Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Compton Inverse.

Статті в журналах з теми "Compton Inverse"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Compton Inverse".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Suortti, Pekka. "Inverse Compton for Compton." Physica Scripta 91, no. 4 (March 7, 2016): 043002. http://dx.doi.org/10.1088/0031-8949/91/4/043002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ghisellini, G., I. M. George, A. C. Fabian, and C. Done. "Anisotropic inverse Compton emission." Monthly Notices of the Royal Astronomical Society 248, no. 1 (January 1991): 14–19. http://dx.doi.org/10.1093/mnras/248.1.14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Padmanabhan, T. "Inverse Compton scattering – revisited." Journal of Astrophysics and Astronomy 18, no. 1 (June 1997): 87–90. http://dx.doi.org/10.1007/bf02714856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Curatolo, C., L. Lanz, and V. Petrillo. "Inverse Compton Cross Section Revisited." Physics Procedia 52 (2014): 46–51. http://dx.doi.org/10.1016/j.phpro.2014.06.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Graves, W. S., W. Brown, F. X. Kaertner, and D. E. Moncton. "MIT inverse Compton source concept." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, no. 1 (September 2009): S103—S105. http://dx.doi.org/10.1016/j.nima.2009.05.042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bornikov, K. A., I. P. Volobuev, and Yu V. Popov. "Notes on inverse Compton scattering." Seriya 3: Fizika, Astronomiya, no. 4_2023 (September 20, 2023): 2340201–1. http://dx.doi.org/10.55959/msu0579-9392.78.2340201.

Повний текст джерела
Анотація:
The paper considers some kinematic conditions for the inverse Compton scattering of photons by relativistic electrons and the polarizations of colliding particles, which affect the value of the differential cross section of the process. A significant influence of the electron and photon helicity on the value of the cross section was found. In the ultrarelativistic case, a surprising effect of an almost twofold increase in the cross section of scattering in the direction of the initial electron momentum was also discovered, when the initial photon momentum is perpendicular to that of the initial electron.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bornikov, K. A., I. P. Volobuev, and Yu V. Popov. "Notes on Inverse Compton Scattering." Moscow University Physics Bulletin 78, no. 4 (August 2023): 453–59. http://dx.doi.org/10.3103/s0027134923040045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Xin, Xinze Li, Shangqi Zha, and Lingyin Zhang. "Applications of Non-linear Inverse Compton Scattering based on the Laser Plasma Accelerators." Highlights in Science, Engineering and Technology 38 (March 16, 2023): 437–43. http://dx.doi.org/10.54097/hset.v38i.5856.

Повний текст джерела
Анотація:
The generation of energetic photons in the context of inverse Compton scattering has attracted a great lot of interest from many contemporary scientific fields. Radiobiology, materials physics, and medicine are some of the current fields where inverse Compton scattering is used. In this study, the applications of nonlinear inverse Compton scattering will be demonstrated and illustrated based on laser plasma interaction. This paper introduces and highlights the current advancement in this area, which is a crucial component of quantum physics, as well as the potential uses in the future depending on additional study. Thorough explanations are demonstrated and talked about the uses of inverse Compton scattering. To highlight our thoughts on present developments and potential future advancements in the field, we have extended and expanded on the theme using simulations and experimental data. These results pave a path to generate and shed light on guiding further state-of-art proposals for High flux X/gamma ray generation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wei Jianmeng, 魏见萌, 夏长权 Xia Changquan, 冯珂 Feng Ke, 张虹 Zhang Hong, 姜海 Jiang Hai, 葛彦杰 Ge Yanjie, 王文涛 Wang Wentao, 冷雨欣 Leng Yuxin та 李儒新 Li Ruxin. "全光逆康普顿散射源". Acta Optica Sinica 44, № 4 (2024): 0400004. http://dx.doi.org/10.3788/aos231602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bulyak, Eugene, and Junji Urakawa. "Spectral properties of Compton inverse radiation: Application of Compton beams." Journal of Physics: Conference Series 517 (May 30, 2014): 012001. http://dx.doi.org/10.1088/1742-6596/517/1/012001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Zhang, Bing, та Alice K. Harding. "A full polar cap cascade model: pulsar γ-ray and X-ray luminosities". International Astronomical Union Colloquium 177 (2000): 481–82. http://dx.doi.org/10.1017/s025292110006036x.

