Дисертації з теми "Computational Genomic"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Computational Genomic".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Mumey, Brendan Marshall. "Some computational problems from genomic mapping /." Thesis, Connect to this title online; UW restricted, 1997. http://hdl.handle.net/1773/6932.
Повний текст джерелаAlkan, Can. "Computational Studies on Evolution and Functionality of Genomic Repeats." Case Western Reserve University School of Graduate Studies / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=case1120143436.
Повний текст джерелаGaspar, Paulo Miguel da Silva. "Computational methods for gene characterization and genomic knowledge extraction." Doctoral thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13949.
Повний текст джерелаMotivation: Medicine and health sciences are changing from the classical symptom-based to a more personalized and genetics-based paradigm, with an invaluable impact in health-care. While advancements in genetics were already contributing significantly to the knowledge of the human organism, the breakthrough achieved by several recent initiatives provided a comprehensive characterization of the human genetic differences, paving the way for a new era of medical diagnosis and personalized medicine. Data generated from these and posterior experiments are now becoming available, but its volume is now well over the humanly feasible to explore. It is then the responsibility of computer scientists to create the means for extracting the information and knowledge contained in that data. Within the available data, genetic structures contain significant amounts of encoded information that has been uncovered in the past decades. Finding, reading and interpreting that information are necessary steps for building computational models of genetic entities, organisms and diseases; a goal that in due course leads to human benefits. Aims: Numerous patterns can be found within the human variome and exome. Exploring these patterns enables the computational analysis and manipulation of digital genomic data, but requires specialized algorithmic approaches. In this work we sought to create and explore efficient methodologies to computationally calculate and combine known biological patterns for various purposes, such as the in silico optimization of genetic structures, analysis of human genes, and prediction of pathogenicity from human genetic variants. Results: We devised several computational strategies to evaluate genes, explore genomes, manipulate sequences, and analyze patients’ variomes. By resorting to combinatorial and optimization techniques we were able to create and combine sequence redesign algorithms to control genetic structures; by combining the access to several web-services and external resources we created tools to explore and analyze available genetic data and patient data; and by using machine learning we developed a workflow for analyzing human mutations and predicting their pathogenicity.
Motivação: A medicina e as ciências da saúde estão atualmente num processo de alteração que muda o paradigma clássico baseado em sintomas para um personalizado e baseado na genética. O valor do impacto desta mudança nos cuidados da saúde é inestimável. Não obstante as contribuições dos avanços na genética para o conhecimento do organismo humano até agora, as descobertas realizadas recentemente por algumas iniciativas forneceram uma caracterização detalhada das diferenças genéticas humanas, abrindo o caminho a uma nova era de diagnóstico médico e medicina personalizada. Os dados gerados por estas e outras iniciativas estão disponíveis mas o seu volume está muito para lá do humanamente explorável, e é portanto da responsabilidade dos cientistas informáticos criar os meios para extrair a informação e conhecimento contidos nesses dados. Dentro dos dados disponíveis estão estruturas genéticas que contêm uma quantidade significativa de informação codificada que tem vindo a ser descoberta nas últimas décadas. Encontrar, ler e interpretar essa informação são passos necessários para construir modelos computacionais de entidades genéticas, organismos e doenças; uma meta que, em devido tempo, leva a benefícios humanos. Objetivos: É possível encontrar vários padrões no varioma e exoma humano. Explorar estes padrões permite a análise e manipulação computacional de dados genéticos digitais, mas requer algoritmos especializados. Neste trabalho procurámos criar e explorar metodologias eficientes para o cálculo e combinação de padrões biológicos conhecidos, com a intenção de realizar otimizações in silico de estruturas genéticas, análises de genes humanos, e previsão da patogenicidade a partir de diferenças genéticas humanas. Resultados: Concebemos várias estratégias computacionais para avaliar genes, explorar genomas, manipular sequências, e analisar o varioma de pacientes. Recorrendo a técnicas combinatórias e de otimização criámos e conjugámos algoritmos de redesenho de sequências para controlar estruturas genéticas; através da combinação do acesso a vários web-services e recursos externos criámos ferramentas para explorar e analisar dados genéticos, incluindo dados de pacientes; e através da aprendizagem automática desenvolvemos um procedimento para analisar mutações humanas e prever a sua patogenicidade.
SINHA, AMIT U. "Discovery and Analysis of Genomic Patterns: Applications to Transcription Factor Binding and Genome Rearrangement." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1204227723.
