Зміст
Добірка наукової літератури з теми "Compression par réseau de neurones"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Compression par réseau de neurones".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Compression par réseau de neurones"
Marcelin, Jean-Luc, and Assad Kallassy. "Approximation de calculs éléments finis par un nouveau réseau de neurones." Revue Européenne des Éléments Finis 8, no. 2 (January 1999): 201–27. http://dx.doi.org/10.1080/12506559.1999.10511363.
Повний текст джерелаBouazizi, Emna, Roomila Naeck, Daniel D’Amore, Marie-Françoise Mateo, Philippe Arlotto, Michel Grimaldi, Moez Bouchouicha, Fahrat Fnaiech, Nader Fnaiech, and Jean-Marc Ginoux. "Modélisation numérique de la fragmentation du sommeil par réseau de neurones artificiels." Médecine du Sommeil 12, no. 1 (January 2015): 22–23. http://dx.doi.org/10.1016/j.msom.2015.01.010.
Повний текст джерелаBouazizi, E., R. Naeck, D. D’amore, M. F. Matéo, P. Arlotto, M. Grimaldi, M. Bouchouicha, F. Fnaiech, N. Fnaiech, and J. M. Ginoux. "Modélisation numérique de la fragmentation du sommeil par Réseau de neurones artificiels." Revue des Maladies Respiratoires 32 (January 2015): A210. http://dx.doi.org/10.1016/j.rmr.2014.10.305.
Повний текст джерелаVazquez, J., M. Zug, D. Bellefleur, B. Grandjean, and O. Scrivener. "Utilisation d'un réseau de neurones pour appliquer le modèle de Muskingum aux réseaux d'assainissement." Revue des sciences de l'eau 12, no. 3 (April 12, 2005): 577–95. http://dx.doi.org/10.7202/705367ar.
Повний текст джерелаKaridioula, Daouda, Djedjro Clément Akmel, Nogbou Emmanuel Assidjo, and Albert Trokourey. "Modélisation du séchage solaire de fèves de cacao par le Réseau de Neurones Artificiel." International Journal of Biological and Chemical Sciences 12, no. 1 (June 1, 2018): 195. http://dx.doi.org/10.4314/ijbcs.v12i1.15.
Повний текст джерелаLek, S., I. Dimopoulos, M. Derraz, and Y. El Ghachtoul. "Modélisation de la relation pluie-débit à l'aide des réseaux de neurones artificiels." Revue des sciences de l'eau 9, no. 3 (April 12, 2005): 319–31. http://dx.doi.org/10.7202/705255ar.
Повний текст джерелаLeroux, Élodie, Romain Perbet, Luc Buée, and Morvane Colin. "Les vésicules extracellulaires." médecine/sciences 37, no. 12 (December 2021): 1133–38. http://dx.doi.org/10.1051/medsci/2021205.
Повний текст джерелаVanbuis, Jade, Guillaume Baffet, Mathieu Feuilloy, Jean-Marc Girault, Nicole Meslier, and Frédéric Gagnadoux. "Analyse automatique du sommeil par réseau de neurones à partir des signaux de polygraphie ventilatoire." Médecine du Sommeil 18, no. 1 (March 2021): 29–30. http://dx.doi.org/10.1016/j.msom.2020.11.036.
Повний текст джерелаPostadjian, Tristan, Arnaud Le Bris, Hichem Sahbi, and Clément Mallet. "Classification à très large échelle d'images satellites à très haute résolution spatiale par réseaux de neurones convolutifs." Revue Française de Photogrammétrie et de Télédétection, no. 217-218 (September 21, 2018): 73–86. http://dx.doi.org/10.52638/rfpt.2018.418.
Повний текст джерелаGaborit, E., G. Pelletier, P. A. Vanrolleghem, and F. Anctil. "Simulation du débit de la rivière Saint-Charles, première source d’eau potable de la ville de Québec." Canadian Journal of Civil Engineering 37, no. 2 (February 2010): 311–21. http://dx.doi.org/10.1139/l09-139.
Повний текст джерелаДисертації з теми "Compression par réseau de neurones"
Fernandez, Brillet Lucas. "Réseaux de neurones CNN pour la vision embarquée." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM043.
Повний текст джерелаRecently, Convolutional Neural Networks have become the state-of-the-art soluion(SOA) to most computer vision problems. In order to achieve high accuracy rates, CNNs require a high parameter count, as well as a high number of operations. This greatly complicates the deployment of such solutions in embedded systems, which strive to reduce memory size. Indeed, while most embedded systems are typically in the range of a few KBytes of memory, CNN models from the SOA usually account for multiple MBytes, or even GBytes in model size. Throughout this thesis, multiple novel ideas allowing to ease this issue are proposed. This requires to jointly design the solution across three main axes: Application, Algorithm and Hardware.In this manuscript, the main levers allowing to tailor computational complexity of a generic CNN-based object detector are identified and studied. Since object detection requires scanning every possible location and scale across an image through a fixed-input CNN classifier, the number of operations quickly grows for high-resolution images. In order to perform object detection in an efficient way, the detection process is divided into two stages. The first stage involves a region proposal network which allows to trade-off recall for the number of operations required to perform the search, as well as the number of regions passed on to the next stage. Techniques such as bounding box regression also greatly help reduce the dimension of the search space. This in turn simplifies the second stage, since it allows to reduce the task’s complexity to the set of possible proposals. Therefore, parameter counts can greatly be reduced.Furthermore, CNNs also exhibit properties that confirm their over-dimensionment. This over-dimensionement is one of the key success factors of CNNs in practice, since it eases the optimization process by allowing a large set of equivalent solutions. However, this also greatly increases computational complexity, and therefore complicates deploying the inference stage of these algorithms on embedded systems. In order to ease this problem, we propose a CNN compression method which is based on Principal Component Analysis (PCA). PCA allows to find, for each layer of the network independently, a new representation of the set of learned filters by expressing them in a more appropriate PCA basis. This PCA basis is hierarchical, meaning that basis terms are ordered by importance, and by removing the least important basis terms, it is possible to optimally trade-off approximation error for parameter count. Through this method, it is possible to compress, for example, a ResNet-32 network by a factor of ×2 both in the number of parameters and operations with a loss of accuracy <2%. It is also shown that the proposed method is compatible with other SOA methods which exploit other CNN properties in order to reduce computational complexity, mainly pruning, winograd and quantization. Through this method, we have been able to reduce the size of a ResNet-110 from 6.88Mbytes to 370kbytes, i.e. a x19 memory gain with a 3.9 % accuracy loss.All this knowledge, is applied in order to achieve an efficient CNN-based solution for a consumer face detection scenario. The proposed solution consists of just 29.3kBytes model size. This is x65 smaller than other SOA CNN face detectors, while providing equal detection performance and lower number of operations. Our face detector is also compared to a more traditional Viola-Jones face detector, exhibiting approximately an order of magnitude faster computation, as well as the ability to scale to higher detection rates by slightly increasing computational complexity.Both networks are finally implemented in a custom embedded multiprocessor, verifying that theorical and measured gains from PCA are consistent. Furthermore, parallelizing the PCA compressed network over 8 PEs achieves a x11.68 speed-up with respect to the original network running on a single PE
Boukli, Hacene Ghouthi. "Processing and learning deep neural networks on chip." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2019. http://www.theses.fr/2019IMTA0153/document.
Повний текст джерелаIn the field of machine learning, deep neural networks have become the inescapablereference for a very large number of problems. These systems are made of an assembly of layers,performing elementary operations, and using a large number of tunable variables. Using dataavailable during a learning phase, these variables are adjusted such that the neural networkaddresses the given task. It is then possible to process new data.To achieve state-of-the-art performance, in many cases these methods rely on a very largenumber of parameters, and thus large memory and computational costs. Therefore, they are oftennot very adapted to a hardware implementation on constrained resources systems. Moreover, thelearning process requires to reuse the training data several times, making it difficult to adapt toscenarios where new information appears on the fly.In this thesis, we are first interested in methods allowing to reduce the impact of computations andmemory required by deep neural networks. Secondly, we propose techniques for learning on thefly, in an embedded context
Mahé, Pierre. "Codage ambisonique pour les communications immersives." Thesis, La Rochelle, 2022. http://www.theses.fr/2022LAROS011.
Повний текст джерелаThis thesis takes place in the context of the spread of immersive content. For the last couple of years, immersive audio recording and playback technologies have gained momentum and have become more and more popular. New codecs are needed to handle those spatial audio formats, especially for communication applications. There are several ways to represent spatial audio scenes. In this thesis, we focused on First Order Ambisonic. The first part of our research focused on improving multi-monocoding by decorrelated each ambisonic signal component before the multi-mono coding. To guarantee signal continuity between frames, efficient quantization new mechanisms are proposed. In the second part of this thesis, we proposed a new coding concept using a power map to recreate the original spatial image. With this concept, we proposed two compressing methods. The first one is a post-processing focused on limiting the spatial distortion of the decoded signal. The spatial correction is based on the difference between the original and the decoded spatial image. This post-processing is later extended to a parametric coding method. The last part of this thesis presents a more exploratory method. This method studied audio signal compression by neural networks inspired by image compression models using variational autoencoders
Jouffroy, Guillaume. "Contrôle oscillatoire par réseau de neurones récurrents." Paris 8, 2008. http://www.theses.fr/2008PA082918.
Повний текст джерелаIn the control field, most of the applications need a non-oscillatory continuous control. This work focuses instead on controllers with recurrent neural networks (RNN) which generate a periodic oscillatory control. The purpose of the present work is to study stochastic optimisation methods which can be used to discover the parameters of a network so that it generates a cyclic input. First we take a look at the knowledge about biological oscillators. Tthen we describe the mathematical tools to be able to guarantee the stability oscillators. The potential of RNN, especially applied to dynamical systems being still poorly used, we propose for each method, a general detailed matrix formalization and we precise the computational complexity of the methods. We validate each method using a simple example of oscillator, and we demonstrate analytically the stability of the resulting oscillator, but also how it is robust to parameters perturbations. We then compare these different methods with these criteria and the speed of convergence. We finish this thesis with an illustration, where we take all the steps of the construction of an oscillatory neural controller, to control the axis of direction of a particular vehicle. This will let us discuss how realistic is the use of recurrent neural networks in the field of control, and propose interesting questions
Carpentier, Mathieu. "Classification fine par réseau de neurones à convolution." Master's thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/35835.
Повний текст джерелаArtificial intelligence is a relatively recent research domain. With it, many breakthroughs were made on a number of problems that were considered very hard. Fine-grained classification is one of those problems. However, a relatively small amount of research has been done on this task even though itcould represent progress on a scientific, commercial and industrial level. In this work, we talk about applying fine-grained classification on concrete problems such as tree bark classification and mould classification in culture. We start by presenting fundamental deep learning concepts at the root of our solution. Then, we present multiple experiments made in order to try to solve the tree bark classification problem and we detail the novel dataset BarkNet 1.0 that we made for this project. With it, we were able to develop a method that obtains an accuracy of 93.88% on singlecrop in a single image, and an accuracy of 97.81% using a majority voting approach on all the images of a tree. We conclude by demonstrating the feasibility of applying our method on new problems by showing two concrete applications on which we tried our approach, industrial tree classification and mould classification.
Cayouette, Philippe. "Aérocapture martienne par réseau de neurones entraîné par algorithme génétique." Mémoire, Université de Sherbrooke, 2006. http://savoirs.usherbrooke.ca/handle/11143/1372.
Повний текст джерелаCharpentier, Éric. "Repérage d'un faisceau à l'aide d'un réseau d'antennes, guidé par un réseau de neurones." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0001/MQ37437.pdf.
Повний текст джерелаLiu, Xiaoqing. "Analyse d'images couleur en composantes indépendantes par réseau de neurones." Grenoble INPG, 1991. http://www.theses.fr/1991INPG0120.
Повний текст джерелаGoulet-Fortin, Jérôme. "Modélisation des rendements de la pomme de terre par réseau de neurones." Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26556/26556.pdf.
Повний текст джерелаLaurent, Rémy. "Simulation du mouvement pulmonaire personnalisé par réseau de neurones artificiels pour la radiothérapie externe." Phd thesis, Université de Franche-Comté, 2011. http://tel.archives-ouvertes.fr/tel-00800360.
Повний текст джерелаКниги з теми "Compression par réseau de neurones"
(Editor), Lynn Nadel, Lynn Cooper (Editor), Peter Culicover (Editor), and Robert M. Harnish (Editor), eds. Neural connections, mental computation. Cambridge, Massachusetts: The MIT Press, 1992.
Знайти повний текст джерелаLynn, Nadel, ed. Neural connections, mental computation. Cambridge, Mass: MIT Press, 1990.
Знайти повний текст джерела