Повний текст джерела
Анотація:
AbstractWe propose a full polar cap cascade model which includes the curvature and inverse Compton emission of the primary particles, and both synchrotron radiation and inverse Compton of the higher generation pairs. Such a full cascade model can reproduce both theLγ∝ (Lsd)1/2and theLx~ 10−3Lsddependences observed from the known spin-powered pulsars.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Lieu, Richard, and W. Ian Axford. "Synchrotron Radiation: an Inverse Compton Effect." Astrophysical Journal 416 (October 1993): 700. http://dx.doi.org/10.1086/173270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Qiao, G. J. "Inverse Compton Scattering in pulsar physics." International Astronomical Union Colloquium 160 (1996): 159–62. http://dx.doi.org/10.1017/s0252921100041336.

Повний текст джерела
Анотація:
AbstractInverse Compton Scattering (ICS) is a very important process not only in inner gap physics, but also for radio emission. ICS of high energy particles with thermal photons is the dominant and a very efficient mechanism of the particle energy loss above the neutron star surface, and is an important process in causing gap breakdown. The pulsar distribution in theP−Pdiagram and the observed mode changing phenomenon of some pulsars can be expained by the sparking conditions due to ICS. ICS of the secondary particles with the low frequency wave from the inner gap sparking can be responsible for radio emission. In this ICS model, many observational features of pulsar radio emission can be explained, such as: one core and two conal emission components, their different emission altitudes and relative time delay effects; spectral behavior of pulse profiles; the behavior of the linear polarization and position angle.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Boucher, S., P. Frigola, A. Murokh, M. Ruelas, I. Jovanovic, J. B. Rosenzweig, and G. Travish. "Inverse compton scattering gamma ray source." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, no. 1 (September 2009): S54—S56. http://dx.doi.org/10.1016/j.nima.2009.05.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Breuhaus, Mischa, Joachim Hahn, Carlo Romoli, Brian Reville, Gwenael Giacinti, James Anthony Hinton, and Richard Tuffs. "Ultra-high energy inverse Compton emission from Galactic electron accelerators." EPJ Web of Conferences 280 (2023): 02001. http://dx.doi.org/10.1051/epjconf/202328002001.

Повний текст джерела
Анотація:
It is generally held that >100 TeV emission from astrophysical objects unambiguously demonstrates the presence of PeV protons or nuclei, due to the unavoidable Klein–Nishina suppression of inverse Compton emission from electrons. However, in the presence of inverse Compton dominated cooling, hard high-energy electron spectra are possible. We show that the environmental requirements for such spectra can naturally be met in spiral arms, and in particular in regions of enhanced star formation activity, the natural locations for the most promising electron accelerators: powerful young pulsars. Leptonic scenarios are applied to gamma-ray sources recently detected by the High-Altitude Water Cherenkov Observatory (HAWC) and the Large High Altitude Air Shower Observatory (LHAASO). We show that these sources can indeed be explained by inverse Compton emission.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Schaap, B. H., T. D. C. de Vos, P. W. Smorenburg, and O. J. Luiten. "Photon yield of superradiant inverse Compton scattering from microbunched electrons." New Journal of Physics 24, no. 3 (March 1, 2022): 033040. http://dx.doi.org/10.1088/1367-2630/ac59eb.

Повний текст джерела
Анотація:
Abstract Compact x-ray sources offering high-brightness radiation for advanced imaging applications are highly desired. We investigate, analytically and numerically, the photon yield of superradiant inverse Compton scattering from microbunched electrons in the linear Thomson regime, using a classical electrodynamics approach. We show that for low electron beam energy, which is generic to inverse Compton sources, the single electron radiation distribution does not match well to collective amplification pattern induced by a density modulated electron beam. Consequently, for head-on scattering from a visible laser, the superradiant yield is limited by the transverse size of typical electron bunches driving Compton sources. However, by simultaneously increasing the electron beam energy and introducing an oblique scattering geometry, the superradiant yield can be increased by orders of magnitude.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Howard, W. M., and E. P. Liang. "Inverse Compton Model of Gamma Ray Burst Spectra." Symposium - International Astronomical Union 125 (1987): 547. http://dx.doi.org/10.1017/s0074180900161327.

