Дисертації з теми "Complex temporal data"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-25 дисертацій для дослідження на тему "Complex temporal data".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Renz, Matthias. "Enhanced query processing on complex spatial and temporal data." Diss., [S.l.] : [s.n.], 2006. http://edoc.ub.uni-muenchen.de/archive/00006231.
Повний текст джерелаPacella, Massimo. "High-dimensional statistics for complex data." Doctoral thesis, Universita degli studi di Salerno, 2018. http://hdl.handle.net/10556/3016.
Повний текст джерелаHigh dimensional data analysis has become a popular research topic in the recent years, due to the emergence of various new applications in several fields of sciences underscoring the need for analysing massive data sets. One of the main challenge in analysing high dimensional data regards the interpretability of estimated models as well as the computational efficiency of procedures adopted. Such a purpose can be achieved through the identification of relevant variables that really affect the phenomenon of interest, so that effective models can be subsequently constructed and applied to solve practical problems. The first two chapters of the thesis are devoted in studying high dimensional statistics for variable selection. We firstly introduce a short but exhaustive review on the main developed techniques for the general problem of variable selection using nonparametric statistics. Lastly in chapter 3 we will present our proposal regarding a feature screening approach for non additive models developed by using of conditional information in the estimation procedure... [edited by Author]
XXX ciclo
Törmänen, Patrik. "Forecasting important disease spreaders from temporal contact data." Thesis, Umeå universitet, Institutionen för fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-56747.
Повний текст джерелаSchaidnagel, Michael. "Automated feature construction for classification of complex, temporal data sequences." Thesis, University of the West of Scotland, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.692834.
Повний текст джерелаGao, Feng. "Complex medical event detection using temporal constraint reasoning." Thesis, University of Aberdeen, 2010. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=153271.
Повний текст джерелаAhmad, Saif. "A temporal pattern identification and summarization method for complex time serial data." Thesis, University of Surrey, 2007. http://epubs.surrey.ac.uk/843297/.
Повний текст джерелаJones-Todd, Charlotte M. "Modelling complex dependencies inherent in spatial and spatio-temporal point pattern data." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/12009.
Повний текст джерелаIACOBELLO, GIOVANNI. "Spatio-temporal analysis of wall-bounded turbulence: A multidisciplinary perspective via complex networks." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2829683.
Повний текст джерелаEl, Ouassouli Amine. "Discovering complex quantitative dependencies between interval-based state streams." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI061.
Повний текст джерелаThe increasing utilization of sensor devices in addition to human-given data make it possible to capture real world systems complexity through rich temporal descriptions. More precisely, the usage of a multitude of data sources types allows to monitor an environment by describing the evolution of several of its dimensions through data streams. One core characteristic of such configurations is heterogeneity that appears at different levels of the data generation process: data sources, time models and data models. In such context, one challenging task for monitoring systems is to discover non-trivial temporal knowledge that is directly actionable and suitable for human interpretation. In this thesis, we firstly propose to use a Temporal Abstraction (TA) approach to express information given by heterogeneous raw data streams with a unified interval-based representation, called state streams. A state reports on a high level environment configuration that is of interest for an application domain. Such approach solves problems introduced by heterogeneity, provides a high level pattern vocabulary and also permits also to integrate expert(s) knowledge into the discovery process. Second, we introduced the Complex Temporal Dependencies (CTD) that is a quantitative interval-based pattern model. It is defined similarly to a conjunctive normal form and allows to express complex temporal relations between states. Contrary to the majority of existing pattern models, a CTD is evaluated with automatic statistical assessment of streams intersection avoiding the use of any significance user-given parameter. Third, we proposed CTD-Miner a first efficient CTD mining framework. CTD-Miner performs an incremental dependency construction. CTD-Miner benefits from pruning techniques based on a statistical correspondence relationship that aims to accelerate the exploration search space by reducing redundant information and provide a more usable result set. Finally, we proposed the Interval Time Lag Discovery (ITLD) algorithm. ITLD is based on a confidence variation heuristic that permits to reduce the complexity of the pairwise dependency discovery process from quadratic to linear w.r.t a temporal constraint Δ on time lags. Experiments on simulated and real world data showed that ITLD provides efficiently more accurate results in comparison with existing approaches. Hence, ITLD enhances significantly the accuracy, performances and scalability of CTD-Miner. The encouraging results given by CTD-Miner on our real world motion data set suggests that it is possible to integrate insights given by real time video processing approaches in a knowledge discovery process opening interesting perspectives for monitoring smart environments
Sherwin, Jason. "A computational approach to achieve situational awareness from limited observations of a complex system." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33955.
