Дисертації з теми "Complex Networks of treaties"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Complex Networks of treaties".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Sanatkar, Mohammad Reza. "Epidemics on complex networks." Thesis, Kansas State University, 2012. http://hdl.handle.net/2097/14097.
Повний текст джерелаDepartment of Electrical and Computer Engineering
Karen Garrett
Bala Natarajan
Caterina Scoglio
In this thesis, we propose a statistical model to predict disease dispersal in dynamic networks. We model the process of disease spreading using discrete time Markov chain. In this case, the vector of probability of infection is the state vector and every element of the state vector is a continuous variable between zero and one. In discrete time Markov chains, state probability vectors in each time step depends on state probability vector in the previous time step and one step transition probability matrix. The transition probability matrix can be time variant or time invariant. If this matrix’s elements are functions of elements of vector state probability in previous step, the corresponding Markov chain is non linear dynamical system. However, if those elements are independent of vector state probability, the corresponding Markov chain is a linear dynamical system. We especially focus on the dispersal of soybean rust. In our problem, we have a network of US counties and we aim at predicting that which counties are more likely to get infected by soybean rust during a year based on observations of soybean rust up to that time as well as corresponding observations to previous years. Other data such as soybean and kudzu densities in each county, daily wind data, and distance between counties helps us to build the model. The rapid growth in the number of Internet users in recent years has led malware generators to exploit this potential to attack computer users around the word. Internet users are frequent targets of malicious software every day. The ability of malware to exploit the infrastructures of networks for propagation determines how detrimental they can be to the network’s security. Malicious software can make large outbreaks if they are able to exploit the structure of the Internet and interactions between users to propagate. Epidemics typically start with some initial infected nodes. Infected nodes can cause their healthy neighbors to become infected with some probability. With time and in some cases with external intervention, infected nodes can be cured and go back to a healthy state. The study of epidemic dispersals on networks aims at explaining how epidemics evolve and spread in networks. One of the most interesting questions regarding an epidemic spread in a network is whether the epidemic dies out or results in a massive outbreak. Epidemic threshold is a parameter that addresses this question by considering both the network topology and epidemic strength.
Venkatesan, Vaidehi. "Cuisines as Complex Networks." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1321969310.
Повний текст джерелаGonçalves, Bruno Miguel Tavares. "Topology of complex networks." Master's thesis, Universidade de Aveiro, 2004. http://hdl.handle.net/10773/16685.
Повний текст джерелаThe study of connectivity correlations between nodes has been somewhat neglected in the study of Complex Networks. We try to correct this by using the correlation function, combined with the concept of shell to calculate the connectivity distribution, P(d)(k) and the average connectivity for the neighbours,
O estudo das correlações de conectividade entre nodos tem sido algo negligenciado no estudo de Redes Complexas. Nós tentamos alterar esta situação usando funções de correlação em conjunto com o concenito de camada para calcular a distribuição de conectividades P(d)(k) e a conectividade média dos vizinhos
Buzzanca, Marco. "Sociality in Complex Networks." Doctoral thesis, Università di Catania, 2018. http://hdl.handle.net/10761/3766.
Повний текст джерелаMarchese, Emiliano. "Optimizing complex networks models." Thesis, IMT Alti Studi Lucca, 2022. http://e-theses.imtlucca.it/356/1/Marchese_phdthesis.pdf.
Повний текст джерелаTrusina, Ala. "Complex Networks : Structure, Function , Evolution." Doctoral thesis, Umeå University, Physics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-608.
Повний текст джерелаA complex system is a system for which the statement "the whole is greater than the sum of its parts" holds. A network can be viewed as a backbone of a complex system. Combining the knowledge about the entities constituting the complex system with the properties of the interaction patterns we can get a better understanding of why the whole is greater than the sum. One of the purposes of network studies, is to relate the particular structural and dynamical properties of the network to the function it is designed to perform. In the present work I am briefly presenting some of the advances that have been achieved in the field of the complex networks together with the contributions which I have been involved in.
Iyer, Swami. "Evolutionary dynamics on complex networks." Thesis, University of Massachusetts Boston, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3564666.
Повний текст джерелаMany complex systems such as the Internet can be represented as networks, with vertices denoting the constituent components of the systems and edges denoting the patterns of interactions among the components. In this thesis, we are interested in how the structural properties of a network, such as its average degree, degree distribution, clustering, and homophily affect the processes that take place on it. In the first part of the thesis we focus on evolutionary game theory models for studying the evolution of cooperation in a population of predominantly selfish individuals. In the second part we turn our attention to an evolutionary model of disease dynamics and the impact of vaccination on the spread of infection. Throughout the thesis we use a network as an abstraction for a population, with vertices representing individuals in the population and edges specifying who can interact with whom. We analyze our models for a well-mixed population, i.e., an infinite population with random mixing, and compare the theoretical results with those obtained from computer simulations on model and empirical networks.
Taylor, Alan J. "Computational tools for complex networks." Thesis, University of Strathclyde, 2009. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=12414.
Повний текст джерелаCooper, Kathryn. "Complex Networks : Similarity and Dynamics." Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516486.
Повний текст джерелаRAMOS, MARLON FERREIRA. "OPINION DYNAMICS IN COMPLEX NETWORKS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26418@1.
