Статті в журналах з теми "Computational Differential Privacy"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Computational Differential Privacy".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Bhavani Sankar Telaprolu. "Privacy-Preserving Federated Learning in Healthcare - A Secure AI Framework." International Journal of Scientific Research in Computer Science, Engineering and Information Technology 10, no. 3 (July 16, 2024): 703–7. https://doi.org/10.32628/cseit2410347.
Повний текст джерелаEt. al., Dr Priyank Jain,. "Differentially Private Data Release: Bias Weight Perturbation Method - A Novel Approach." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 10 (April 28, 2021): 7165–73. http://dx.doi.org/10.17762/turcomat.v12i10.5607.
Повний текст джерелаKii, Masanobu, Atsunori Ichikawa, and Takayuki Miura. "Lightweight Two-Party Secure Sampling Protocol for Differential Privacy." Proceedings on Privacy Enhancing Technologies 2025, no. 1 (January 2025): 23–36. http://dx.doi.org/10.56553/popets-2025-0003.
Повний текст джерелаMeisingseth, Fredrik, and Christian Rechberger. "SoK: Computational and Distributed Differential Privacy for MPC." Proceedings on Privacy Enhancing Technologies 2025, no. 1 (January 2025): 420–39. http://dx.doi.org/10.56553/popets-2025-0023.
Повний текст джерелаKim, Jongwook. "DistOD: A Hybrid Privacy-Preserving and Distributed Framework for Origin–Destination Matrix Computation." Electronics 13, no. 22 (November 19, 2024): 4545. http://dx.doi.org/10.3390/electronics13224545.
Повний текст джерелаFang, Juanru, and Ke Yi. "Privacy Amplification by Sampling under User-level Differential Privacy." Proceedings of the ACM on Management of Data 2, no. 1 (March 12, 2024): 1–26. http://dx.doi.org/10.1145/3639289.
Повний текст джерелаAlborch Escobar, Ferran, Sébastien Canard, Fabien Laguillaumie, and Duong Hieu Phan. "Computational Differential Privacy for Encrypted Databases Supporting Linear Queries." Proceedings on Privacy Enhancing Technologies 2024, no. 4 (October 2024): 583–604. http://dx.doi.org/10.56553/popets-2024-0131.
Повний текст джерелаLiu, Hai, Zhenqiang Wu, Yihui Zhou, Changgen Peng, Feng Tian, and Laifeng Lu. "Privacy-Preserving Monotonicity of Differential Privacy Mechanisms." Applied Sciences 8, no. 11 (October 28, 2018): 2081. http://dx.doi.org/10.3390/app8112081.
Повний текст джерелаPavan Kumar Vadrevu. "Scalable Approaches for Enhancing Privacy in Blockchain Networks: A Comprehensive Review of Differential Privacy Techniques." Journal of Information Systems Engineering and Management 10, no. 8s (January 31, 2025): 635–48. https://doi.org/10.52783/jisem.v10i8s.1119.
Повний текст джерелаHong, Yiyang, Xingwen Zhao, Hui Zhu, and Hui Li. "A Blockchain-Integrated Divided-Block Sparse Matrix Transformation Differential Privacy Data Publishing Model." Security and Communication Networks 2021 (December 7, 2021): 1–15. http://dx.doi.org/10.1155/2021/2418539.
Повний текст джерелаMeisingseth, Fredrik, Christian Rechberger, and Fabian Schmid. "Practical Two-party Computational Differential Privacy with Active Security." Proceedings on Privacy Enhancing Technologies 2025, no. 1 (January 2025): 341–60. http://dx.doi.org/10.56553/popets-2025-0019.
Повний текст джерелаKim, Jongwook, and Sae-Hong Cho. "A Differential Privacy Framework with Adjustable Efficiency–Utility Trade-Offs for Data Collection." Mathematics 13, no. 5 (February 28, 2025): 812. https://doi.org/10.3390/math13050812.
Повний текст джерелаMr. Samadhan Palkar, Prof. (Dr.) Raghav Mehra, and Prof. (Dr.) Lingaraj Hadimani. "Hyper Parameters Optimization for Gaussian Mechanism with Coyote-Badger and Kriging Model for EHR." International Research Journal on Advanced Engineering Hub (IRJAEH) 3, no. 02 (February 14, 2025): 152–55. https://doi.org/10.47392/irjaeh.2025.0020.
Повний текст джерелаNi, Guangyuan, and Jiaxin Sun. "Differential privacy protection algorithm for large data sources based on normalized information entropy Bayesian network." Journal of Physics: Conference Series 2813, no. 1 (August 1, 2024): 012012. http://dx.doi.org/10.1088/1742-6596/2813/1/012012.
Повний текст джерелаJain, Pinkal, Vikas Thada, and Deepak Motwani. "Providing Highest Privacy Preservation Scenario for Achieving Privacy in Confidential Data." International Journal of Experimental Research and Review 39, Spl Volume (May 30, 2024): 190–99. http://dx.doi.org/10.52756/ijerr.2024.v39spl.015.
Повний текст джерелаMudassar, Bakhtawar, Shahzaib Tahir, Fawad Khan, Syed Aziz Shah, Syed Ikram Shah, and Qammer Hussain Abbasi. "Privacy-Preserving Data Analytics in Internet of Medical Things." Future Internet 16, no. 11 (November 5, 2024): 407. http://dx.doi.org/10.3390/fi16110407.
Повний текст джерелаAlmadhoun, Nour, Erman Ayday, and Özgür Ulusoy. "Inference attacks against differentially private query results from genomic datasets including dependent tuples." Bioinformatics 36, Supplement_1 (July 1, 2020): i136—i145. http://dx.doi.org/10.1093/bioinformatics/btaa475.
Повний текст джерелаC.Kanmani Pappa. "Zero-Trust Cryptographic Protocols and Differential Privacy Techniques for Scalable Secure Multi-Party Computation in Big Data Analytics." Journal of Electrical Systems 20, no. 5s (April 13, 2024): 2114–23. http://dx.doi.org/10.52783/jes.2550.
Повний текст джерелаKim, Hyeong-Geon, Jinmyeong Shin, and Yoon-Ho Choi. "Human-Unrecognizable Differential Private Noised Image Generation Method." Sensors 24, no. 10 (May 16, 2024): 3166. http://dx.doi.org/10.3390/s24103166.
Повний текст джерелаAbdulbaqi, Azmi Shawkat, Adil M. Salman, and Sagar B. Tambe. "Privacy-Preserving Data Mining Techniques in Big Data: Balancing Security and Usability." SHIFRA 2023 (January 10, 2023): 1–9. http://dx.doi.org/10.70470/shifra/2023/001.
Повний текст джерелаGruska, Damas P. "Differential Privacy and Security." Fundamenta Informaticae 143, no. 1-2 (February 2, 2016): 73–87. http://dx.doi.org/10.3233/fi-2016-1304.
Повний текст джерелаXiao, Xiaokui, Guozhang Wang, and Johannes Gehrke. "Differential Privacy via Wavelet Transforms." IEEE Transactions on Knowledge and Data Engineering 23, no. 8 (August 2011): 1200–1214. http://dx.doi.org/10.1109/tkde.2010.247.
Повний текст джерелаZhang, Guowei, Shengjian Zhang, Zhiyi Man, Chenlin Cui, and Wenli Hu. "Location Privacy Protection in Edge Computing: Co-Design of Differential Privacy and Offloading Mode." Electronics 13, no. 13 (July 7, 2024): 2668. http://dx.doi.org/10.3390/electronics13132668.
Повний текст джерелаWang, Lin, Xingang Xu, Xuhui Zhao, Baozhu Li, Ruijuan Zheng, and Qingtao Wu. "A randomized block policy gradient algorithm with differential privacy in Content Centric Networks." International Journal of Distributed Sensor Networks 17, no. 12 (December 2021): 155014772110599. http://dx.doi.org/10.1177/15501477211059934.
Повний текст джерелаDu, Yuntao, Yujia Hu, Zhikun Zhang, Ziquan Fang, Lu Chen, Baihua Zheng, and Yunjun Gao. "LDPTrace: Locally Differentially Private Trajectory Synthesis." Proceedings of the VLDB Endowment 16, no. 8 (April 2023): 1897–909. http://dx.doi.org/10.14778/3594512.3594520.
Повний текст джерелаLu, Kangjie. "Noise Addition Strategies for Differential Privacy in Stochastic Gradient Descent." Transactions on Computer Science and Intelligent Systems Research 5 (August 12, 2024): 960–67. http://dx.doi.org/10.62051/f2kew975.
Повний текст джерелаAdeyinka Ogunbajo, Itunu Taiwo, Adefemi Quddus Abidola, Oluwadamilola Fisayo Adediran, and Israel Agbo-Adediran. "Privacy preserving AI models for decentralized data management in federated information systems." GSC Advanced Research and Reviews 22, no. 2 (February 28, 2025): 104–12. https://doi.org/10.30574/gscarr.2025.22.2.0043.
Повний текст джерелаShin, Hyejin, Sungwook Kim, Junbum Shin, and Xiaokui Xiao. "Privacy Enhanced Matrix Factorization for Recommendation with Local Differential Privacy." IEEE Transactions on Knowledge and Data Engineering 30, no. 9 (September 1, 2018): 1770–82. http://dx.doi.org/10.1109/tkde.2018.2805356.
Повний текст джерелаLiu, Fang. "Generalized Gaussian Mechanism for Differential Privacy." IEEE Transactions on Knowledge and Data Engineering 31, no. 4 (April 1, 2019): 747–56. http://dx.doi.org/10.1109/tkde.2018.2845388.
Повний текст джерелаLaeuchli, Jesse, Yunior Ramírez-Cruz, and Rolando Trujillo-Rasua. "Analysis of centrality measures under differential privacy models." Applied Mathematics and Computation 412 (January 2022): 126546. http://dx.doi.org/10.1016/j.amc.2021.126546.
Повний текст джерелаHan, Yuchen. "Research on machine learning technology with privacy protection strategy in recommendation field." Applied and Computational Engineering 43, no. 1 (February 26, 2024): 294–99. http://dx.doi.org/10.54254/2755-2721/43/20230848.
Повний текст джерелаMunn, Luke, Tsvetelina Hristova, and Liam Magee. "Clouded data: Privacy and the promise of encryption." Big Data & Society 6, no. 1 (January 2019): 205395171984878. http://dx.doi.org/10.1177/2053951719848781.
Повний текст джерелаZhao, Jianzhe, Mengbo Yang, Ronglin Zhang, Wuganjing Song, Jiali Zheng, Jingran Feng, and Stan Matwin. "Privacy-Enhanced Federated Learning: A Restrictively Self-Sampled and Data-Perturbed Local Differential Privacy Method." Electronics 11, no. 23 (December 2, 2022): 4007. http://dx.doi.org/10.3390/electronics11234007.
Повний текст джерелаXu, Shasha, and Xiufang Yin. "Recommendation System for Privacy-Preserving Education Technologies." Computational Intelligence and Neuroscience 2022 (April 16, 2022): 1–8. http://dx.doi.org/10.1155/2022/3502992.
Повний текст джерелаVyas, Bhuman. "PRIVACY –PRESERVING DATA VAULTS: SAFE GUARDING PILL INFORMATION IN THE DIGITAL AGE." International Journal of Innovative Research in Advanced Engineering 06, no. 10 (October 30, 2019): 616–23. http://dx.doi.org/10.26562/ijirae.2019.v0610.04.
Повний текст джерелаYang, Zhijie, Xiaolong Yan, Guoguang Chen, Mingli Niu, and Xiaoli Tian. "Towards Federated Robust Approximation of Nonlinear Systems with Differential Privacy Guarantee." Electronics 14, no. 5 (February 26, 2025): 937. https://doi.org/10.3390/electronics14050937.
Повний текст джерелаKim, Jong-Wook. "Differential Privacy-Based Data Collection for Improving Data Utility and Reducing Computational Overhead." Transactions of The Korean Institute of Electrical Engineers 74, no. 1 (January 31, 2025): 102–8. https://doi.org/10.5370/kiee.2025.74.1.102.
Повний текст джерелаParvandeh, Saeid, Hung-Wen Yeh, Martin P. Paulus, and Brett A. McKinney. "Consensus features nested cross-validation." Bioinformatics 36, no. 10 (January 27, 2020): 3093–98. http://dx.doi.org/10.1093/bioinformatics/btaa046.
