Добірка наукової літератури з теми "Complex systems, networks, dynamical models on networks, stochastic models"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Complex systems, networks, dynamical models on networks, stochastic models".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Complex systems, networks, dynamical models on networks, stochastic models"
Rozum, Jordan C., Jorge Gómez Tejeda Zañudo, Xiao Gan, Dávid Deritei, and Réka Albert. "Parity and time reversal elucidate both decision-making in empirical models and attractor scaling in critical Boolean networks." Science Advances 7, no. 29 (July 2021): eabf8124. http://dx.doi.org/10.1126/sciadv.abf8124.
Повний текст джерелаMorrison, Megan, and Lai-Sang Young. "Chaotic heteroclinic networks as models of switching behavior in biological systems." Chaos: An Interdisciplinary Journal of Nonlinear Science 32, no. 12 (December 2022): 123102. http://dx.doi.org/10.1063/5.0122184.
Повний текст джерелаSafdari, Hadiseh, Martina Contisciani, and Caterina De Bacco. "Reciprocity, community detection, and link prediction in dynamic networks." Journal of Physics: Complexity 3, no. 1 (February 28, 2022): 015010. http://dx.doi.org/10.1088/2632-072x/ac52e6.
Повний текст джерелаKNOPOFF, D. "ON A MATHEMATICAL THEORY OF COMPLEX SYSTEMS ON NETWORKS WITH APPLICATION TO OPINION FORMATION." Mathematical Models and Methods in Applied Sciences 24, no. 02 (December 12, 2013): 405–26. http://dx.doi.org/10.1142/s0218202513400137.
Повний текст джерелаJirsa, Viktor, and Hiba Sheheitli. "Entropy, free energy, symmetry and dynamics in the brain." Journal of Physics: Complexity 3, no. 1 (February 3, 2022): 015007. http://dx.doi.org/10.1088/2632-072x/ac4bec.
Повний текст джерелаPenfold, Christopher A., and David L. Wild. "How to infer gene networks from expression profiles, revisited." Interface Focus 1, no. 6 (August 10, 2011): 857–70. http://dx.doi.org/10.1098/rsfs.2011.0053.
Повний текст джерелаParham, Paul E., and Neil M. Ferguson. "Space and contact networks: capturing the locality of disease transmission." Journal of The Royal Society Interface 3, no. 9 (December 19, 2005): 483–93. http://dx.doi.org/10.1098/rsif.2005.0105.
Повний текст джерелаWarne, David J., Ruth E. Baker, and Matthew J. Simpson. "Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art." Journal of The Royal Society Interface 16, no. 151 (February 2019): 20180943. http://dx.doi.org/10.1098/rsif.2018.0943.
Повний текст джерелаCardelli, Luca, Isabel Cristina Perez-Verona, Mirco Tribastone, Max Tschaikowski, Andrea Vandin, and Tabea Waizmann. "Exact maximal reduction of stochastic reaction networks by species lumping." Bioinformatics 37, no. 15 (February 3, 2021): 2175–82. http://dx.doi.org/10.1093/bioinformatics/btab081.
Повний текст джерелаBombieri, Nicola, Silvia Scaffeo, Antonio Mastrandrea, Simone Caligola, Tommaso Carlucci, Franco Fummi, Carlo Laudanna, Gabriela Constantin, and Rosalba Giugno. "SystemC Implementation of Stochastic Petri Nets for Simulation and Parameterization of Biological Networks." ACM Transactions on Embedded Computing Systems 20, no. 4 (June 2021): 1–20. http://dx.doi.org/10.1145/3427091.
Повний текст джерелаДисертації з теми "Complex systems, networks, dynamical models on networks, stochastic models"
Preciado, Víctor Manuel. "Spectral analysis for stochastic models of large-scale complex dynamical networks." Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45873.
Повний текст джерелаIncludes bibliographical references (p. 179-196).
Research on large-scale complex networks has important applications in diverse systems of current interest, including the Internet, the World-Wide Web, social, biological, and chemical networks. The growing availability of massive databases, computing facilities, and reliable data analysis tools has provided a powerful framework to explore structural properties of such real-world networks. However, one cannot efficiently retrieve and store the exact or full topology for many large-scale networks. As an alternative, several stochastic network models have been proposed that attempt to capture essential characteristics of such complex topologies. Network researchers then use these stochastic models to generate topologies similar to the complex network of interest and use these topologies to test, for example, the behavior of dynamical processes in the network. In general, the topological properties of a network are not directly evident in the behavior of dynamical processes running on it. On the other hand, the eigenvalue spectra of certain matricial representations of the network topology do relate quite directly to the behavior of many dynamical processes of interest, such as random walks, Markov processes, virus/rumor spreading, or synchronization of oscillators in a network. This thesis studies spectral properties of popular stochastic network models proposed in recent years. In particular, we develop several methods to determine or estimate the spectral moments of these models. We also present a variety of techniques to extract relevant spectral information from a finite sequence of spectral moments. A range of numerical examples throughout the thesis confirms the efficacy of our approach. Our ultimate objective is to use such results to understand and predict the behavior of dynamical processes taking place in large-scale networks.
by Víctor Manuel Preciado.
Ph.D.
Vallès, Català Toni. "Network inference based on stochastic block models: model extensions, inference approaches and applications." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/399539.
Повний текст джерелаEl estudio de las redes del mundo real han empujado hacia la comprensión de sistemas complejos en una amplia gama de campos como la biología molecular y celular, la anatomía, la neurociencia, la ecología, la economía y la sociología . Sin embargo, el conocimiento disponible de muchos sistemas reales aún es limitado, por esta razón el poder predictivo de la ciencia en redes se debe mejorar para disminuir la brecha entre conocimiento y información. Para abordar este tema usamos la familia de 'Stochastic Block Modelos' (SBM), una familia de modelos generativos que está ganando gran interés recientemente debido a su adaptabilidad a cualquier tipo de red. El objetivo de esta tesis es el desarrollo de nuevas metodologías de inferencia basadas en SBM que perfeccionarán nuestra comprensión de las redes complejas. En primer lugar, investigamos en qué medida hacer un muestreo sobre modelos puede mejorar significativamente la capacidad de predicción a considerar un único conjunto óptimo de parámetros. Seguidamente, aplicamos el método mas predictivo en una red real particular: una red basada en las interacciones/suturas entre los huesos del cráneo humano en recién nacidos. Concretamente, descubrimos que las suturas cerradas a causa de una enfermedad patológica en recién nacidos son menos probables, desde un punto de vista morfológico, que las suturas cerradas bajo un desarrollo normal. Concretamente, descubrimos que las suturas cerradas a causa de una enfermedad patológica en recién nacidos son menos probables, desde un punto de vista morfológico, que las suturas cerradas bajo un desarrollo normal. Recientes investigaciones en las redes multicapa concluye que el comportamiento de las redes en una sola capa son diferentes a las de múltiples capas; por otra parte, las redes del mundo real se nos presentan como redes con una sola capa. La parte final de la tesis está dedicada a diseñar un nuevo enfoque en el que dos SBM separados describen simultáneamente una red dada que consta de una sola capa, observamos que esta metodología predice mejor que la metodología de un SBM solo.
The study of real-world networks have pushed towards to the understanding of complex systems in a wide range of fields as molecular and cell biology, anatomy, neuroscience, ecology, economics and sociology. However, the available knowledge from most systems is still limited, hence network science predictive power should be enhanced to diminish the gap between knowledge and information. To address this topic we handle with the family of Stochastic Block Models (SBMs), a family of generative models that are gaining high interest recently due to its adaptability to any kind of network structure. The goal of this thesis is to develop novel SBM based inference approaches that will improve our understanding of complex networks. First, we investigate to what extent sampling over models significatively improves the predictive power than considering an optimal set of parameters alone. Once we know which model is capable to describe better a given network, we apply such method in a particular real world network case: a network based on the interactions/sutures between bones in newborn skulls. Notably, we discovered that sutures fused due to a pathological disease in human newborn were less likely, from a morphological point of view, that those sutures that fused under a normal development. Recent research on multilayer networks has concluded that the behavior of single-layered networks are different from those of multilayer ones; notwhithstanding, real world networks are presented to us as single-layered networks. The last part of the thesis is devoted to design a novel approach where two separate SBMs simultaneously describe a given single-layered network. We importantly find that it predicts better missing/spurious links that the single SBM approach.
Boutkhamouine, Brahim. "Stochastic modelling of flood phenomena based on the combination of mechanist and systemic approaches." Thesis, Toulouse, INPT, 2018. http://www.theses.fr/2018INPT0142/document.
Повний текст джерелаFlood forecasting describes the rainfall-runoff transformation using simplified representations. These representations are based on either empirical descriptions, or on equations of classical mechanics of the involved physical processes. The performances of the existing flood predictions are affected by several sources of uncertainties coming not only from the approximations involved but also from imperfect knowledge of input data, initial conditions of the river basin, and model parameters. Quantifying these uncertainties enables the decision maker to better interpret the predictions and constitute a valuable decision-making tool for flood risk management. Uncertainty analysis on existing rainfall-runoff models are often performed using Monte Carlo (MC)- simulations. The implementation of this type of techniques requires a large number of simulations and consequently a potentially important calculation time. Therefore, quantifying uncertainties of real-time hydrological models is challenging. In this project, we develop a methodology for flood prediction based on Bayesian networks (BNs). BNs are directed acyclic graphs where the nodes correspond to the variables characterizing the modelled system and the arcs represent the probabilistic dependencies between these variables. The presented methodology suggests to build the RBs from the main hydrological factors controlling the flood generation, using both the available observations of the system response and the deterministic equations describing the processes involved. It is, thus, designed to take into account the time variability of different involved variables. The conditional probability tables (parameters), can be specified using observed data, existing hydrological models or expert opinion. Thanks to their inference algorithms, BN are able to rapidly propagate, through the graph, different sources of uncertainty in order to estimate their effect on the model output (e.g. riverflow). Several case studies are tested. The first case study is the Salat river basin, located in the south-west of France, where a BN is used to simulate the discharge at a given station from the streamflow observations at 3 hydrometric stations located upstream. The model showed good performances estimating the discharge at the outlet. Used in a reverse way, the model showed also satisfactory results when characterising the discharges at an upstream station by propagating back discharge observations of some downstream stations. The second case study is the Sagelva basin, located in Norway, where a BN is used to simulate the accumulation of snow water equivalent (SWE) given available weather data observations. The performances of the model are affected by the learning dataset used to train the BN parameters. In the absence of relevant observation data for learning, a methodology for learning the BN-parameters from deterministic models is proposed and tested. The resulted BN can be used to perform uncertainty analysis without any MC-simulations to be performed in real-time. From these case studies, it appears that BNs are a relevant decisionsupport tool for flood risk management
Nicoletti, Sara, Duccio Fanelli, Giorgio Battistelli, Luigi Chisci, and Giacomo Innocenti. "Nonlinear dynamics on networks: deterministic and stochastic approaches." Doctoral thesis, 2021. http://hdl.handle.net/2158/1235962.
Повний текст джерела(9792245), Ke Ding. "Studying delay effects on complex dynamical networks." Thesis, 2011. https://figshare.com/articles/thesis/Studying_delay_effects_on_complex_dynamical_networks/13456898.
Повний текст джерела(8086250), Viplove Arora. "A Generalized Framework for Representing Complex Networks." Thesis, 2019.
Знайти повний текст джерелаAdam, Ihusan. "Structure and collective behaviour: a focus on the inverse problem." Doctoral thesis, 2021. http://hdl.handle.net/2158/1230776.
Повний текст джерелаКниги з теми "Complex systems, networks, dynamical models on networks, stochastic models"
Stochastic Chemical Kinetics: Theory and Systems Biological Applications. Springer, 2014.
Знайти повний текст джерелаÉrdi, Péter, and Gábor Lente. Stochastic Chemical Kinetics: Theory and Systems Biological Applications. Springer, 2014.
Знайти повний текст джерелаÉrdi, Péter, and Gábor Lente. Stochastic Chemical Kinetics: Theory and Systems Biological Applications. Springer, 2016.
Знайти повний текст джерелаKoch, Christof. Biophysics of Computation. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780195104912.001.0001.
Повний текст джерелаЧастини книг з теми "Complex systems, networks, dynamical models on networks, stochastic models"
Becker, Till, and Darja Wagner-Kampik. "Complex Networks in Manufacturing and Logistics: A Retrospect." In Dynamics in Logistics, 57–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88662-2_3.