Повний текст джерелаSaha, Mandal Arnab. "Computational Analysis of the Evolution of Non-Coding Genomic Sequences." University of Toledo Health Science Campus / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=mco1372349811.
Повний текст джерелаDanks, Jacob R. "Algorithm Optimizations in Genomic Analysis Using Entropic Dissection." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804921/.
Повний текст джерелаCICCOLELLA, SIMONE. "Practical algorithms for Computational Phylogenetics." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/364980.
Повний текст джерелаIn this manuscript we described the main computational challenges of the cancer phylogenetic field and we proposed different solutions for the three main problems of (i) the progression reconstruction of a tumor sample, (ii) the clustering of SCS data to allow for a cleaner and faster inference and (iii) the evaluation of different phylogenies. Furthermore we combined them into a usable pipeline to allow for a faster analysis.
Picard, Colette Lafontaine. "Dynamics of DNA methylation and genomic imprinting in arabidopsis." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122539.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 210-226).
DNA methylation is an epigenetic mark that is highly conserved and important in diverse cellular processes, ranging from transposon silencing to genomic imprinting. In plants, DNA methylation is both mitotically and meiotically heritable, and changes in DNA methylation can be generationally stable and have long-lasting consequences. This thesis aims to improve understanding of DNA methylation dynamics in plants, particularly across generations and during reproduction. In the first project, I present an analysis of the generational dynamics of gene body methylation using recombinant inbred lines derived from differentially methylated parents. I show that while gene body methylation is highly generationally stable, changes in methylation state occur nonrandomly and are enriched in regions of intermediate methylation.
Important DNA methylation changes also occur during seed development in flowering plants, and these changes underlie genomic imprinting, the phenomenon of parent-of-origin specific gene expression. In plants, imprinting occurs in the endosperm, a seed tissue that functions analogously to the mammalian placenta. Imprinted expression is linked to DNA methylation patterns that serve to differentiate the maternally- and paternally-inherited alleles, but the mechanisms used to achieve imprinted expression are often unknown. I next explore imprinted expression and DNA methylation in Arabidopsis lyrata, a close relative of the model plant Arabidopsis thaliana. I find that the majority of imprinted genes in A. lyrata endosperm are also imprinted in A. thaliana, suggesting that imprinted expression is generally conserved. Surprisingly, a subset of A. lyrata imprinted genes are associated with a novel DNA methylation pattern and may be regulated by a different mechanism than their A.
thaliana counterparts. I then explore the genetics of paternal suppression of the seed abortion phenotype caused by mutation of a maternally expressed imprinted gene. Finally, I present the first large single-nuclei RNA-seq dataset generated in plants, reporting data from 1,093 individual nuclei obtained from developing seeds. I find evidence of previously uncharacterized cell states in endosperm, and examine imprinted expression at the single-cell level. Together, these projects contribute to our understanding of DNA methylation and imprinting dynamics during plant development, and highlight the strong generational stability of certain DNA methylation patterns.
by Colette Lafontaine Picard.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Computational and Systems Biology Program
Rezwan, Faisal Ibne. "Improving computational predictions of Cis-regulatory binding sites in genomic data." Thesis, University of Hertfordshire, 2011. http://hdl.handle.net/2299/7133.
Повний текст джерелаAlkhnbashi, Omer S. [Verfasser], and Rolf [Akademischer Betreuer] Backofen. "Computational characterisation of genomic CRISPR-Cas systems in archaea and bacteria." Freiburg : Universität, 2017. http://d-nb.info/1139210904/34.
Повний текст джерелаCHELONI, STEFANO. "COMPUTATIONAL ASSESSMENT OF GENOMIC AND FUNCTIONAL HETEROGENEITY IN ACUTE MYELOID LEUKAEMIA." Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/790331.
Повний текст джерелаSandberg, Rickard. "Analyses of genomic and gene expression signatures /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-015-X/.
Повний текст джерелаShapiro, B. Jesse (Benjamin Jesse). "Genomic signatures of sex, selection and speciation in the microbial world." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61788.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 218-228).
Understanding the microbial world is key to understanding global biogeochemistry, human health and disease, yet this world is largely inaccessible. Microbial genomes, an increasingly accessible data source, provide an ideal entry point. The genome sequences of different microbes may be compared using the tools of population genetics to infer important genetic changes allowing them to diversify ecologically and adapt to distinct ecological niches. Yet the toolkit of population genetics was developed largely with sexual eukaryotes in mind. In this work, I assess and develop tools for inferring natural selection in microbial genomes. Many tools rely on population genetics theory, and thus require defining distinct populations, or species, of bacteria. Because sex (recombination) is not required for reproduction, some bacteria recombine only rarely, while others are extremely promiscuous, exchanging genes across great genetic distances. This behavior poses a challenge for defining microbial population boundaries. This thesis begins with a discussion of how recombination and positive selection interact to promote ecological adaptation. I then describe a general pipeline for quantifying the impacts of mutation, recombination and selection on microbial genomes, and apply it to two closely related, yet ecologically distinct populations of Vibrio splendidus, each with its own microhabitat preference. I introduce a new tool, STARRInIGHTS, for inferring homologous recombination events. By assessing rates of recombination within and between ecological populations, I conclude that ecological differentiation is driven by small number of habitat-specific alleles, while most loci are shared freely across habitats. The remainder of the thesis focuses on lineage-specific changes in natural selection among anciently diverged species of gamma proteobacteria. I develop two new metrics, selective signatures and slow:fast, for detecting deviations from the expected rate of evolution in 'core' proteins (present in single copy in most species). Because they rely on empirical distributions of evolutionary rates across species, these methods should become increasingly powerful as more and more microbial genomes are sampled. Overall, the methods described here significantly expand the repertoire of tools available for microbial population genomics, both for investigating the process of ecological differentiation at the finest of time scales, and over billions of years of microbial evolution.
by B. Jesse Shapiro.
Ph.D.
Walther, Jürgen. "Revealing DNA dynamics from atomistic to genomic level by multiscale computational approaches." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/667845.
Повний текст джерелаEl estudio del ADN desde la escala atómica a la mesoscópica y la conexión entre dichos niveles de resolución constituye uno de los desafíos mayores del nuevo milenio. Desde el inicio del siglo XX, diversos experimentos han permitido elucidar la estructura del nucleosoma a escala atómica, y por otro lado capturar los contactos entre segmentos del genoma cuyas secuencias se encuentran muy alejadas. En paralelo, el desarrollo teórico de campos de fuerza para la simulación de sistemas atomísticos de ácidos nucleicos logró su primera madurez con la publicación de parmbsc0 en 2007, al tiempo que empezaron a salir publicados los primeros modelos de grano grueso para representar fibras de nucleosomas. La primera década del presente milenio termina con uno de los experimentos más destactados a la hora de visualizar el genoma completo: Hi-C. Actualmente, a casi 10 años del advenimiento del Hi-C, la estructura del núcleo celular sigue siendo un campo muy activo. Es ahora el momento justo para cosechar de los frutos plantados por los pioneros una década atrás y trabajar en la conexión entre los diferentes niveles de resolución logrando una imagen completa y global del ADN en el núcleo celular desde los electrones hasta los cromosomas. En este trabajo, usamos una aproximación computacional para integrar los diferentes niveles de resolución, desde simulaciones atomísticas de Dinámica Molecular hasta el modelado de fibras de cromatina. Desarrollamos un campo de fuerza atomístico (parmbsc1) que reproduce de forma exacta la dinámica del ADN, basado en cálculos de mecánica cuántica. Gracias a la exactitud de parmbsc1, los efectos estructurales secuencia-dependientes a nivel atómico fueron capturados y usados como parámetros para desarrollar un nuevo modelo helicoidal de grano grueso que ha mostrado una exactitud similar con un coste computacional mucho menor. En el modelo de fibra de cromatina, el modelo de grano grueso mencionado anteriormente es usado para simular el comportamiento del ADN “linker” (libre) entre los nucleosomas que son representados de forma simple pero que permiten estudiar fibras a la escala de kilobases con un modelo basado en la mecánica cuántica. Sumado a lo anterior, y para hacer nuestros modelos y herramientas disponibles y accesibles de acuerdo a los estándares actuales, los modelos y métodos desarrollados en esta tesis se distribuyen de forma libre como una versión “stand-alone” o integrado en una plataforma de investigación online.
Cavalli, Florence Marie Géraldine. "A computational study of transcriptional regulation in eukaryotes on a genomic scale." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609725.
Повний текст джерелаGe, Jianye. "Computational Algorithms and Evidence Interpretation in DNA Forensics based on Genomic Data." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1234916402.