Повний текст джерела
Анотація:
We study gamma ray spectra produced by the inverse Compton upscattering of soft photons by relativistic electrons with a one dimensional momentum distribution, which is relevant to gamma ray burst if the source magnetic field is strong enough so that the synchrotron cooling time of transverse energy becomes much shorter than isotropization time via couloub or Compton collisions. We find that for high electron longitudinal temperatures the output power is strongly beamed in the momentum direction and the spectrum softens rapidly with increasing view angle from the momentum direction.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Luo, Qinghuan. "The Effect of Radiation Drag on Relativistic Bulk Flows in Active Galactic Nuclei." Publications of the Astronomical Society of Australia 19, no. 1 (2002): 122–24. http://dx.doi.org/10.1071/as01112.

Повний текст джерела
Анотація:
AbstractThe effect of radiation drag on relativistic bulk flows is re-examined. Highly relativistic bulk flows in the nuclear region are subject to Compton drag, i.e. radiation deceleration as a result of inverse Compton scattering of ambient soft photon fields from emission from the accretion disk, broad line region, or dusty torus. Possible observational consequences of X-/γ-ray emission produced from Compton drag are specifically discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Ball, Lewis, and J. G. Kirk. "Probing pulsar winds using inverse Compton scattering." International Astronomical Union Colloquium 177 (2000): 527–28. http://dx.doi.org/10.1017/s0252921100060504.

Повний текст джерела
Анотація:
AbstractWe investigate the modifications to the calculations of inverse Compton scattering by the wind of pulsar B1259–63 due to the inclusion of a realistic spectrum for the target photons from the pulsar’s Be-star companion.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Potter, William J., and Garret Cotter. "Synchrotron and inverse-Compton emission from blazar jets – III. Compton-dominant blazars." Monthly Notices of the Royal Astronomical Society 431, no. 2 (March 14, 2013): 1840–52. http://dx.doi.org/10.1093/mnras/stt300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kawashima, Tomohisa, Ken Ohsuga та Hiroyuki R. Takahashi. "RAIKOU (来光): A General Relativistic, Multiwavelength Radiative Transfer Code". Astrophysical Journal 949, № 2 (1 червня 2023): 101. http://dx.doi.org/10.3847/1538-4357/acc94a.

Повний текст джерела
Анотація:
Abstract We present a general relativistic radiative transfer code RAIKOU (来光) for multiwavlength studies of spectra and images including the black hole shadows around Kerr black holes. Important radiative processes in hot plasmas around black holes, i.e., (cyclo-)synchrotron, bremsstrahlung emission/absorption, and Compton/inverse-Compton scattering, are incorporated. The Maxwell–Jüttner and single/broken power-law electron distribution functions are implemented to calculate the radiative transfer via both thermal and nonthermal electrons. Two calculation algorithms are implemented for studies of the images and broadband spectra. An observer-to-emitter ray-tracing algorithm, which inversely solves the radiative transfer equation from the observer screen to emitting plasmas, is suitable for an efficient calculations of the images, e.g., the black hole shadows observed by the Event Horizon Telescope, and spectra without Compton effects. On the other hand, an emitter-to-observer Monte Carlo algorithm, by which photons are transported with a Monte Carlo method including the effects of Compton/inverse-Compton scatterings, enables us to compute multiwavelength spectra, with their energy bands broadly ranging from radio to very high energy gamma-ray. The X-ray black hole shadows, which are formed via synchrotron emission and inverse-Compton scattering processes and will be observed in the future X-ray interferometry missions, can be also computed with this algorithm. The code is generally applicable to accretion flows around Kerr black holes with relativistic jets and winds/coronae with various mass accretion rates (i.e., radiatively inefficient accretion flows, super-Eddington accretion flows, and others). We demonstrate an application of the code to a radiatively inefficient accretion flow onto a supermassive black hole.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Zhang, H., I. M. Christie, M. Petropoulou, J. M. Rueda-Becerril, and D. Giannios. "Inverse Compton signatures of gamma-ray burst afterglows." Monthly Notices of the Royal Astronomical Society 496, no. 1 (June 5, 2020): 974–86. http://dx.doi.org/10.1093/mnras/staa1583.