Повний текст джерелаCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
BOLSA NOTA 10
Esta tese aborda diversos problemas que podem ser tratados mediante modelos de dinâmica de opiniões, segundo os quais os indivíduos, conectados de acordo com redes complexas, interagem mediante regras que moldam as preferências e o posicionamento desses indivíduos com relação a uma determinada questão. A metodologia utilizada para investigar os padrões emergentes dessas interações consiste na utilização de diversas técnicas da física estatística. A tese está organizada em torno de quatro problemas distintos, com uma questão particular a ser respondida em cada caso, buscando sempre a validação empírica dos resultados teóricos e computacionais. No primeiro trabalho, é respondida a seguinte questão básica sobre propriedades da rede que podem ter impacto sobre os processos de propagação: quais são os valores típicos das distâncias, coeficiente de aglomeração e outras grandezas estruturais da rede, quando considerado o ensemble de redes aleatórias com uma assortatividade fixa? No segundo trabalho, investigamos os padrões que surgem na avaliação de filmes, considerando como fonte o IMDb (Internet Movie Database). Encontramos que a distribuição de votos apresenta um comportamento livre de escala com um expoente muito próximo de 3/2. Curiosamente, esse padrão é robusto, independente de atributos dos filmes como nota média, idade ou gênero. A análise empírica aponta para um mecanismo de propagação de adoções simples, que gera uma dinâmica de avalanches de campo médio. No terceiro trabalho, abordamos o problema de múltiplas escolhas por meio de um modelo que inclui a possibilidade de indecisão e onde as escolhas dos indivíduos evoluem segundo uma regra de pluralidade. Mostramos que essa dinâmica em redes com a propriedade de mundo pequeno produz diferentes estados estacionários realísticos, que dependem do número de alternativas e da distribuição de graus: consenso, distribuição de adoções larga similar à reais e situações onde a indecisão predomina, quando o número de alternativas é suficientemente grande. Por último, investigamos o surgimento de posições extremas na sociedade, mediante pesquisas em uma ampla gama de questões. O aumento de atitudes extremas tem como precursor uma relação não linear entre a fração de extremistas e a de moderados. Propomos um modelo, com regras de ativação baseadas na teimosia dos indivíduos, que permite interpretar o início da não linearidade em termos de uma transição abrupta do tipo percolação de inicialização onde acontecem cascatas de extremismo. Como conclusão geral, destacamos que esta tese ilustra como os modelos de opinião, aliados às enormes bases de dados, fornecem resultados com poder de interpretação e predição dos padrões empíricos.
This thesis addresses several problems that can be treated through models of opinion dynamics, according to which individuals, connected according to complex networks, interact through rules that shape their preferences and opinions in relation to a particular issue. The methodology used to investigate the patterns that emerge from those interactions relies on the use of various techniques of statistical physics. The thesis is organized around four distinct problems, with a particular question to be answered in each case, always looking for empirical validation of the theoretical and computational results. In the first work, it is answered the following basic question about network properties that can have impact on the spreading processes: what are the typical values of the distances, clustering coefficient and other structural quantities, when considering the ensemble of random networks with fix assortativity? In the second study, we investigated the patterns that emerge in the ratings of films, considering as source IMDb (Internet Movie Database). We found that the distribution of votes has a scale-free behavior with a exponent close to 3/2. Interestingly, this pattern is robust, independently of movie attributes such as average note, age or gender. The empirical analysis points to a simple mechanism of adoption propagation, that generates mean-field avalanches. In the third study, we discuss the problem of multiple choices by means of a model which includes the possibility of indecision and where the choices of individuals evolve according to a plurality rule. We show that this dynamics on top of networks with the small-world property produces different stationary states that depend on the number of alternatives and on the degree distribution: consensus, wide adoption distributions similar to actual ones and situations where indecision prevails when the number of alternatives is large enough. Finally, we investigate the appearance of extreme positions in society, through the polls on a wide variety of questions. The increase of extreme opinions has as precursor a non-linear relationship between the fraction of extremists and that of moderates. We propose a model with activation rules, based on the stubbornness of the individuals, which enables interpreting the beginning of the non-linearity in terms of an abrupt transition of the class of bootstrap percolation, where activation cascades occur. As a general conclusion, we emphasize that this thesis illustrates how opinion models, combined with huge databases, provide results with power of interpretation and prediction of empirical patterns.
Klaise, Janis. "Emergent patterns in complex networks." Thesis, University of Warwick, 2017. http://wrap.warwick.ac.uk/102617/.
Повний текст джерелаKuncheva, Zhana. "Modelling populations of complex networks." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/56990.
Повний текст джерелаNicolaides, Christos. "Anomalous transport in complex networks." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66871.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 43-45).
The emergence of scaling in transport through interconnected systems is a consequence of the topological structure of the network and the physical mechanisms underlying the transport dynamics. We study transport by advection and diffusion in scale-free and Erdős-Rényi networks. Using stochastic particle simulations, we find anomalous (nonlinear) scaling of the mean square displacement with time. We show the connection with existing descriptions of anomalous transport in disordered systems, and explain the mean transport behavior from the coupled nature of particle jump lengths and transition times. Moreover, we study epidemic spreading through the air transportation network with a particle-tracking model that accounts for the spatial distribution of airports, detailed air traffic and realistic (correlated) waitingtime distributions of individual agents. We use empirical data from US air travel to constrain the model parameters and validate the model's predictions of traffic patterns. We formulate a theory that identifies the most influential spreaders from the point of view of early-time spreading behavior. We find that network topology, geography, aggregate traffic and individual mobility patterns are all essential for accurate predictions of spreading.
by Christos Nicolaides.
S.M.
Bidoni, Zeynab Bahrami. "Community detection in complex networks." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2015. http://digitalcommons.auctr.edu/dissertations/2447.
Повний текст джерелаOe, Bianca Madoka Shimizu. "Statistical inference in complex networks." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28032017-095426/.