Повний текст джерелаWu, Xunxun, Pengfei Jiao, Yaping Wang, Tianpeng Li, Wenjun Wang, and Bo Wang. "Dynamic Stochastic Block Model with Scale-Free Characteristic for Temporal Complex Networks." In Database Systems for Advanced Applications, 502–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18579-4_30.
Повний текст джерелаLozovanu, Dmitrii, and Stefan Pickl. "A Game-Theoretical Approach to Markov Decision Processes, Stochastic Positional Games and Multicriteria Control Models." In Optimization of Stochastic Discrete Systems and Control on Complex Networks, 213–339. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11833-8_3.
Повний текст джерела"Graph Models." In Synchronization in Complex Networks of Nonlinear Dynamical Systems, 31–49. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709745_0003.
Повний текст джерелаHichem, Bennasr, and M’Sahli Faouzi. "An Optimization Procedure of Model’s Base Construction in Multimodel Representation of Complex Nonlinear Systems." In Optimization Problems in Engineering [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96458.
Повний текст джерелаTrappenberg, Thomas P. "Cyclic models and recurrent neural networks." In Fundamentals of Machine Learning, 183–205. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828044.003.0009.
Повний текст джерелаToroczkai, Zoltan, and György Korniss. "Scalability, Random Surfaces, and Synchronized Computing Networks." In Computational Complexity and Statistical Physics. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195177374.003.0020.
Повний текст джерелаMainzer, Klaus. "Challenges of Complex Systems in Cognitive and Complex Systems." In Thinking Machines and the Philosophy of Computer Science, 367–84. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-61692-014-2.ch022.
Повний текст джерелаKuwahara, Hiroyuki, and Chris J. Myers. "Abstraction Methods for Analysis of Gene Regulatory Networks." In Handbook of Research on Computational Methodologies in Gene Regulatory Networks, 352–85. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-60566-685-3.ch015.
Повний текст джерелаТези доповідей конференцій з теми "Complex systems, networks, dynamical models on networks, stochastic models"
Turner, Jonathan G., and Biswanath Samanta. "Nonlinear Control of Dynamic Systems Using Single Multiplicative Neuron Models." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87440.
Повний текст джерелаWang, Jia, Tong Sun, Benyuan Liu, Yu Cao, and Hongwei Zhu. "CLVSA: A Convolutional LSTM Based Variational Sequence-to-Sequence Model with Attention for Predicting Trends of Financial Markets." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/514.
Повний текст джерелаAbdelbari, Hassan, and Kamran Shafi. "Optimising a constrained echo state network using evolutionary algorithms for learning mental models of complex dynamical systems." In 2016 International Joint Conference on Neural Networks (IJCNN). IEEE, 2016. http://dx.doi.org/10.1109/ijcnn.2016.7727822.
Повний текст джерелаJeon, Soo. "State Estimation for Kinematic Model Over Lossy Network." In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4297.
Повний текст джерелаBadihi, Hamed, Javad Soltani Rad, Youmin Zhang, and Henry Hong. "Data-Driven Model-Based Fault Diagnosis in a Wind Turbine With Actuator Faults." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38686.
Повний текст джерелаSafarkhani, Salar, Ilias Bilionis, and Jitesh H. Panchal. "Understanding the Effect of Task Complexity and Problem-Solving Skills on the Design Performance of Agents in Systems Engineering." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85941.
Повний текст джерелаPanizza, Andrea, Alessio Bonini, and Luca Innocenti. "Uncertainty Quantification of Hot Gas Ingestion for a Gas Turbine Nozzle Using Polynomial Chaos." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42679.
Повний текст джерелаJha, Sumit, Rickard Ewetz, Alvaro Velasquez, and Susmit Jha. "On Smoother Attributions using Neural Stochastic Differential Equations." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/73.
Повний текст джерелаMehrpouyan, Hoda, Brandon Haley, Andy Dong, Irem Y. Tumer, and Chris Hoyle. "Resilient Design of Complex Engineered Systems Against Cascading Failure." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63308.
Повний текст джерелаHall, Daniel L., and Biswanath Samanta. "Nonlinear Control of a Magnetic Levitation System Using Single Multiplicative Neuron Models." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64066.
Повний текст джерела