Повний текст джерела
Анотація:
ABSTRACT The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; ≳GeV) remains uncertain. The recent detection of sub-TeV emission from GRB 190114C by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) raises further debate on what powers the very high energy (VHE; ≳300 GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multiwavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB 190114C, we find that its afterglow emission in the Fermi-Large Area Telescope (LAT) band is synchrotron dominated. The late-time Fermi-LAT measurement (i.e. t ∼ 104 s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. ${\lesssim} 3\times 10^{-9}\, {\rm erg\, cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Gaur, Haritma, Prashanth Mohan, Alicja Wierzcholska, and Minfeng Gu. "Signature of inverse Compton emission from blazars." Monthly Notices of the Royal Astronomical Society 473, no. 3 (October 2, 2017): 3638–60. http://dx.doi.org/10.1093/mnras/stx2553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

FUJIWARA, MAMORU. "NUCLEAR PHOTON SCIENCE WITH INVERSE-COMPTON SCATTERING." International Journal of Modern Physics E 18, no. 10 (November 2009): 1970–75. http://dx.doi.org/10.1142/s021830130901410x.

Повний текст джерела
Анотація:
Recent developments of the synchroton radiation facilities and intense lasers are now guiding us to a new research frontier with probes of a high energy GeV photon beam and an intense and short pulse MeV γ-ray beam. New directions of the science developments with photo-nuclear reactions are discussed. The inverse Compton γ -ray has two good advantages for searching for a microscopic quantum world; they are 1) good emmitance and 2) high linear and circular polarizations. With these advantages, photon beams in the energy range from MeV to GeV are used for studying hadron structure, nuclear structure, astrophysics, materials science, as well as for applying medical science.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Moskalenko, Igor V., and Andrew W. Strong. "Anisotropic Inverse Compton Scattering in the Galaxy." Astrophysical Journal 528, no. 1 (January 2000): 357–67. http://dx.doi.org/10.1086/308138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Ball, Lewis, and J. G. Kirk. "Probing pulsar winds using inverse Compton scattering." Astroparticle Physics 12, no. 4 (January 2000): 335–49. http://dx.doi.org/10.1016/s0927-6505(99)00112-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Molnar, S. M., and M. Birkinshaw. "Inverse Compton Scattering in Mildly Relativistic Plasma." Astrophysical Journal 523, no. 1 (September 20, 1999): 78–86. http://dx.doi.org/10.1086/307718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Rollason, A. J., X. Fang, and D. E. Dugdale. "Multipass optical cavity for inverse Compton interactions." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 526, no. 3 (July 2004): 560–71. http://dx.doi.org/10.1016/j.nima.2004.02.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Petrillo, Vittoria, Illya Drebot, Marcel Ruijter, Sanae Samsam, Alberto Bacci, Camilla Curatolo, Michele Opromolla, Marcello Rossetti Conti, Andrea Renato Rossi, and Luca Serafini. "State of the Art of High-Flux Compton/Thomson X-rays Sources." Applied Sciences 13, no. 2 (January 5, 2023): 752. http://dx.doi.org/10.3390/app13020752.

Повний текст джерела
Анотація:
In this paper, we present the generalities of the Compton interaction process; we analyse the different paradigms of Inverse Compton Sources, implemented or in commissioning phase at various facilities, or proposed as future projects. We present an overview of the state of the art, with a discussion of the most demanding challenges.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

VAN SOELEN, B., and P. J. MEINTJES. "ANISOTROPIC SCATTERING FROM THE CIRCUMSTELLAR DISC IN PSR B1259-63." International Journal of Modern Physics: Conference Series 08 (January 2012): 400–403. http://dx.doi.org/10.1142/s2010194512004990.

Повний текст джерела
Анотація:
The gamma-ray binary system PSR B1259-63 has recently passed through periastron and has been of particular interest as it was observed by Fermi near the December 2010 periastron passage. The system has been detected at very high energies with H.E.S.S. The most probable production mechanism is inverse Compton scattering between target photons from the optical companion and disc, and relativistic electrons in the pulsar wind. We present results of a full anisotropic inverse Compton scattering model of the system, taking into account the IR excess from the extended circumstellar disc around the optical companion.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Sobacchi, Emanuele, Joonas Nättilä, and Lorenzo Sironi. "A fully kinetic model for orphan gamma-ray flares in blazars." Monthly Notices of the Royal Astronomical Society 503, no. 1 (February 26, 2021): 688–93. http://dx.doi.org/10.1093/mnras/stab562.