Повний текст джерелаBashir, Ali. "Computational methods for analyzing and detecting genomic structural variation applications to cancer /." Diss., [La Jolla, Calif.] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3344883.
Повний текст джерелаTitle from first page of PDF file (viewed April 7, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 194-211).
Tran, Thao Thanh Thi. "Genomic data mining for the computational prediction of small non-coding RNA genes." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33966.
Повний текст джерелаFimereli, Danai. "Computational analyses of gene fusions, viruses and parasitic genomic elements in breast cancer." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/263609.
Повний текст джерелаDoctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
Seshasayee, Aswin Sai Narain. "A computational study of bacterial gene regulation and adaptation on a genomic scale." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611810.
Повний текст джерелаAlatabbi, Ali. "Advances in stringology and applications : from combinatorics via genomic analysis to computational linguistics." Thesis, King's College London (University of London), 2015. http://kclpure.kcl.ac.uk/portal/en/theses/advances-in-stringology-and-applications(b0d93606-09a0-4dce-b7bb-6372d4479369).html.
Повний текст джерелаBezuidt, K. I. O. (Keoagile Ignatius Oliver). "Development of novel computational tools based on analysis of DNA compositional biases to identify and study the distribution of mobile genomic elements among bacteria." Diss., University of Pretoria, 2009. http://hdl.handle.net/2263/27297.
Повний текст джерелаDissertation (MSc)--University of Pretoria, 2009.
Biochemistry
unrestricted
Palaniappan, Krishnaveni. "Predicting "Essential" Genes in Microbial Genomes: A Machine Learning Approach to Knowledge Discovery in Microbial Genomic Data." NSUWorks, 2010. http://nsuworks.nova.edu/gscis_etd/268.
Повний текст джерелаWei, Yulong. "Microbes Carry Distinct Genomic Signatures in Adaptation to Their Translation Machinery and Host Environments." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42422.
Повний текст джерелаZhuang, Jiali. "Structural Variation Discovery and Genotyping from Whole Genome Sequencing: Methodology and Applications: A Dissertation." eScholarship@UMMS, 2015. https://escholarship.umassmed.edu/gsbs_diss/875.
Повний текст джерелаZhuang, Jiali. "Structural Variation Discovery and Genotyping from Whole Genome Sequencing: Methodology and Applications: A Dissertation." eScholarship@UMMS, 2009. http://escholarship.umassmed.edu/gsbs_diss/875.
Повний текст джерелаTsankov, Alex. "Evolution of nucleosome positioning and gene regulation in yeasts : a genomic and computational approach." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/62464.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 107-111).
Chromatin organization plays a major role in gene regulation and can affect the function and evolution of new transcriptional programs. Here, we present the first multi-species comparative genomic analysis of the relationship between chromatin organization and gene expression by measuring mRNA abundance and nucleosome positions genome-wide in 13 Ascomycota yeast species. Our work introduces a host of new computational tools for studying chromatin structure, function, and evolution. We improved on existing methods for detecting nucleosome positions and developed a new approach for identifying nucleosome-free regions (NFRs) and characterizing chromatin organization at gene promoters. We used a general statistical approach for studying the evolution of chromatin and gene regulation at a functional level. We also introduced a new technique for discovering the DNA binding motifs of transacting General Regulatory Factors (GRFs) and developed a new technique for quantifying the relative contribution of intrinsic sequence, GRFs, and transcription to establishing NFRs. And finally, we built a computational framework to quantify the evolutionary interplay between nucleosome positions, transcription factor binding sites, and gene expression. Through our analysis, we found large conservation of global and functional chromatin organization. Chromatin organization has also substantially diverged in both global quantitative features and in functional groups of genes. We find that global usage of intrinsic anti-nucleosomal sequences such as PolyA varies over this phylogeny, and uncover that PolyG tracts also intrinsically repel nucleosomes. The specific sequences bound by GRFs are also highly plastic; we experimentally validate an evolutionary handover from Cbfl in pre-WGD yeasts to Rebi in post-WGD yeast. We also identify five mechanisms that couple chromatin organization to evolution of gene regulation, including (i) compensatory evolution of alternative modifiers associated with conserved chromatin organization; (ii) a gradual transition from constitutive to transregulated NFRs; (iii) a loss of intrinsic anti-nucleosomal sequences accompanying changes in chromatin organization and gene expression, (iv) repositioning of motifs from NFRs to nucleosome-occluded regions; and (v) the expanded use of NFRs by paralogous activator-repressor pairs. Our multi-species dataset and general computational framework provide a foundation for future studies on how chromatin structure changes over time and in evolution.
by Alexander Minchev Tsankov.