Повний текст джерелаWang, Ji, Weidong Bao, Lichao Sun, Xiaomin Zhu, Bokai Cao, and Philip S. Yu. "Private Model Compression via Knowledge Distillation." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1190–97. http://dx.doi.org/10.1609/aaai.v33i01.33011190.
Повний текст джерелаÖzdel, Süleyman, Efe Bozkir, and Enkelejda Kasneci. "Privacy-preserving Scanpath Comparison for Pervasive Eye Tracking." Proceedings of the ACM on Human-Computer Interaction 8, ETRA (May 20, 2024): 1–28. http://dx.doi.org/10.1145/3655605.
Повний текст джерелаMin, Minghui, Zeqian Liu, Jincheng Duan, Peng Zhang, and Shiyin Li. "Safe-Learning-Based Location-Privacy-Preserved Task Offloading in Mobile Edge Computing." Electronics 13, no. 1 (December 25, 2023): 89. http://dx.doi.org/10.3390/electronics13010089.
Повний текст джерелаChen, Xiang, Dun Zhang, Zhan-Qi Cui, Qing Gu, and Xiao-Lin Ju. "DP-Share: Privacy-Preserving Software Defect Prediction Model Sharing Through Differential Privacy." Journal of Computer Science and Technology 34, no. 5 (September 2019): 1020–38. http://dx.doi.org/10.1007/s11390-019-1958-0.
Повний текст джерелаDong, Yipeng, Wei Luo, Xiangyang Wang, Lei Zhang, Lin Xu, Zehao Zhou, and Lulu Wang. "Multi-Task Federated Split Learning Across Multi-Modal Data with Privacy Preservation." Sensors 25, no. 1 (January 3, 2025): 233. https://doi.org/10.3390/s25010233.
Повний текст джерелаElhattab, Fatima, Sara Bouchenak, and Cédric Boscher. "PASTEL." Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 7, no. 4 (December 19, 2023): 1–29. http://dx.doi.org/10.1145/3633808.
Повний текст джерелаÖksüz, Abdullah Çağlar, Erman Ayday, and Uğur Güdükbay. "Privacy-preserving and robust watermarking on sequential genome data using belief propagation and local differential privacy." Bioinformatics 37, no. 17 (February 25, 2021): 2668–74. http://dx.doi.org/10.1093/bioinformatics/btab128.
Повний текст джерелаLuo, Yuan, and Nicholas R. Jennings. "A Differential Privacy Mechanism that Accounts for Network Effects for Crowdsourcing Systems." Journal of Artificial Intelligence Research 69 (December 3, 2020): 1127–64. http://dx.doi.org/10.1613/jair.1.12158.
Повний текст джерелаRahman, Ashequr, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo ., and Md Risalat Hossain Ontor. "PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT." Frontline Marketing, Management and Economics Journal 04, no. 12 (December 1, 2024): 84–106. https://doi.org/10.37547/marketing-fmmej-04-12-07.
Повний текст джерелаRahman, Ashequr, Asif Iqbal, Emon Ahmed, Tanvirahmedshuvo ., and Md Risalat Hossain Ontor. "PRIVACY-PRESERVING MACHINE LEARNING: TECHNIQUES, CHALLENGES, AND FUTURE DIRECTIONS IN SAFEGUARDING PERSONAL DATA MANAGEMENT." International journal of business and management sciences 04, no. 12 (December 15, 2024): 18–32. https://doi.org/10.55640/ijbms-04-12-03.
Повний текст джерелаZhang, Lei, and Lina Ge. "A clustering-based differential privacy protection algorithm for weighted social networks." Mathematical Biosciences and Engineering 21, no. 3 (2024): 3755–33. http://dx.doi.org/10.3934/mbe.2024166.
Повний текст джерелаYeow, Sin-Qian, and Kok-Why Ng. "Neural Network Based Data Encryption: A Comparison Study among DES, AES, and HE Techniques." JOIV : International Journal on Informatics Visualization 7, no. 3-2 (November 30, 2023): 2086. http://dx.doi.org/10.30630/joiv.7.3-2.2336.
Повний текст джерела