Повний текст джерела
Анотація:
ABSTRACT Blazars emit a highly variable non-thermal spectrum. It is usually assumed that the same non-thermal electrons are responsible for the IR-optical-UV emission (via synchrotron) and the gamma-ray emission (via inverse Compton). Hence, the light curves in the two bands should be correlated. Orphan gamma-ray flares (i.e. lacking a luminous low-frequency counterpart) challenge our theoretical understanding of blazars. By means of large-scale two-dimensional radiative particle-in-cell simulations, we show that orphan gamma-ray flares may be a self-consistent by-product of particle energization in turbulent magnetically dominated pair plasmas. The energized particles produce the gamma-ray flare by inverse Compton scattering an external radiation field, while the synchrotron luminosity is heavily suppressed since the particles are accelerated nearly along the direction of the local magnetic field. The ratio of inverse Compton to synchrotron luminosity is sensitive to the initial strength of turbulent fluctuations (a larger degree of turbulent fluctuations weakens the anisotropy of the energized particles, thus increasing the synchrotron luminosity). Our results show that the anisotropy of the non-thermal particle population is key to modelling the blazar emission.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ball, Lewis, and Jennifer Dodd. "Shock Geometry and Inverse Compton Emission from the Wind of a Binary Pulsar." Publications of the Astronomical Society of Australia 18, no. 1 (2001): 98–104. http://dx.doi.org/10.1071/as01008.

Повний текст джерела
Анотація:
AbstractPSR B1259 – 63 is a 47 ms radio pulsar with a high spin-down luminosity which is in a close, highly eccentric 3·5 yr orbit about a bright stellar companion. The binary system may be a detectable source of hard ã γ-rays produced by inverse Compton scattering of photons from the B2e star SS2883 by electrons and positrons in the pulsar wind. The star provides an enormous density of optical photons in the vicinity of the pulsar, particularly at epochs near periastron. We calculate the emission from the unshocked region of the pulsar wind, assuming that it terminates at a shock where it attains pressure balance with the companion’s wind. The spectra and light curves for the inverse Compton emission from the shock-terminated wind are compared with those for an unterminated wind. If the pulsar’s wind is weaker than that from the companion star, the termination of the wind decreases the inverse Compton flux, particularly near periastron. The termination shock geometry has the effect of decreasing the asymmetry of the γ-ray light curve around periastron, which arises because of the asymmetrical variation of the scattering angle.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Günther, Benedikt, Martin Dierolf, Klaus Achterhold, and Franz Pfeiffer. "Device for source position stabilization and beam parameter monitoring at inverse Compton X-ray sources." Journal of Synchrotron Radiation 26, no. 5 (August 7, 2019): 1546–53. http://dx.doi.org/10.1107/s1600577519006453.

Повний текст джерела
Анотація:
Compact X-ray sources based on inverse Compton scattering provide brilliant and partially coherent X-rays in a laboratory environment. The cross section for inverse Compton scattering is very small, requiring high-power laser systems as well as small laser and electron beam sizes at the interaction point to generate sufficient flux. Therefore, these systems are very sensitive to distortions which change the overlap between the two beams. In order to monitor X-ray source position, size and flux in parallel to experiments, the beam-position monitor proposed here comprises a small knife edge whose image is acquired with an X-ray camera specifically designed to intercept only a very small fraction of the X-ray beam. Based on the source position drift recorded with the monitor, a closed-loop feedback stabilizes the X-ray source position by adjusting the laser beam trajectory. A decrease of long-term source position drifts by more than one order of magnitude is demonstrated with this device. Consequently, such a closed-loop feedback system which enables stabilization of source position drifts and flux of inverse Compton sources in parallel to experiments has a significant impact on the performance of these sources.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Tsakiris, D., J. P. Leahy, R. G. Strom, and C. R. Barber. "Inverse Compton X-Rays from Giant Radio Galaxies." Symposium - International Astronomical Union 175 (1996): 256–58. http://dx.doi.org/10.1017/s0074180900080724.

Повний текст джерела
Анотація:
The X-ray radiation from inverse Compton scattering of CMB photons by the relativistic electrons in ‘radio’ lobes provides a direct measure of their column density at a known energy, unlike synchrotron radiation which also depends on the unknown magnetic field. Thus by combining inverse Compton and radio data we can separately determine the particle energies and field strengths, rather than having to rely on uncertain estimates like minimum energy. The predicted flux is and strong IC signal requires high radio flux and low magnetic field, properties of giant radio galaxies. On the other hand the minimum detectable count rate, Imin, increases with the target size due to the larger background contribution. As a result the detectability of IC X-rays for ROSAT PSPC B measurements is roughly, assuming a spectral index of 0.75. After making detailed prediction of SIC for a number of objects of the 3CR sample, the best candidates were 3C 236, 3C 326, and 4C 73.08.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Jagan, Sitha K., S. Sahayanathan, Frank M. Rieger, and C. D. Ravikumar. "Convex X-ray spectra of PKS 2155-304 and constraints on the minimum electron energy." Monthly Notices of the Royal Astronomical Society 506, no. 3 (July 14, 2021): 3996–4006. http://dx.doi.org/10.1093/mnras/stab1993.