Повний текст джерелаVários fenômenos naturais e artificiais compostos de partes interconectadas vem sendo estudados pela teoria de redes complexas. Tal representação permite o estudo de processos dinâmicos que ocorrem em redes complexas, tais como propagação de epidemias e rumores. A evolução destes processos é influenciada pela organização das conexões da rede. O tamanho das redes do mundo real torna a análise da rede inteira computacionalmente proibitiva. Portanto, torna-se necessário representá-la com medidas topológicas ou amostrá-la para reduzir seu tamanho. Além disso, muitas redes são amostras de redes maiores cuja estrutura é difícil de ser capturada e deve ser inferida de amostras. Neste trabalho, ambos os problemas são estudados: a influência da estrutura da rede em processos de propagação e os efeitos da amostragem na estrutura da rede. Os resultados obtidos sugerem que é possível predizer o tamanho da epidemia ou do rumor com base em um modelo de regressão beta com dispersão variável, usando medidas topológicas como regressores. A medida mais influente em ambas as dinâmicas é a informação de busca média, que quantifica a facilidade com que se navega em uma rede. Também é mostrado que a estrutura de uma rede amostrada difere da original e que o tipo de mudança depende do método de amostragem utilizado. Por fim, quatro métodos de amostragem foram aplicados para estudar o comportamento do limiar epidêmico de uma rede quando amostrada com diferentes taxas de amostragem. Os resultados sugerem que a amostragem por busca em largura é a mais adequada para estimar o limiar epidêmico entre os métodos comparados.
Sydney, Ali. "Characteristics of robust complex networks." Thesis, Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1580.
Повний текст джерелаDickison, Mark E. "Dynamic and interacting complex networks." Thesis, Boston University, 2012. https://hdl.handle.net/2144/31536.
Повний текст джерелаPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you.
This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration Pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N^(2/3) in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N^(1/2), compared to N^(1/3) in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold We separating a phase (w < wc) where the disease reaches a large fraction of the population from a phase (w > wc) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes. In the fourth chapter, we study epidemic processes on interconnected network systems, and find two distinct regimes. In strongly-coupled network systems, epidemics occur simultaneously across the entire system at a critical value f3e· In contrast, in weakly-coupled network systems, a mixed phase exists below f3e, where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.
2031-01-01
Petazzi, Pierandrea <1981>. "Microscopic Modeling on complex networks." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4296/1/Petazzi_Pierandrea_tesi.pdf.
Повний текст джерелаPetazzi, Pierandrea <1981>. "Microscopic Modeling on complex networks." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4296/.
Повний текст джерелаPossamai, Lino <1978>. "Multidimensional analysis of complex networks." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5389/1/possamai_lino_tesi.pdf.
Повний текст джерелаPossamai, Lino <1978>. "Multidimensional analysis of complex networks." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5389/.
Повний текст джерелаARGENTO, CLAUDIO. "Complex networks: analysis and control." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/596.
Повний текст джерелаSEVERINI, LORENZO. "Centrality maximization in complex networks." Doctoral thesis, Gran Sasso Science Institute, 2017. http://hdl.handle.net/20.500.12571/9703.
Повний текст джерелаDuch, i. Gavaldà Jordi. "Structure and Traffic on Complex Networks." Doctoral thesis, Universitat de Barcelona, 2008. http://hdl.handle.net/10803/21775.
Повний текст джерелаTharmann, Rainer. "Mechanical properties of complex cytoskeleton networks." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=97998002X.
Повний текст джерелаCuquet, Palau Martí. "Entanglement distribution in quantum complex networks." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/107850.
Повний текст джерелаThis thesis deals with the study of quantum networks with a complex structure, the implications this structure has in the distribution of entanglement and how their functioning can be enhanced by operating in the quantum regime. We first consider a complex network of bipartite states, both pure and mixed, and study the distribution of long-distance entanglement. Then, we move to a network with noisy channels and study the creation and distribution of large, multipartite states. The work contained in this thesis is primarily motivated by the idea that the interplay between quantum information and complex networks may give rise to a new understanding and characterization of natural systems. Complex networks are of particular importance in communication infrastructures, as most present telecommunication networks have a complex structure. In the case of quantum networks, which are the necessary framework for distributed quantum processing and for quantum communication, it is very plausible that in the future they acquire a complex topology resembling that of existing networks, or even that methods will be developed to use current infrastructures in the quantum regime. A central task in quantum networks is to devise strategies to distribute entanglement among its nodes. In the first part of this thesis, we consider the distribution of bipartite entanglement as an entanglement percolation process in a complex network. Within this approach, perfect entanglement is established probabilistically between two arbitrary nodes. We see that for large networks, the probability of doing so is a constant strictly greater than zero (and independent of the size of the network) if the initial amount of entanglement is above a certain critical value. Quantum mechanics offer here the possibility to change the structure of the network without need to establish new, "physical" channels. By a proper local transformation of the network, the critical entanglement can be decreased and the probability increased. We apply this transformation to complex network models with arbitrary degree distribution. In the case of a noisy network of mixed states, we see that for some classes of states, the same approach of entanglement percolation can be used. For general mixed states, we consider a limited-path-length entanglement percolation constrained by the amount of noise in the connections. We see how complex networks still offer a great advantage in the probability of connecting two nodes. In the second part, we move to the multipartite scenario. We study the creation and distribution of graph states with a structure that mimic the underlying communication network. In this case, we use an arbitrary complex network of noisy channels, and consider that operations and measurements are also noisy. We propose an efficient scheme to distribute and purify small subgraphs, which are then merged to reproduce the desired state. We compare this approach with two bipartite protocols that rely on a central station and full knowledge of the network structure. We show that the fidelity of the generated graphs can be written as the partition function of a classical disordered spin system (a spin glass), and its decay rate is the analog of the free energy. Applying the three protocols to a one-dimensional network and to complex networks, we see that they are all comparable, and in some cases the proposed subgraph protocol, which needs only local information of the network, performs even better.