Ph.D.
Saluja, Sunil K. (Sunil Kumar) 1968. "A computational framework for the identification, cataloging, and classification of evolutionary conserved genomic DNA." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28590.
Повний текст джерелаIncludes bibliographical references (leaves 27-29).
Evolutionarily conserved genomic regions (ecores) are understudied, and yet comprise a very large percentage of the Human Genome. Highly conserved human-mouse non-coding ecores, for example, are more abundant within the Human Genome than those regions, which are currently estimated to encode for proteins. Subsets of these ecores also exhibit conservation that extends across several species. These genomic regions have managed to survive millions of years of evolution despite the fact that they do not appear to directly encode for proteins. The survival of these regions compels us to investigate their potential function. Development of a computational framework for the classification and clustering of these regions may be the first step in understanding their function. The need for a standardized framework is underscored by the explosive growth in the number of publicly available, fully sequenced genomes, and the diverse set of methodologies used to generate cross-species alignments. This project describes the design and implementation of a system for the identification, classification and cataloguing of ecores across multiple species. A key feature of this system is its ability to quickly incorporate new genomes and assemblies as they become available. Additionally, this system provides investigators with a feature rich user interface, which facilitates the retrieval of ecores based on a wide range of parameters. The system returns a dynamically annotated list of evolutionarily conserved regions, which is used as input to several classification schemes, aimed at identifying families of ecores that share similar features, including depth of evolutionary conservation, position relative to known genes, sequence similarity,
(cont.) and content of transcription factor binding sites. Families of ecores have already been retrieved by the system and clustered using this feature space, and are currently awaiting biological validation.
by Sunil K. Saluja.
S.M.
Cameron, Michael, and mcam@mc-mc net. "Efficient Homology Search for Genomic Sequence Databases." RMIT University. Computer Science and Information Technology, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070509.162443.
Повний текст джерелаMartinez, Juan Carlos. "Towards the Prediction of Mutations in Genomic Sequences." FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/987.
Повний текст джерелаSohiya, Yotsukura. "Computational Framework for the Dissection of Cancer Genomic Architecture and its Association in Different Biomarkers." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/217149.
Повний текст джерелаZaugg, Judith Barbara. "A computational study of promoter structure and transcriptional regulation in yeast on a genomic scale." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609838.
Повний текст джерелаLiang, Xiaoyu. "Computational Methods for Cis-Regulatory Module Discovery." Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1288578177.
Повний текст джерелаCopeland, Nancy Giang. "Computational analysis of high-replicate RNA-seq data in Saccharomyces cerevisiae : searching for new genomic features." Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/af2f83a4-3028-4925-9c99-81bd683067b0.
Повний текст джерелаIsa, Mohammad Nazrin. "High performance reconfigurable architectures for biological sequence alignment." Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/7721.
Повний текст джерелаHime, Paul Michael. "GENOMIC PERSPECTIVES ON AMPHIBIAN EVOLUTION ACROSS MULTIPLE PHYLOGENETIC SCALES." UKnowledge, 2017. http://uknowledge.uky.edu/biology_etds/45.
Повний текст джерелаKeane, Michael. "Computational genomic analyses of long-lived mammals to study variation in cancer resistance, longevity and life history." Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3023853/.
Повний текст джерелаCronje, Louis. "Development of new computational approaches for analysis and visualization of fluxes of genomic islands through bacterial species." Diss., University of Pretoria, 2015. http://hdl.handle.net/2263/53482.
Повний текст джерелаWendler, Jason Patrick. "Accessing complex genomic variation in Plasmodium falciparum natural infections." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:c9f1ea37-7005-4757-a869-7eba82406a26.
Повний текст джерелаKeller, Oliver [Verfasser], Stephan [Akademischer Betreuer] Waack, and Burkhard [Akademischer Betreuer] Morgenstern. "Probabilistic Methods for Computational Annotation of Genomic Sequences / Oliver Keller. Gutachter: Stephan Waack ; Burkhard Morgenstern. Betreuer: Stephan Waack." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2011. http://d-nb.info/1043029583/34.
Повний текст джерелаPALOMBO, VALENTINO. "Genomics, Transcriptomics and Computational Biology: new insights into bovine and swine breeding and genetics." Doctoral thesis, Università degli studi del Molise, 2019. http://hdl.handle.net/11695/91489.