Повний текст джерела
Анотація:
ABSTRACT The convex (concave upward) high-energy X-ray spectra of the blazar PKS 2155-304, observed by XMM-Newton, is interpreted as the signature of subdominant inverse-Compton emission. The spectra can be well fitted by a superposition of two power-law contributions which imitate the emission due to synchrotron and inverse-Compton processes. The methodology adopted enables us to constrain the photon energy down to a level where inverse-Compton emission begins to contribute. We show that this information supplemented with knowledge of the jet Doppler factor and magnetic field strength can be used to constrain the low-energy cut-off γminmec2 of the radiating electron distribution and the kinetic power Pj of the jet. We deduce these quantities through a statistical fitting of the broad-band spectral energy distribution of PKS 2155-304 assuming synchrotron and synchrotron self-Compton emission mechanisms. Our results favour a minimum Lorentz factor for the non-thermal electron distribution of γmin ≳ 60, with a preference for a value around γmin ≃ 330. The required kinetic jet power is of the order of Pj ∼ 3 × 1045 erg s−1 in case of a heavy, electron–proton dominated jet, and could be up to an order of magnitude less in case of a light, electron–positron dominated jet. When put in context, our best-fitting parameters support the X-ray emitting part of blazar jets to be dominated by an electron–proton rather than an electron–positron composition.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Bodnárová, R. "INVESTIGATION OF THE PHYSICAL ORIGIN OF MULTIWAVELENGTH VARIABILITY IN ACCRETING COMPACT OBJECTS." Open European Journal on Variable stars, no. 242 (2023): 1–8. http://dx.doi.org/10.5817/oejv2023-0242.

Повний текст джерела
Анотація:
This paper deals with the effects of physical processes on multiwavelength variability of intermediate polars. Intermediate polars are binary systems consisting of a white dwarf that accretes matter from a red dwarf. This causes variability in the system’s observed brightness and spectra, making intermediate polars variable stars. The process of inverse Compton scattering was simulated for changing parametres of the system. For the simulation, Monte Carlo methods were used. We found that in the hot post-shock region, photon energies are increased by inverse Compton scattering. The effects vary with changing mass accretion rate, where for higher mass accretion rate, photons are upscattered to higher energies.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

SCHOPPER, RÜDIGER, HARTMUT RUHL, THOMAS A. KUNZL, and HARALD LESCH. "Kinetic simulation of the coherent radio emission from pulsars." Laser and Particle Beams 21, no. 1 (January 2003): 109–13. http://dx.doi.org/10.1017/s0263034603211204.