Matamalas, Llodrà Joan Tomàs. "Higher-order dynamics on complex networks." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/666484.
Повний текст джерелаEl estudio de redes complejas se ha convertido en un nuevo paradigma para comprender y modelar sistemas físicos. Uno de los principales puntos de interés son las dinámicas que podemos modelar. Pero como en todo modelo, la cantidad de información que podemos representar está limitada por su complejidad. La motivación principal de esta tesis es estudiar el efecto que un incremento de la complejidad estructural, relacional y temporal tiene sobre tres importantes áreas de estudio: la evolución de la cooperación, la propagación de enfermedades, y el estudio de la movilidad humana. En este trabajo hemos utilizado dilemas sociales para estudiar cómo evoluciona la cooperación dentro de una población. Incrementando el orden de complejidad estructural de las redes, permitiendo que los individuos se puedan relacionar en diferentes contextos sociales, se ha demostrado capital para explicar algunas de las características sobre la aparición de comportamientos altruistas. Utilizando estas nuevas estructuras, las redes multicapa, permitimos a los miembros de la población cooperar en determinados contextos y no hacerlo en otros, con lo que, como demostramos analíticamente, aumenta el espectro de escenarios en los que la cooperación y la defección pueden sobrevivir. A continuación, estudiamos modelos de propagación de enfermedades desde el punto de vista de los enlaces entre individuos. Con este aumento de complejidad relacional de los modelos epidémicos, conseguimos extraer información que nos permite, entre otras cosas, definir una medida de contención, basada en la eliminación de los enlaces más influyentes, que se muestra más eficaz que otros métodos previos. Finalmente, proponemos un método para describir la movilidad que permite capturar patrones recurrentes y heterogeneidades en los tiempos que los individuos están en un lugar antes de desplazarse a otro. Estas propiedades son intrínsecas a la movilidad humana y el hecho de poder capturarlas, a pesar de incrementar el orden temporal, es crítico, como demostramos, para modelar cómo las epidemias se difunden por medio del movimiento de las personas.
The study of complex networks has become a new paradigm to understand and model physical systems. One of the points of interest is the dynamics that we can model. However, as with any model, the amount of information that we can represent is limited by its complexity. The primary motivation of this thesis is the study of the effect that an increase in structural, relational and temporal complexity has on three critical areas of study: the evolution of cooperation, epidemic spreading and human mobility. In this work, we have used social dilemmas to study how cooperation within a population evolves. Increasing the order of structural complexity of the networks, allowing individuals to interact in different social contexts, has shown to be crucial to explain some features about the emergence of altruistic behaviors. Using these new structures, multilayer networks, we allow members of the population to cooperate in specific contexts and defect in others, and this, as we analytically demonstrate, increases the spectrum of scenarios where both strategies can survive. Next, we study the models of epidemic spreading from the point of view of the links between individuals. With this increase in the relational complexity of the epidemic models, we can extract information that allows us, among other things, to define a measure of the contribution of a link to the spreading. We use this metric to propose a new containment measure, based on the elimination of the most influential links, which is more effective than other previous methods. Finally, we propose a method to describe mobility that allows capturing recurrent and heterogeneous patterns in the times that individuals stay in a place before moving to another. These properties are intrinsic to human mobility, and the fact of being able to capture them, despite the cost of increasing the temporal order is critical, as we demonstrate, when it comes to modeling how epidemics spread through the movement of the people.
Grau, Leguia Marc. "Automatic reconstruction of complex dynamical networks." Doctoral thesis, Universitat Pompeu Fabra, 2019. http://hdl.handle.net/10803/666631.
Повний текст джерелаUn problema principal de la ciencia de redes es cómo reconstruir (inferir) la topología de una red real usando la señales medidas de sus unidades internas. Entender la arquitectura de redes complejas es clave, no solo para entender su funcionamiento pero también para predecir y controlar su comportamiento. Los métodos existentes se focalizan en la detección de redes no direccionales y normalmente requieren fuertes suposicio- nes sobre el sistema. Sin embargo, muchos de estos métodos no pueden ser aplicados en redes con conexiones direccionales. Para abordar este problema, en esta tesis estudiamos la reconstrucción de redes direccio- nales. En concreto, desarrollamos un método de reconstrucción basado en modelos que combina estadísticas de correlaciones de derivadas con recocido simulado. Además, desarrollamos un método basado en datos cimentado en una medida d’interdependencia no lineal. Este método permite inferir la topología de redes direccionales de osciladores caóticos de Lorenz para un subrango de la fuerza de acoplamiento y densidad de la red. Finalmente, aplicamos el método basado en datos a grabaciones electroencefalográficas de un paciente con epilepsia. Las redes cerebra- les funcionales obtenidas usando este método son consistentes con la información médica disponible.
A foremost problem in network science is how to reconstruct (infer) the topology of a real network from signals measured from its internal units. Grasping the architecture of complex networks is key, not only to understand their functioning, but also to predict and control their behaviour. Currently available methods largely focus on the detection of links of undirected networks and often require strong assumptions about the system. However, many of these methods cannot be applied to networks with directional connections. To address this problem, in this doctoral work we focus at the inference of directed networks. Specifically, we develop a model-based network reconstruction method that combines statistics of derivative-variable correlations with simulated annealing. We furthermore develop a data-driven reconstruction method based on a nonlinear interdependence measure. This method allows one to infer the topology of directed networks of chaotic Lorenz oscillators for a subrange of the coupling strength and link density. Finally, we apply the data-driven method to multichannel electroencephalographic recordings from an epilepsy patient. The functional brain networks obtained from this approach are consistent with the available medical information.
Donges, Jonathan Friedemann. "Complex networks in the climate system." Master's thesis, Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2011/4977/.
Повний текст джерелаDie Theorie komplexer Netzwerke bietet einen eleganten Rahmen zur statistischen Untersuchung der Topologie lokaler und langreichweitiger dynamischer Zusammenhänge (Telekonnektionen) im Klimasystem. Unter Verwendung einer verfeinerten, auf linearen und nichtlinearen Korrelationsmaßen der Zeitreihenanalyse beruhenden Netzwerkkonstruktionsmethode, bilden wir die komplexe Korrelationsstruktur eines multivariaten klimatologischen Datensatzes auf ein Netzwerk ab. Dabei identifizieren wir die Knoten des Netzwerkes mit den Gitterpunkten des zugrundeliegenden Datensatzes, während wir Paare von besonders stark korrelierten Knoten als Kanten auffassen. Die resultierenden Klimanetzwerke zeigen weder die perfekte Regularität eines Kristallgitters, noch eine vollkommen zufällige Topologie. Vielmehr weisen sie faszinierende und nichttriviale Eigenschaften auf, die charakteristisch für natürlich gewachsene Netzwerke wie z.B. das Internet, Zitations- und Bekanntschaftsnetzwerke, Nahrungsnetze und kortikale Netzwerke im Säugetiergehirn sind. Besonders erwähnenswert ist, dass in Klimanetzwerken das Kleine-Welt-Phänomen auftritt. Desweiteren besitzen sie eine breite Gradverteilung, werden von Superknoten mit sehr vielen Nachbarn dominiert, und bilden schließlich regional wohldefinierte Untergruppen von intern dicht vernetzten Knoten aus. Im Rahmen dieser Arbeit wurde eine detaillierte, graphentheoretische Analyse von Klimanetzwerken auf der globalen topologischen Skala durchgeführt, wobei wir uns auf das Netzwerkfluss- und Zentralitätsmaß Betweenness konzentrierten. Betweenness ist zwar lokal an jedem Knoten definiert, enthält aber trotzdem Informationen über die globale Netzwerktopologie. Dies beruht darauf, dass die Verteilung kürzester Pfade zwischen allen möglichen Paaren von Knoten in die Berechnung des Maßes eingeht. Das Betweennessfeld zeigt reichhaltige und zuvor verborgene Strukturen in aus Reanalyse- und Modelldaten der erdoberflächennahen Lufttemperatur gewonnenen Klimanetzen. Das durch unseren neuartigen Ansatz enthüllte Metanetzwerk, bestehend aus hochlokalisierten Kanälen stark gebündelten Informationsflusses, bringen wir mit der Oberflächenzirkulation des Weltozeans in Verbindung. In Analogie mit den gleichnamigen Datenautobahnen des Internets nennen wir dieses Metanetzwerk den Backbone des Klimanetzwerks. Unsere Ergebnisse deuten insgesamt darauf hin, dass Meeresoberflächenströmungen einen wichtigen Beitrag zur Kopplung und Stabilisierung des globalen Oberflächenlufttemperaturfeldes leisten. Wir zeigen weiterhin, dass die hohe Sensitivität des Betweennessmaßes hinsichtlich kleiner Änderungen der Netzwerktopologie die Detektion stark nichtlinearer physikalischer Wechselwirkungen im Klimasystem ermöglichen könnte. Die in dieser Arbeit vorgestellten Ergebnisse wurden mithilfe statistischer Signifikanztests auf der Zeitreihen- und Netzwerkebene gründlich auf ihre Robustheit geprüft. In Anbetracht fehlerbehafteter Daten und komplexer statistischer Zusammenhänge zwischen verschiedenen Netzwerkmaßen ist diese Vorgehensweise besonders wichtig. Weiterhin ist die Entwicklung neuer, allgemein anwendbarer Surrogate für räumlich eingebettete Netzwerke hervorzuheben, die die Berücksichtigung spezieller Klimanetzwerkeigenschaften wie z.B. der Wahrscheinlichkeitsverteilung der Kantenlängen erlauben. Unsere Methode ist universell, weil sie zum Verständnis des lokalisierten Informationsflusses in allen räumlich ausgedehnten, dynamischen Systemen beitragen kann. Deshalb ist sie innerhalb der Physik und anderer angewandter Wissenschaften von potentiell breitem Interesse. Mögliche Anwendungen könnten sich z.B. in der Fluiddynamik (Turbulenz), der Plasmaphysik und der Biophysik (Populationsmodelle, neuronale Netzwerke und Zellmodelle) finden. Darüber hinaus ist der Netzwerkansatz für experimentelle Daten sowie Modellsimulationen gültig, und eröffnet folglich neue Perspektiven für Modellevaluation und datengetriebene Modellierung. Im Rahmen der aktuellen Klimawandeldebatte stellen Klimanetzwerke einen neuartigen Satz von Analysemethoden zur Verfügung, der die Evaluation der lokalen Vulnerabilität und Stabilität des Klimasystems unter Berücksichtigung globaler Randbedingungen ermöglicht. Die in dieser Arbeit entwickelten und untersuchten Methoden könnten folglich in der Zukunft, innerhalb eines holistisch-globalen Ansatzes, zum Verständnis der lokalen Auswirkungen von Extremereignissen und Kipppunkten im Erdsystem beitragen.
Holme, Petter. "Form and function of complex networks." Doctoral thesis, Umeå : Univ, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-222.
Повний текст джерелаMutombo, Franck Kalala. "Long-range interactions in complex networks." Thesis, University of Strathclyde, 2012. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=18021.
Повний текст джерелаYoussef, Mina Nabil. "Measure of robustness for complex networks." Diss., Kansas State University, 2012. http://hdl.handle.net/2097/13689.
Повний текст джерелаDepartment of Electrical and Computer Engineering
Caterina Scoglio
Critical infrastructures are repeatedly attacked by external triggers causing tremendous amount of damages. Any infrastructure can be studied using the powerful theory of complex networks. A complex network is composed of extremely large number of different elements that exchange commodities providing significant services. The main functions of complex networks can be damaged by different types of attacks and failures that degrade the network performance. These attacks and failures are considered as disturbing dynamics, such as the spread of viruses in computer networks, the spread of epidemics in social networks, and the cascading failures in power grids. Depending on the network structure and the attack strength, every network differently suffers damages and performance degradation. Hence, quantifying the robustness of complex networks becomes an essential task. In this dissertation, new metrics are introduced to measure the robustness of technological and social networks with respect to the spread of epidemics, and the robustness of power grids with respect to cascading failures. First, we introduce a new metric called the Viral Conductance ($VC_{SIS}$) to assess the robustness of networks with respect to the spread of epidemics that are modeled through the susceptible/infected/susceptible ($SIS$) epidemic approach. In contrast to assessing the robustness of networks based on a classical metric, the epidemic threshold, the new metric integrates the fraction of infected nodes at steady state for all possible effective infection strengths. Through examples, $VC_{SIS}$ provides more insights about the robustness of networks than the epidemic threshold. In addition, both the paradoxical robustness of Barab\'si-Albert preferential attachment networks and the effect of the topology on the steady state infection are studied, to show the importance of quantifying the robustness of networks. Second, a new metric $VC_$ is introduced to assess the robustness of networks with respect to the spread of susceptible/infected/recovered ($SIR$) epidemics. To compute $VC_$, we propose a novel individual-based approach to model the spread of $SIR$ epidemics in networks, which captures the infection size for a given effective infection rate. Thus, $VC_$ quantitatively integrates the infection strength with the corresponding infection size. To optimize the $VC_$ metric, a new mitigation strategy is proposed, based on a temporary reduction of contacts in social networks. The social contact network is modeled as a weighted graph that describes the frequency of contacts among the individuals. Thus, we consider the spread of an epidemic as a dynamical system, and the total number of infection cases as the state of the system, while the weight reduction in the social network is the controller variable leading to slow/reduce the spread of epidemics. Using optimal control theory, the obtained solution represents an optimal adaptive weighted network defined over a finite time interval. Moreover, given the high complexity of the optimization problem, we propose two heuristics to find the near optimal solutions by reducing the contacts among the individuals in a decentralized way. Finally, the cascading failures that can take place in power grids and have recently caused several blackouts are studied. We propose a new metric to assess the robustness of the power grid with respect to the cascading failures. The power grid topology is modeled as a network, which consists of nodes and links representing power substations and transmission lines, respectively. We also propose an optimal islanding strategy to protect the power grid when a cascading failure event takes place in the grid. The robustness metrics are numerically evaluated using real and synthetic networks to quantify their robustness with respect to disturbing dynamics. We show that the proposed metrics outperform the classical metrics in quantifying the robustness of networks and the efficiency of the mitigation strategies. In summary, our work advances the network science field in assessing the robustness of complex networks with respect to various disturbing dynamics.
Tohalino, Jorge Andoni Valverde. "Extractive document summarization using complex networks." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-24102018-155954/.
Повний текст джерелаDevido à grande quantidade de informações textuais disponíveis na Internet, a tarefa de sumarização automática de documentos ganhou importância significativa. A sumarização de documentos tornou-se importante porque seu foco é o desenvolvimento de técnicas destinadas a encontrar conteúdo relevante e conciso em grandes volumes de informação sem alterar seu significado original. O objetivo deste trabalho de Mestrado é usar os conceitos da teoria de grafos para o resumo extrativo de documentos para Sumarização mono-documento (SDS) e Sumarização multi-documento (MDS). Neste trabalho, os documentos são modelados como redes, onde as sentenças são representadas como nós com o objetivo de extrair as sentenças mais relevantes através do uso de algoritmos de ranqueamento. As arestas entre nós são estabelecidas de maneiras diferentes. A primeira abordagem para o cálculo de arestas é baseada no número de substantivos comuns entre duas sentenças (nós da rede). Outra abordagem para criar uma aresta é através da similaridade entre duas sentenças. Para calcular a similaridade de tais sentenças, foi usado o modelo de espaço vetorial baseado na ponderação Tf-Idf e word embeddings para a representação vetorial das sentenças. Além disso, fazemos uma distinção entre as arestas que vinculam sentenças de diferentes documentos (inter-camada) e aquelas que conectam sentenças do mesmo documento (intra-camada) usando modelos de redes multicamada para a tarefa de Sumarização multi-documento. Nesta abordagem, cada camada da rede representa um documento do conjunto de documentos que será resumido. Além das medições tipicamente usadas em redes complexas como grau dos nós, coeficiente de agrupamento, caminhos mais curtos, etc., a caracterização da rede também é guiada por medições dinâmicas de redes complexas, incluindo simetria, acessibilidade e tempo de absorção. Os resumos gerados foram avaliados usando diferentes corpus para Português e Inglês. A métrica ROUGE-1 foi usada para a validação dos resumos gerados. Os resultados sugerem que os modelos mais simples, como redes baseadas em Noun e Tf-Idf, obtiveram um melhor desempenho em comparação com os modelos baseados em word embeddings. Além disso, excelentes resultados foram obtidos usando a representação de redes multicamada de documentos para MDS. Finalmente, concluímos que várias medidas podem ser usadas para melhorar a caracterização de redes para a tarefa de sumarização.
Arruda, Guilherme Ferraz de. "Modeling spreading processes in complex networks." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-20072018-160836/.