Повний текст джерелаSivanathan, Aparajithan. "Ubiquitous Integration and Temporal Synchronisation (UbilTS) framework : a solution for building complex multimodal data capture and interactive systems." Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2833.
Повний текст джерелаPajak, Maciej. "Evolutionary conservation and diversification of complex synaptic function in human proteome." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31108.
Повний текст джерелаDuong, Thi V. T. "Efficient duration modelling in the hierarchical hidden semi-Markov models and their applications." Thesis, Curtin University, 2008. http://hdl.handle.net/20.500.11937/1408.
Повний текст джерелаPray, Keith A. "Apriori Sets And Sequences: Mining Association Rules from Time Sequence Attributes." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0506104-150831/.
Повний текст джерелаKeywords: mining complex data; temporal association rules; computer system performance; stock market analysis; sleep disorder data. Includes bibliographical references (p. 79-85).
Duong, Thi V. T. "Efficient duration modelling in the hierarchical hidden semi-Markov models and their applications." Curtin University of Technology, Dept. of Computing, 2008. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=18610.
Повний текст джерелаMost importantly, it has four superior features over existing semi-Markov modelling: the parameter space is compact, computation is fast (almost the same as the HMM), close-formed estimation can be derived, and the Coxian is flexible enough to approximate a large class of distributions. Next, we exploit hierarchical decomposition in the data by borrowing analogy from the hierarchical hidden Markov model in [Fine et al., 1998, Bui et al., 2004] and introduce a new type of shallow structured graphical model that combines both duration and hierarchical modelling into a unified framework, termed the Coxian Switching Hidden Semi-Markov Models (CxSHSMM). The top layer is a Markov sequence of switching variables, while the bottom layer is a sequence of concatenated CxHSMMs whose parameters are determined by the switching variable at the top. Again, we provide a thorough analysis along with inference and learning machinery. We also show that semi-Markov models with arbitrary depth structure can easily be developed. In all cases we further address two practical issues: missing observations to unstable tracking and the use of partially labelled data to improve training accuracy. Motivated by real-world problems, our application contribution is a framework to recognize complex activities of daily livings (ADLs) and detect anomalies to provide better intelligent caring services for the elderly.
Coarser activities with self duration distributions are represented using the CxHSMM. Complex activities are made of a sequence of coarser activities and represented at the top level in the CxSHSMM. Intensive experiments are conducted to evaluate our solutions against existing methods. In many cases, the superiority of the joint modeling and the Coxian parameterization over traditional methods is confirmed. The robustness of our proposed models is further demonstrated in a series of more challenging experiments, in which the tracking is often lost and activities considerably overlap. Our final contribution is an application of the switching Coxian model to segment education-oriented videos into coherent topical units. Our results again demonstrate such segmentation processes can benefit greatly from the joint modeling of duration and hierarchy.
Arsenteva, Polina. "Statistical modeling and analysis of radio-induced adverse effects based on in vitro and in vivo data." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCK074.
Повний текст джерелаIn this work we address the problem of adverse effects induced by radiotherapy on healthy tissues. The goal is to propose a mathematical framework to compare the effects of different irradiation modalities, to be able to ultimately choose those treatments that produce the minimal amounts of adverse effects for potential use in the clinical setting. The adverse effects are studied in the context of two types of data: in terms of the in vitro omic response of human endothelial cells, and in terms of the adverse effects observed on mice in the framework of in vivo experiments. In the in vitro setting, we encounter the problem of extracting key information from complex temporal data that cannot be treated with the methods available in literature. We model the radio-induced fold change, the object that encodes the difference in the effect of two experimental conditions, in the way that allows to take into account the uncertainties of measurements as well as the correlations between the observed entities. We construct a distance, with a further generalization to a dissimilarity measure, allowing to compare the fold changes in terms of all the important statistical properties. Finally, we propose a computationally efficient algorithm performing clustering jointly with temporal alignment of the fold changes. The key features extracted through the latter are visualized using two types of network representations, for the purpose of facilitating biological interpretation. In the in vivo setting, the statistical challenge is to establish a predictive link between variables that, due to the specificities of the experimental design, can never be observed on the same animals. In the context of not having access to joint distributions, we leverage the additional information on the observed groups to infer the linear regression model. We propose two estimators of the regression parameters, one based on the method of moments and the other based on optimal transport, as well as the estimators for the confidence intervals based on the stratified bootstrap procedure
Ferreira, Leonardo Nascimento. "Time series data mining using complex networks." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-01022018-144118/.