Повний текст джерела
Анотація:
On hand of 3D PIC simulations we show that in a strongly magnetized plasma a relativistic electron beam can be forced to emit highly coherent radio emission by self-induced nonlinear density fluctuations. Such slowly moving nonlinear structures oscillate with the local plasma frequency at which the relativistic electrons are scattered. Beam electrons dissipate a significant amount of their kinetic energy by inverse Compton radiation at a frequency of about γ2ωpe. Since the beam is sliced into pancake structures which experience the same electric field the inverse Compton scattering is coherent. Such a process is a very promising candidate for the coherent radio emission of pulsars.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Readhead, Anthony C. S. "Equipartition brightness temperature and the inverse Compton catastrophe." Astrophysical Journal 426 (May 1994): 51. http://dx.doi.org/10.1086/174038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Bourne, Martin A., and Sergei Nayakshin. "Inverse Compton X-ray signature of AGN feedback." Monthly Notices of the Royal Astronomical Society 436, no. 3 (October 4, 2013): 2346–51. http://dx.doi.org/10.1093/mnras/stt1739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Giller, M., J. Wdowczyk, A. W. Wolfendale, and L. Zhang. "Galactic gamma rays from the inverse Compton process." Journal of Physics G: Nuclear and Particle Physics 21, no. 3 (March 1, 1995): 487–500. http://dx.doi.org/10.1088/0954-3899/21/3/021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Björnsson, C. I. "MULTIPLE INVERSE COMPTON SCATTERINGS AND THE BLAZAR SEQUENCE." Astrophysical Journal 723, no. 1 (October 11, 2010): 417–24. http://dx.doi.org/10.1088/0004-637x/723/1/417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lewin, W. H. G., D. P. Barber, and P. Chen. "Unification of Synchrotron Radiation and Inverse Compton Scattering." Science 267, no. 5205 (March 24, 1995): 1779–80. http://dx.doi.org/10.1126/science.267.5205.1779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Hardcastle, M. J. "An optical inverse-Compton hotspot in 3C 196?" Astronomy & Astrophysics 373, no. 3 (July 2001): 881–85. http://dx.doi.org/10.1051/0004-6361:20010687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Cirelli, Marco, and Paolo Panci. "Inverse Compton constraints on the Dark Matter excesses." Nuclear Physics B 821, no. 1-2 (November 2009): 399–416. http://dx.doi.org/10.1016/j.nuclphysb.2009.06.034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Babusci, D., L. Casano, A. D'Angelo, P. Picozza, C. Schaerf, and B. Girolami. "Polarized gamma-ray beams by inverse compton scattering." Progress in Particle and Nuclear Physics 24 (January 1990): 119–39. http://dx.doi.org/10.1016/0146-6410(90)90011-r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Terzić, B., G. A. Krafft, V. Petrillo, I. Drebot, and M. Ruijter. "Improving inverse Compton sources by avoiding non-linearities." EPL (Europhysics Letters) 129, no. 6 (April 23, 2020): 62001. http://dx.doi.org/10.1209/0295-5075/129/62001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Yamazaki, Ryo, and Abraham Loeb. "Optical inverse-Compton emission from clusters of galaxies." Monthly Notices of the Royal Astronomical Society 453, no. 2 (August 27, 2015): 1990–98. http://dx.doi.org/10.1093/mnras/stv1757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Lyutikov, M. "Inverse Compton model of pulsar high-energy emission." Monthly Notices of the Royal Astronomical Society 431, no. 3 (March 20, 2013): 2580–89. http://dx.doi.org/10.1093/mnras/stt351.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kunert-Bajraszewska, M., K. Katarzyński, A. Janiuk, and M. Cegłowski. "Jet-linked X-ray emission in radio-loud broad absorption line (BAL) quasars." Proceedings of the International Astronomical Union 8, S290 (August 2012): 243–44. http://dx.doi.org/10.1017/s1743921312019825.

Повний текст джерела
Анотація:
AbstractWe have applied theoretical models to explain spectral energy distribution (SED) of three radio-loud broad absorption line (BAL) quasars: an extended hybrid object PG 1004+130 and two compact sources 1045+352 and 3C270.1. We calculate the emission from the very inner part of the sources which accounts for more than 90% of the observed X-ray radiation. In our analysis we consider a scenario in which the observed X-ray emission comes from the inverse-Compton (IC) scattering inside a jet and from the accretion disk corona. The compact objects 1045+352 and 3C270.1 are high-redshift quasars (z = 1.604 and 1.532 respectively), with strong radio cores. We argue that in the case of these two sources a non-thermal, inverse-Compton emission from the innermost parts of the jet can explain a large fraction of the observed X-ray emission. The large scale object PG 1004+130 with a peculiar radio morphology is a low-redshift (z = 0.24), lobe-dominated BAL quasar with a weak radio core. In this case simulated inverse-Compton X-ray emission of the jet is relatively low. However, the corona emission appears strong enough to explain the observed X-ray spectrum of this object.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Luo, Qinghuan, and R. J. Protheroe. "Resonant Inverse Compton Scattering above Polar Caps: Gap Acceleration Efficiency for Young Pulsars." Publications of the Astronomical Society of Australia 15, no. 2 (1998): 222–27. http://dx.doi.org/10.1071/as98222.

Повний текст джерела
Анотація:
AbstractIt is shown that for moderately hot polar caps (with effective temperature of ∼106 K), the efficiency of polar gap acceleration is lower compared to the case in which the polar caps are relatively cool and inverse Compton scattering plays no role in controlling the gap. For young pulsars with superstrong magnetic fields (≥109 T) and hot polar caps (with temperature of ≥5 × 106 K), because of the energy loss of electrons or positrons due to resonant inverse Compton scattering in the vicinity of polar caps, pair cascades occur at distances further away from the polar cap, and in this case we have a relatively high acceleration efficiency, with ions carrying most of the particle luminosity.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії