Добірка наукової літератури з теми "Composite materials Cu/D"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Composite materials Cu/D".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Composite materials Cu/D"
Wang, Qing Yun, Wei Ping Shen, and Ming Liang Ma. "Mean and Instantaneous Thermal Expansion of Uncoated and Ti Coated Diamond/Copper Composite Materials." Advanced Materials Research 702 (May 2013): 202–6. http://dx.doi.org/10.4028/www.scientific.net/amr.702.202.
Повний текст джерелаSundaram, Rajyashree, Atsuko Sekiguchi, Guohai Chen, Don Futaba, Takeo Yamada, Ken Kokubo, and Kenji Hata. "Influence of Carbon Nanotube Attributes on Carbon Nanotube/Cu Composite Electrical Performances." C 7, no. 4 (November 15, 2021): 78. http://dx.doi.org/10.3390/c7040078.
Повний текст джерелаZhang, Dan-dan, and Zai-ji Zhan. "Experimental investigation of interfaces in graphene materials/copper composites from a new perspective." RSC Advances 6, no. 57 (2016): 52219–26. http://dx.doi.org/10.1039/c6ra07606h.
Повний текст джерелаWidiatmoko, Julian, Fanghui Jia, and Zhengyi Jiang. "Al-Cu Composite’s Springback in Micro Deep Drawing." Journal of Engineering and Technological Sciences 55, no. 4 (October 26, 2023): 384–92. http://dx.doi.org/10.5614/j.eng.technol.sci.2023.55.4.3.
Повний текст джерелаOrii, Yuta, Masaki Kobayashi, Yuki Nagai, Kohei Atsumi, Daichi Tazaki, Satoshi Ehara, and Takashiro Akitsu. "Anisotropic strain and Jahn-Teller effect of chiral complexes and metal oxides." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C179. http://dx.doi.org/10.1107/s2053273314098209.
Повний текст джерелаChow, G. M., T. Ambrose, John Q. Xiao, M. E. Twigg, S. Baral, A. M. Ervin, S. B. Qadri, and C. R. Feng. "Chemical precipitation and properties of nanocrystalline FeCu alloy and composite powders." Nanostructured Materials 1, no. 5 (September 1992): 361–68. http://dx.doi.org/10.1016/0965-9773(92)90086-d.
Повний текст джерелаStando, Grzegorz Jan, Pyry-Mikko Hannula, Bogumiła Kumanek, Mari Lundström, Haitao Liu, and Dawid Janas. "(Digital Presentation) Recovery of Copper from Wastewater By Electrodeposition Onto Nanocarbon Composites." ECS Meeting Abstracts MA2022-01, no. 9 (July 7, 2022): 761. http://dx.doi.org/10.1149/ma2022-019761mtgabs.
Повний текст джерелаZaporotskova, I. V., D. P. Radchenko, L. V. Kozitov, P. A. Zaporotskov, and A. V. Popkova. "Theoretical studies of a metal composite based on a monolayer of pyrolyzed polyacrylonitrile containing paired metal atoms Cu—Co, Ni—Co, Ni—Cu, Ni—Fe and an amorphizing silicon additive." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 23, no. 3 (November 10, 2020): 196–202. http://dx.doi.org/10.17073/1609-3577-2020-3-196-202.
Повний текст джерелаWang, Wen-Min, Lu Zhang, Wen-Long Wang, Jin-Yi Huang, Qian-Yuan Wu, and Jerry J. Wu. "Photocatalytic Degradation of 1,4-Dioxane by Heterostructured Bi2O3/Cu-MOF Composites." Catalysts 13, no. 8 (August 15, 2023): 1211. http://dx.doi.org/10.3390/catal13081211.
Повний текст джерелаAli, Amira H., Asmaa S. Hassan, Ashour M. Ahmed, Ahmed A. Abdel-Khaliek, Sawsan Abd El Khalik, Safaa M. Abass, Mohamed Shaban, Fatimah Mohammed Alzahrani, and Mohamed Rabia. "Preparation and Characterization of Nanostructured Inorganic Copper Zinc Tin Sulfide-Delafossite Nano/Micro Composite as a Novel Photodetector with High Efficiency." Photonics 9, no. 12 (December 14, 2022): 979. http://dx.doi.org/10.3390/photonics9120979.
Повний текст джерелаДисертації з теми "Composite materials Cu/D"
Kraiem, Nada. "Impression 3D de matériaux composites à base de diamant pour des applications de gestion thermique." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0129.
Повний текст джерелаWith the trend towards miniaturization of electrical equipment and the constant increase in power density in semiconductor devices, efficient heat management has become a major concern for researchers. Indeed, this technological evolution imposes increasingly strict constraints in terms of thermal dissipation, necessitating innovative solutions to ensure better durability and reliability of components. In this context, the use of composite materials offering high thermal conductivity and low coefficient of thermal expansion compared to pure metals has become essential to address overheating issues in electronic components. The utilization of advanced materials such as diamond (D), with exceptional thermal conductivity and hardness properties, stands out as a preferred choice for reinforcing metal matrices. However, its incorporation into composite materials requires the creation of a well-defined D-metal interface, both to avoid porosity formation and to ensure efficient transfer of thermal properties. Additive manufacturing of 3D materials by laser fusion is emerging as a promising solution, not only for the ease of implementation of these composites, but also for the creation of complex structures dedicated to heat dissipation. These structures play a crucial role in optimizing the heat exchange surface by convection with the surrounding air, thus allowing efficient dissipation of heat generated by modern electronic devices.In this study, 3D printing of copper (Cu) was achieved through the addition of an optimal amount of aluminum. This approach significantly improved the densification of copper-based materials, despite the challenges posed by its high reflectivity. Subsequently, in-depth investigation and optimization of laser 3D printing of the AlSi10Mg alloy, before and after the incorporation of D, were carried out. Finally, a crucial post-processing step was optimized, consisting of polishing Al/D composite materials using laser ablation.This work was carried out as part of an international collaboration between the University of Nebraska, Lincoln in the United States of America, and the University of Bordeaux in France
Guazzone, Federico. "Engineering of substrate surface for the synthesis of ultra-thin composite Pd and Pd-Cu membranes for H₂ separation." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-011006-123013/.
Повний текст джерелаKaforey, Monica L. "Solid state thermal gradient processing of Y₁Ba₂Cu₃O₇âx/Ag superconducting composite ribbons." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28038.
Повний текст джерелаVita. Title as it appears in the Feb. 1994 MIT Graduate List: Solid state temperature gradient processing of Y₁Ba₂Cu₃O₇âx/Ag superconducting composite ribbons.
Includes bibliographical references (leaves 197-202).
by Monical L. Kaforey.
Ph.D.
Wenger, Wolfgang. "Investigations into 3-D reinforcements for composite materials." Thesis, University of Ulster, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358671.
Повний текст джерелаMeier, Dominik [Verfasser], and Leonhard M. [Akademischer Betreuer] Reindl. "Millimeter-wave tomographic imaging of composite materials." Freiburg : Universität, 2021. http://d-nb.info/1233197053/34.
Повний текст джерелаTilliander, Ulrika. "Synthesis of nano sized Cu and Cu-W alloy by hydrogen reduction." Licentiate thesis, KTH, Materials Science and Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-353.
Повний текст джерелаThe major part of the present work, deals with the reduction kinetics of Cu2O powder and a Cu2O-WO3 powder mixture by hydrogen gas, studied by ThermoGravimetric Analysis (TGA). The reduction experiments were carried out both isothermally and non-isothermally on thin powder beds over different temperature intervals. During the experiments, the reductant gas flow rate was kept just above the starvation rate for the reaction to ensure that chemical reaction was the rate-controlling step. The activation energy for the reactions was evaluated from isothermal as well as non-isothermal reduction experiments.
In the case of the reduction of Cu2O, the impact of the stability of the copper oxide on the activation energy for hydrogen reduction under identical experimental conditions is discussed. A closer investigation of additions of Ni or NiO to Cu2O did not have a perceptible effect on the kinetics of reduction.
In the case of the reduction of the Cu2O-WO3 mixture, the reaction mechanism was found to be affected in the temperature range 923-973 K, which is attributed to the reaction/transformation in the starting oxide mixture. At lower temperatures, Cu2O was found to be preferentially reduced in the early stages, followed by the reduction of the tungsten oxide. At higher temperatures, the reduction kinetics was strongly affected by the formation of a complex oxide from the starting materials. It was found that the Cu2O-WO3 mixture underwent a reaction/transformation which could explain the observed kinetic behavior.
The composition and microstructures of both the starting material and the reaction products were analyzed by X-ray diffraction (XRD) as well as by microprobe analysis. vi Kinetic studies of reduction indicated that, the mechanism changes significantly at 923 K and the product formed had unusual properties. The structural studies performed by XRD indicated that, at 923 K, Cu dissolved in W forming a metastable solid solution, in amorphous/nanocrystalline state. The samples produced at higher as well as lower temperatures, on the other hand, showed the presence two phases, pure W and pure Cu. The SEM results were in conformity with the XRD analysis and confirmed the formation of W/Cu alloy. TEM analysis results confirmed the above observations and showed that the particle sizes was about 20 nm.
The structure of the W/Cu alloy produced in the present work was compared with those for pure copper produced from Cu2O produced by hydrogen reduction under similar conditions. It indicated that the presence of W hinders the coalescence of Cu particles and the alloy retains its nano-grain structure. The present results open up an interesting process route towards the production of intermetallic phases and composite materials under optimized conditions.
Guazzone, Federico. "Engineering of Substrate Surface for the synthesis of Ultra-Thin Composite Pd and Pd-Cu Membranes for H2 Separation." Digital WPI, 2006. https://digitalcommons.wpi.edu/etd-dissertations/442.
Повний текст джерелаKuttner, Christian [Verfasser]. "Macromolecular Interphases and Interfaces in Composite Materials / Christian Kuttner." München : Verlag Dr. Hut, 2014. http://d-nb.info/1063222036/34.
Повний текст джерелаQuelennec, Xavier. "Nanostructuration d'un composite Cu-Fe par déformation intense : vers un mélange forcé à l'échelle atomique." Phd thesis, Université de Rouen, 2008. http://tel.archives-ouvertes.fr/tel-00648688.
Повний текст джерелаMorgan, Margaret. "Geometric modelling of 3-D woven reinforcements in composite materials." Thesis, University of Ulster, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423442.
Повний текст джерелаКниги з теми "Composite materials Cu/D"
Wenger, Wolfgang. Investigations into 3-D reinforcements for composite materials. [s.l: The Author], 1993.
Знайти повний текст джерелаMoore, Thomas J. Tensile strength of simulated and welded butt joints in W-Cu-composite sheet. Cleveland, Ohio: Lewis Research Center, 1994.
Знайти повний текст джерелаCenter, Langley Research, ред. Fatigue resistance of unnotched and post-impact (+ ø30ʻ́/0ʻ́) 3-D braided composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Знайти повний текст джерелаCenter, Langley Research, ed. Fatigue resistance of unnotched and post-impact (+̲30/0) 3-D braided composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Знайти повний текст джерелаPoe, Clarence C. Mechanics of textile composites conference: Proceedings of a conference sponsored by the National Aeronautics and Space Administration, Washington, D. C., and held in Hampton, Virginia, December 6-8, 1994. Hampton, Va: Langley Research Center, 1995.
Знайти повний текст джерелаInternational Meeting on Modern Ceramics Technologies (12th 2010 Montecatini Terme, Italy). Ceramics and composites in extreme environments & for chemical and electrochemical applications: 12th international ceramics congress, part D. Stafa-Zuerich: Trans Tech Pubs. ltd. on behalf of Techna Group, 2011.
Знайти повний текст джерелаThomas, Hahn H., ASTM Committee D-30 on High Modulus Fibers and Their Composites., ASTM Committee E-24 on Fracture Testing., and Symposium on Composite Materials: Fatigue and Fracture., eds. Composite materials: Fatigue and fracture : a symposium sponsored by ASTM Committee D-30 on High Modulus Fibers and Their Composites, Dallas, TX, 24-25 Oct. 1984. Philadelphia, PA: ASTM, 1986.
Знайти повний текст джерелаL, Kessler Sandra, and ASTM Committee D-20 on Plastics., eds. Instrumented impact testing of plastics and composite materials: A symposium sponsored by ASTM Committee D-20 on Plastics, Houston, TX, 11-12 March 1985. Philadelphia, PA: ASTM, 1987.
Знайти повний текст джерелаMiravete, Antonio. 3-D Textile Reinforcements In Composite Materials. CRC, 1999.
Знайти повний текст джерелаMiravete, Antonio, ed. 3-D Textile Reinforcements In Composite Materials. CRC Press, 1999. http://dx.doi.org/10.1201/9781439823262.
Повний текст джерелаЧастини книг з теми "Composite materials Cu/D"
Gay, Daniel. "Quasi-Orthotropic Homogenized Laminates or D-D Laminates." In Composite Materials, 309–54. 4th ed. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195788-18.
Повний текст джерелаShohji, Ikuo, Susumu Arai, Naoki Kano, Noboru Otomo, and Masahisa Uenishi. "Development of Cu Brazing Sheet with Cu-P Composite Plating." In Key Engineering Materials, 2025–28. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-456-1.2025.
Повний текст джерелаJiang, Guosheng, Liyong Diao, and Ken Kuang. "Improved Manufacturing Process of Cu/Mo70-Cu/Cu Composite Heat Sinks for Electronic Packaging Applications." In Advanced Thermal Management Materials, 99–107. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1963-1_7.
Повний текст джерелаLin, Hong Ming, Giin Shan Chen, and Pee Yew Lee. "Microstructure and Properties of Vacuum Hot-Pressing SiC/ Ti-Cu-Ni-Sn Bulk Metallic Glass Composites." In Composite Materials V, 26–30. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-451-0.26.
Повний текст джерелаFan, Zhi Kang, and Peng Xiao. "Morphology of Chromium in Cu- 2.0%~4.2%Cr Alloys." In Advances in Composite Materials and Structures, 277–80. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.277.
Повний текст джерелаJain, Tanvi, Hridyesh Kumar, and Pradip Kumar Dutta. "D-Glucosamine and N-Acetyl D-Glucosamine: Their Potential Use as Regenerative Medicine." In Springer Series on Polymer and Composite Materials, 279–95. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2511-9_11.
Повний текст джерелаWang, Xin Hong, Zeng Da Zou, Min Zhang, Si Li Song, and Shi Yao Qu. "Bonding Strength and Microstructure of Cermet/Cu-Based Alloy Composite Brazed Coatings." In Key Engineering Materials, 154–59. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-978-4.154.
Повний текст джерелаRajanna, T. R., Amar Singh, and K. Joseph Shibu. "Qualification of 3-D Printed AlSi10Mg Part for Military Airborne Applications." In Composite Materials for Extreme Loading, 171–86. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4138-1_13.
Повний текст джерелаXiao, Peng, and Zhi Kang Fan. "Effects of Chromium Particle on Elevated Temperature Tensile Strength of Cu-Cr Alloy." In Advances in Composite Materials and Structures, 273–76. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.273.
Повний текст джерелаHan, Guihong, Pengfei Tang, Hongyang Wu, Jun Ma, Xiaomeng Yang, and Yongsheng Zhang. "Adsorption Behavior of Cu(II) to Silica-Humics Composite Aerogels." In The Minerals, Metals & Materials Series, 91–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05749-7_10.
Повний текст джерелаТези доповідей конференцій з теми "Composite materials Cu/D"
Sinha, Arpita, Jadran A. Mihailovic, James E. Morris, Hua Lu, and Chris Bailey. "Modeling thermal conductivity and CTE for CNT-Cu composites for 3-D TSV application." In 2010 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2010. http://dx.doi.org/10.1109/nmdc.2010.5652157.
Повний текст джерелаSundaram, Rajyashree, Guohai Chen, Takeo Yamada, Don Futaba, Kenji Hata, Ken Kokubo, and Atsuko Sekiguchi. "Lightweight Cu/Carbon Nanotube Composite Electric Conductors." In 2020 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2020. http://dx.doi.org/10.7567/ssdm.2020.k-9-03.
Повний текст джерелаGoldie, James H., Michael J. Gerver, John Oleksy, Gregory P. Carman, and Terrisa A. Duenas. "Composite Terfenol-D sonar transducers." In 1999 Symposium on Smart Structures and Materials, edited by Manfred R. Wuttig. SPIE, 1999. http://dx.doi.org/10.1117/12.352797.
Повний текст джерелаYungang Li, Limin Liu, and Jie Li. "The progress of W-Cu composite materials preparation technique." In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930584.
Повний текст джерелаMoskvichev, E. N. "Fabrication of NiAl strengthened Cu-Al based composite." In PROCEEDINGS OF THE II INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS, SYSTEMS AND TECHNOLOGIES: (CAMSTech-II 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0092748.
Повний текст джерелаBharathi, K. Divya, M. R. Rahman, Sunita Choudhary, and S. B. Arya. "Development and characterization of Cu/MWCNT composite prepared by electrodeposition technique." In ADVANCES IN MECHANICAL DESIGN, MATERIALS AND MANUFACTURE: Proceeding of the Second International Conference on Design, Materials and Manufacture (ICDEM 2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0010560.
Повний текст джерелаZhang, Yinghui, Linghui He, Haixia Tian, and Kai Peng. "Influences of Carbon Nanotubes on Performance of W-Cu Composite Materials." In 2015 International Conference on Advanced Material Engineering. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814696029_0051.
Повний текст джерелаWatanabe, Naoyuki, and Yasuyo Tanzawa. "Delamination analysis of 3-D orthogonal interlocked fabric composite." In 37th Structure, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1418.
Повний текст джерелаShi, Yu, Yi Wang, Gaoming Wang, Wei Li, Tao Yu, and Chunhua Lu. "Thermal properties of nano-SiO2 optimized aluminate cementitious composite Cu powders." In 2015 4th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icmmcce-15.2015.476.
Повний текст джерелаRamli, M. I. I., M. A. A. Mohd Salleh, M. M. Al Bakri Abdullah, R. M. Said, A. V. Sandu, and N. Saud. "Microstructural and phase analysis of Sn-Cu-Ni-XSiC composite solder." In ADVANCED MATERIALS ENGINEERING AND TECHNOLOGY V: International Conference on Advanced Material Engineering and Technology 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4981848.
Повний текст джерелаЗвіти організацій з теми "Composite materials Cu/D"
Chefetz, Benny, Baoshan Xing, Leor Eshed-Williams, Tamara Polubesova, and Jason Unrine. DOM affected behavior of manufactured nanoparticles in soil-plant system. United States Department of Agriculture, January 2016. http://dx.doi.org/10.32747/2016.7604286.bard.
Повний текст джерела