Повний текст джерелаSéries temporais são conjuntos de dados ordenados no tempo. Devido à ubiquidade desses dados, seu estudo é interessante para muitos campos da ciência. A mineração de dados temporais é uma área de pesquisa que tem como objetivo extrair informações desses dados relacionados no tempo. Para isso, modelos são usados para descrever as séries e buscar por padrões. Uma forma de modelar séries temporais é por meio de redes complexas. Nessa modelagem, um mapeamento é feito do espaço temporal para o espaço topológico, o que permite avaliar dados temporais usando técnicas de redes. Nesta tese, apresentamos soluções para tarefas de mineração de dados de séries temporais usando redes complexas. O objetivo principal foi avaliar os benefícios do uso da teoria de redes para extrair informações de dados temporais. Concentramo-nos em três tarefas de mineração. (1) Na tarefa de agrupamento, cada série temporal é representada por um vértice e as arestas são criadas entre as séries de acordo com sua similaridade. Os algoritmos de detecção de comunidades podem ser usados para agrupar séries semelhantes. Os resultados mostram que esta abordagem apresenta melhores resultados do que os resultados de agrupamento tradicional. (2) Na tarefa de classificação, cada série temporal rotulada em um banco de dados é mapeada para um gráfico de visibilidade. A classificação é realizada transformando uma série temporal não marcada em um gráfico de visibilidade e comparando-a com os gráficos rotulados usando uma função de distância. O novo rótulo é dado pelo rótulo mais frequente nos k grafos mais próximos. (3) Na tarefa de detecção de periodicidade, uma série temporal é primeiramente transformada em um gráfico de visibilidade. Máximos locais em uma série temporal geralmente são mapeados para vértices altamente conectados que ligam duas comunidades. O método proposto utiliza a estrutura de comunidades para realizar a detecção de períodos em séries temporais. Este método é robusto para dados ruidosos e não requer parâmetros. Com os métodos e resultados apresentados nesta tese, concluímos que a teoria da redes complexas é benéfica para a mineração de dados em séries temporais. Além disso, esta abordagem pode proporcionar melhores resultados do que os métodos tradicionais e é uma nova forma de extrair informações de séries temporais que pode ser facilmente estendida para outras tarefas.
MORENO, Bruno Neiva. "Representação e análise de encontros espaço-temporais publicados em redes sociais online." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18621.
Повний текст джерелаMade available in DSpace on 2017-04-24T14:37:15Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese_bnm_OK.pdf: 5126585 bytes, checksum: 5ccba23295950094b489a2df805e0815 (MD5) Previous issue date: 2016-09-09
O crescente uso de redes sociais online tem feito com que usuários compartilhem, também, informações detalhadas a respeito dos locais que os mesmos frequentam, criando uma ligação entre o mundo físico (o movimento destes usuários no globo) e o mundo virtual (o que eles expressam sobre esses movimentos nas redes). O “check-in” é a funcionalidade responsável pelo compartilhamento da localização. Em uma rede social com essa funcionalidade, qualquer usuário pode publicar o local em que o mesmo está em determinado instante de tempo. Esta tese apresenta novas abordagens de análise de redes sociais online considerando as dimensões social, espacial e temporal que são inerentes à publicação de check-ins de usuários. As informações sociais, espaciais e temporais são definidas sob a perspectiva de encontros de usuários, sendo este o objeto de estudo dessa tese. Encontros ocorrem quando duas pessoas (dimensão social), estão em algum local (dimensão espacial), em determinado instante de tempo (dimensão temporal) e decidem publicar esse encontro através de check-ins. Além de apresentar um algoritmo para detecção de encontros, é definido um modelo para representação desses encontros. Este modelo é chamado de SiST (do inglês, SocIal, Spatial and Temporal) e modela encontros por meio de redes complexas. Para validar o modelo proposto, foram utilizados dados reais de redes sociais online. Com esses dados, os encontros foram detectados e analisados sob diferentes perspectivas com o objetivo de investigar a existência de alguma lei que governe a publicação dos mesmos, bem como para identificar padrões relativos a sua ocorrência, como padrões temporais, por exemplo. Além disso, as redes construídas a partir do modelo SiST também foram analisadas em termos de suas propriedades estruturais e topológicas. Por meio de redes SiST também foram estudados padrões de movimentação de usuários, como situações em que usuários se movimentam em grupo no globo ou situações em que um usuário é seguido por outros.
The growing use of online social networks has caused users to share detailed information about the places they visit, resulting on a clear connection between the physical world (i.e. the movement of these users on the globe) and the virtual world (which they express about these movements in the social network). The functionality responsible for sharing location by users is named as “check in”. In a social network with this feature, any user can publish their visited places. This thesis presents new approaches for online social networks analysis considering the social, spatial and temporal dimensions that are implicit in the publication of users check-ins. Social, spatial and temporal information is defined from the perspective of “user encounters”, which is the study object of this thesis. Users encounters occur when two people (social dimension) are somewhere (spatial dimension) in a given time (temporal dimension) and decide to publish this meeting through check-ins. In addition to the algorithm presented for encounters detection, we also defined a model for representation of these encounters. This model is called as SiST (SocIal, Spatial and Temporal). The SiST model basically represent encounters by a graph structure. To validate the proposed approach, we used real data from online social networks. With these data the users encounters were detected and analyzed from different perspectives aiming at investigating the existence of any law governing the publication of encounters and also to identify patterns related to its occurrence, like temporal patterns, for example. Furthermore, the graphs built from SiST model were also analyzed in terms of its structural and topological properties. Through the SiST networks the users movements were studied as well, like in situations in which users move in group or situations where users are followed by other users.
Serrà, Julià Joan. "Identification of versions of the same musical composition by processing audio descriptions." Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/22674.
Повний текст джерелаAquest treball es centra en la identificació automàtica de versions musicals (interpretacions alternatives d'una mateixa composició: 'covers', directes, remixos, etc.). En concret, proposem dos tiupus d'estratègies: la lliure de model i la basada en models. També introduïm tècniques de post-processat per tal de millorar la identificació de versions. Per fer tot això emprem conceptes relacionats amb l'anàlisi no linial de senyals, xarxes complexes i models de sèries temporals. En general, el nostre treball porta la identificació automàtica de versions a un estadi sense precedents on s'obtenen bons resultats i, al mateix temps, explora noves direccions de futur. Malgrat que els passos que seguim estan guiats per la natura dels senyals involucrats (enregistraments musicals) i les característiques de la tasca que volem solucionar (identificació de versions), creiem que la nostra metodologia es pot transferir fàcilment a altres àmbits i contextos.
El, Assaad Hani. "Modélisation et classification dynamique de données temporelles non stationnaires." Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1162/document.
Повний текст джерелаNowadays, diagnosis and monitoring for predictive maintenance of railway components are important key subjects for both operators and manufacturers. They seek to anticipate upcoming maintenance actions, reduce maintenance costs and increase the availability of rail network. In order to maintain the components at a satisfactory level of operation, the implementation of reliable diagnostic strategy is required. In this thesis, we are interested in a main component of railway infrastructure, the railway switch; an important safety device whose failure could heavily impact the availability of the transportation system. The diagnosis of this system is therefore essential and can be done by exploiting sequential measurements acquired successively while the state of the system is evolving over time. These measurements consist of power consumption curves that are acquired during several switch operations. The shape of these curves is indicative of the operating state of the system. The aim is to track the temporal dynamic evolution of railway component state under different operating contexts by analyzing the specific data in order to detect and diagnose problems that may lead to functioning failure. This thesis tackles the problem of temporal data clustering within a broader context of developing innovative tools and decision-aid methods. We propose a new dynamic probabilistic approach within a temporal data clustering framework. This approach is based on both Gaussian mixture models and state-space models. The main challenge facing this work is the estimation of model parameters associated with this approach because of its complex structure. In order to meet this challenge, a variational approach has been developed. The results obtained on both synthetic and real data highlight the advantage of the proposed algorithms compared to other state of the art methods in terms of clustering and estimation accuracy
Renz, Matthias [Verfasser]. "Enhanced query processing on complex spatial and temporal data / vorgelegt von Matthias Renz." 2006. http://d-nb.info/982631820/34.
Повний текст джерелаMenninghaus, Mathias. "Automated Performance Test Generation and Comparison for Complex Data Structures - Exemplified on High-Dimensional Spatio-Temporal Indices." Doctoral thesis, 2018. https://repositorium.ub.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-20180823528.
Повний текст джерелаPolicarpio, Sean R. "An answer set programming based formal language for complex XML authorisations with temporal constraints." Thesis, 2011. http://handle.uws.edu.au:8081/1959.7/506715.
Повний текст джерелаMINGIONE, MARCO. "On the wide applicability of Bayesian hierarchical models." Doctoral thesis, 2022. http://hdl.handle.net/11573/1613592.
Повний текст джерелаWang, Wen-Jing. "Channel adaptive transmission of big data: a complete temporal characterization and its application." Thesis, 2018. https://dspace.library.uvic.ca//handle/1828/10405.
Повний текст джерелаGraduate