Повний текст джерелаEnormous progress has been made in the selection of animals for specific traits using traditional quantitative genetic approaches. Nevertheless, a considerable amount of variation in phenotypes remains unexplained therefore a better knowledge of its genetic basis represents a potential additional gain for animal production. In this regard, the recently developed high-throughput (HT) technologies based on microarray and next-generation sequencing (NGS) methods are a powerful opportunity to prise open the ‘black box’ underlying complex biological processes. These technological advancements have marked the beginning of the ‘omic era’. Broadly, ‘omic’ approaches adopt a holistic view of the molecules that make up a cell, tissue or organism. They are aimed primarily at the universal detection of genes (genomics), RNA (transcriptomics), proteins (proteomics) and metabolites (metabolomics) in a specific biological sample. The basic aspect of these approaches is that a complex system can be understood more thoroughly if considered as a whole. At the same time, the large amount of data generated by these revolutionary approaches makes sense only if one is equipped with the necessary resources and tools to manage and explore it. For this reason, along with HT technical progresses, bioinformatics, often known as computational biology, is gaining immense importance. Animal breeding is gaining new momentum from this renewed scenario. Particularly it pushed to move away from traditional approaches toward systems approaches using integrative analysis of ‘omic’ data to better elucidate the genetic architecture controlling the traits of interest and ultimately use this knowledge for selection of candidates. The aim of this thesis is to (1) investigate the differences of genetic basis related to the milk fatty acids profiles in two Italian dairy cattle breeds and (2) delineate the genes and transcription regulators implicated in the control of the transition from colostrogenesis to lactogenesis in swine, using the state-of-art genomic and transcriptomic analyses. For these reasons, a genome-wide association study (GWAS) on milk fatty acids of Italian Holstein and Italian Simmental cattle breads and an RNASeq study on transcriptional profiles of swine mammary gland are conducted, respectively. In addition, (3) an in-house bioinformatics tool performing an original pathway analysis is presented. The tool, entirely built in R and named PIA (Pathways Interaction Analysis), is designed for post-genomic and transcriptomic data mining.
Khushi, Matloob. "Development of novel software tools and methods for investigating the significance of overlapping transcription factor genomic interactions." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14713.
Повний текст джерелаCui, Pin [Verfasser]. "Establishing high-throughput genomic and computational methods for the real time study of retroviral endogenization and evolution / Pin Cui." Berlin : Freie Universität Berlin, 2016. http://d-nb.info/1081935413/34.
Повний текст джерелаCROCI, OTTAVIO. "GENOMIC LANDSCAPE AND TRANSCRIPTIONAL REGULATION BY YAP AND MYC IN THE LIVER." Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/556194.
Повний текст джерелаKaymaz, Yasin. "Genomic and Transcriptomic Investigation of Endemic Burkitt Lymphoma and Epstein Barr Virus." eScholarship@UMMS, 2017. https://escholarship.umassmed.edu/gsbs_diss/914.
Повний текст джерелаKaymaz, Yasin. "Genomic and Transcriptomic Investigation of Endemic Burkitt Lymphoma and Epstein Barr Virus." eScholarship@UMMS, 2007. http://escholarship.umassmed.edu/gsbs_diss/914.
Повний текст джерелаBezuidt, K. I. O. (Keoagile Ignatius Oliver). "Development of novel computational tools to infer the distribution patterns of bacterial accessory genomic elements and the implications of microevolution towards pathogenicity." Thesis, University of Pretoria, 2013. http://hdl.handle.net/2263/40248.
Повний текст джерелаThesis (PhD)--University of Pretoria, 2013.
gm2014
Biochemistry
unrestricted
DeConti, Derrick K. "Systematic Analysis of Duplications and Deletions in the Malaria Parasite P. falciparum: A Dissertation." eScholarship@UMMS, 2015. https://escholarship.umassmed.edu/gsbs_diss/869.
Повний текст джерелаDeConti, Derrick K. "Systematic Analysis of Duplications and Deletions in the Malaria Parasite P. falciparum: A Dissertation." eScholarship@UMMS, 2004. http://escholarship.umassmed.edu/gsbs_diss/869.
Повний текст джерелаChoi, Ickwon. "Computational Modeling for Censored Time to Event Data Using Data Integration in Biomedical Research." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1307969890.
Повний текст джерела