this result is tight as well due to a complexity-theoretic lower bound. Furthermore, we show that a slight variation on a known voting rule yields a monotonic, homogeneous, polynomial-time O(m logm)-approximation algorithm, and establish that it is impossible to achieve a better approximation ratio even if one just asks for homogeneity. We complete the picture by studying several additional social choice properties; for these properties, we prove that algorithms with an approximation ratio that depends only on m do not exist. In this thesis we consider also the important computational problem of bribery in elections, where the winning candidate is computed using a scoring voting rule. In the bribery problem we have an external agent who wants to change the preferences of some voters to make his favorite candidate win the election given a budget. In this thesis we consider scoring voting rules where the voter gives to the first candidate κ points, λ points to his second most preferred candidate and zero points to all other candidates. We prove that for this class of rules bribery is a computationally hard problem. The class of scoring voting rules includes plurality and 2-approval for which an optimal bribing strategy can be computed efficiently as well as 3-approval which is hard to bribe. Concluding we derive that the class of rules we consider is one of the most simple scoring voting rules that are resistant to bribery.
Rathi, Nidhi. "Algorithmic and Hardness Results for Fundamental Fair-Division Problems." Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5205.
Повний текст джерелаIBM Ph.D. Fellowship 2020
Narang, Shivika. "Algorithms for Achieving Fairness and Efficiency in Matching Problems." Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6140.
Повний текст джерелаTata Consultancy Services