Повний текст джерелаA modelagem matemática dos processos de disseminação tem sido amplamente estudada na literatura, sendo que o seu estudo apresentou um boom nos últimos anos. Esta é uma tarefa fundamental na compreensão e previsão de epidemias reais e propagação de rumores numa população, ademais, estas estão sujeitas a muitas restrições estruturais e dinâmicas. Com o objetivo de entender melhor esses processos, nos concentramos em duas tarefas: a de modelagem e a de análise de aspectos dinâmicos e estruturais. No primeiro, propomos um modelo novo e geral que une a epidemia e propagação de rumores. Também, no que diz respeito à análise desses processos, estendemos o formalismo clássico às redes multicamadas, onde tal teoria era inexistente. Curiosamente, este estudo abriu novos desafios relacionados à compreensão de redes multicamadas, mais especificamente em relação às suas propriedades espectrais. Nessa tese, analisamos esses processos em redes de uma e múltiplas camadas. Ao longo de nossas análises seguimos três abordagens complementares: (i) análises analíticas, (ii) experimentos numéricos e (iii) simulações de Monte Carlo. Assim, nossos principais resultados são: (i) um novo modelo que unifica as dinâmicas de rumor e epidemias, nos permitindo modelar e entender tais processos em grandes sistemas, (ii) caracterização de novos fenômenos em redes multicamadas, como a localização em camadas e o efeito barreira e (iii) uma análise espectral de sistemas multicamadas, sugerindo um parâmetro de escala universal e propondo uma nova ferramenta analítica para sua análise. Nossas contribuições permitem que novas pesquisas sobre modelagem de processos de propagação, enfatizando também a importância de se considerar a estrutura multicamada. Dessa forma, as nossas contribuições podem ser diretamente aplicadas à predição e modelagem de processos reais. Além do interesse teórico e matemático, nosso trabalho também apresenta implicações sociais importantes.
Colombini, Giulio. "Synchronisation phenomena in complex neuronal networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23904/.
Повний текст джерелаUnicomb, Samuel Lee. "Threshold driven contagion on complex networks." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN003.
Повний текст джерелаNetworks arise frequently in the study of complex systems, since interactions among the components of such systems are critical. Net- works can act as a substrate for dynamical process, such as the diffusion of information or disease throughout populations. Network structure can determine the temporal evolution of a dynamical process, including the characteristics of the steady state. The simplest representation of a complex system is an undirected, unweighted, single layer graph. In contrast, real systems exhibit heterogeneity of interaction strength and type. Such systems are frequently represented as weighted multiplex networks, and in this work we in- corporate these heterogeneities into a master equation formalism in order to study their effects on spreading processes. We also carry out simulations on synthetic and empirical networks, and show that spread- ing dynamics, in particular the speed at which contagion spreads via threshold mechanisms, depend non-trivially on these heterogeneities. Further, we show that an important family of networks undergo reentrant phase transitions in the size and frequency of global cascades as a result of these interactions. A challenging feature of real systems is their tendency to evolve over time, since the changing structure of the underlying network is critical to the behaviour of overlying dynamical processes. We show that one aspect of temporality, the observed “burstiness” in interaction patterns, leads to non-monotic changes in the spreading time of threshold driven contagion processes. The above results shed light on the effects of various network heterogeneities, with respect to dynamical processes that evolve on these networks
McCallen, Scott J. "Mining Dynamic Structures in Complex Networks." Kent State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=kent1204154279.
Повний текст джерелаVieira, Emanuel Sousa. "Cascade processes in directed complex networks." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23482.
Повний текст джерелаIn this thesis we study analytically and numerically the bootstrap percolation process in random uncorrelated directed complex networks. We formulate and analyze the bootstrap percolation process on both unweighted and weighted networks and also study a probability based percolation process. The considered percolation process has an associated activation threshold k where a node only gets active if it has at least k active neighboring nodes. We compare our results with analytical and numerical results obtained for undirected complex networks. We also analyze how topological properties of the directed network components, such as the giant strongly connected component and the periphery, influence on the bootstrap percolation process. We apply our theoretical approach for studying the bootstrap percolation on real complex networks. We show that our theoretical approach developed for the case of random uncorrelated directed networks is in a good agreement with numerical simulations of the bootstrap percolation process on real complex networks which actually are correlated and clustered.
Nesta tese estudamos analiticamente e numericamente o processo de bootstrap percolation em redes complexas direcionadas. Formulamos e analisamos o processo de bootstrap percolation em ambas redes com pesos e sem pesos e também estudamos um processo de bootstrap percolation baseado em probabilidades. O processo de bootstrap percolation considerado tem um parâmetro de ativação associado k onde um nó é ativado se tiver pelo menos k nó vizinhos ativos. Comparamos os nossos resultados com resultados analíticos e numéricos obtidos para redes complexas não direcionadas. Analisamos também como as propriedades topológicas dos componentes das redes complexas direcionadas, como o giant strongly connected component e a periferia, influenciam o processo de bootstrap percolation. Aplicamos a nossa teoria no estudo do processo de bootstrap percolation em redes complexas reais. Mostramos que a nossa teoria desenvolvida para redes complexas aleatórias e não correlacionadas está em bom acordo com simulações numéricas do processo de bootstrap percolation em redes complexas reais que são correlacionas e agrupadas.
Zhang, Wu. "Complex networks in nature and society." Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/33482.
Повний текст джерелаLi, Guanliang. "Transport ad percolation in complex networks." Thesis, Boston University, 2013. https://hdl.handle.net/2144/12807.
Повний текст джерелаTo design complex networks with optimal transport properties such as flow efficiency, we consider three approaches to understanding transport and percolation in complex networks. We analyze the effects of randomizing the strengths of connections, randomly adding longrange connections to regular lattices, and percolation of spatially constrained networks. Various real-world networks often have links that are differentiated in terms of their strength, intensity, or capacity. We study the distribution P(σ) of the equivalent conductance for Erdös-Rényi (ER) and scale-free (SF) weighted resistor networks with N nodes, for which links are assigned with conductance σi = e^-axi, where xi is a random variable with 0 < xi < 1. We find, both analytically and numerically, that P(σ) for ER networks exhibits two regimes: (i) For σ < e^-apc, P(σ) is independent of N and scales as a power law P(σ) ~ σ^(k)/a-1. Here pc = 1/(k) is the critical percolation threshold of the network and (k) is the average degree of the network. (ii) For σ > e^-apc, P(σ) has strong N dependence and scales as P(σ) ~ f(σ,apc/N^1/3). Transport properties are greatly affected by the topology of networks. We investigate the transport problem in lattices with long-range connections and subject to a cost constraint, seeking design principles for optimal transport networks. Our network is built from a regular d-dimensional lattice to be improved by adding long-range connections with probability Pij ~ rij^-α, where Tij is the lattice distance between site i and j. We introduce a cost constraint on the total length of the additional links and find optimal transport in the system for α = d + 1, established here for d = 1, 2 and 3 for regular lattices and df for fractals. Remarkably, this cost constraint approach remains optimal, regardless of the strategy used for transport, whether based on local or global knowledge of the network structure. To further understand the role that long-range connections play in optimizing the transport of complex systems, we study the percolation of spatially constrained networks. We now consider originally empty lattices embedded in d dimensions by adding long-range connections with the same power law probability p(r) ~ r^-α. We find that, for a ≤ d, the percolation transition belongs to the universality class of percolation in ER networks, while for α > 2d it belongs to the universality class of percolation in regular lattices (for one-dimensional linear chain, there is no percolation transition). However for d < α < 2d, the percolation properties show new intermediate behavior different from ER networks, with critical exponents that depend on α.
Pennacchioli, Diego. "Big data, complex networks and markets." Thesis, IMT Alti Studi Lucca, 2014. http://e-theses.imtlucca.it/139/1/Pennacchioli_phdthesis.pdf.
Повний текст джерелаPaula, DemÃtrius Ribeiro de. "Dynamics of neural networks and cluster growth in complex networks." Universidade Federal do CearÃ, 2006. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=206.
Повний текст джерелаEste dissertaÃÃo foi dividida em duas partes, na primeira parte nÃs propomos um modelo de crescimento competitivo de gregados em redes complexas para simular a propagaÃÃo de idÃias ou opiniÃes em comunidades. Investigamos como as distribuiÃÃes de tamanhos de agregados variam com a topologia de construÃÃo da rede e com o nÃmero de sementes aleatoriamente dispersas na estrutura. Para tal, analisamos redes do tipo de Erdos-RÃnyi, redes de contato preferencial e a chamada rede Apoloniana. Esta Ãltima apresenta distribuiÃÃes de tamanho de agregado em forma de uma lei de potÃncia com um expoente aproximadamente 1. Resultados similares sÃo observados com as distribuiÃÃes obtidas para as fraÃÃes de votos por candidato Ãs eleiÃÃes proporcionais para deputados no Brasil. Na segunda parte, analisamos o comportamento temporal da atividade neural em redes com caracterÃsticas de mundo pequeno e em redes construÃdas segundo o modelo do contato preferencial. Nesta primeira topologia, estudamos como a sÃrie temporal se comporta com a variaÃÃo do alcance das conexÃes. Em ambas as topologias, observamos a formaÃÃo de perÃodos e investigamos como estes variam com o tamanho da rede.
The process by which news trends and ideas propagate in social communities can have a profound impact in the life of individuals. To understand thi process, we introduce a competitive cluster growth model in complex networks. In our model, each cluster represents the set of individuals with a certain opinion or preference. We investigate how the cluster size distribution depends on the topology of the network and how it is affected by the number of initial seeds dispersed in the structure. We study our model using different network models, namely, the Erdos-Renyi geometry, the preferential attachment model, and the so-called Apollonian network. This last complex geometry displays a cluster size distribution that follows a power-law with an exponent 1.0. Similar results have been obtained for the distributions of number of votes per candidate in the proportional elections for federal representation in Brazil. In the second part of this work, we investigate the temporal behavior of neural networks with small world topology and in networks built according to the preferential attachment model. In the first case we study the effect of the range of connections on the behavior of the time series. In both topologies, we detect the existence of cycles and investigate how their periods depend on the size of the system.
Sansavini, Francesca. "Quantum information protocols in complex entangled networks." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18512/.
Повний текст джерелаPrignano, Luce. "Reconstruction, mobility, and synchronization in complex networks." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/83840.
Повний текст джерелаDurante las últimas décadas, se ha empezado a poner de manifiesto que sistemas formados por muchos elementos en interacción pueden mostrar propiedades dinámicas emergentes relacionadas con la topología del patrón de conexiones entre las partes constituyentes. Estos sistemas, generalmente conocidos como sistemas complejos, en muchos casos pueden ser descritos a través de sus redes de contactos, es decir, en términos de nodos (que representan los componentes del sistema) y de enlaces (sus interacciones). De esta manera es posible capturar sus características esenciales en una representación simple y general. En esta última década, el creciente interés en este enfoque, gracias también a un progreso tecnológico favorable, ha llevado a la acumulación de una cantidad ingente de datos. Eso, a su vez, ha permitido el surgimiento de nuevas preguntas y, por lo tanto, la diversificación de la actividad científica. Entre ellas, podemos destacar tres cuestiones generales que son objeto de mucho interés: (i) ¿la información disponible es siempre fiable y completa? (ii) ¿cómo un patrón de interacción complejo puede afectar el surgimiento de comportamientos colectivos? Y (iii) ¿cual es el papel de la movilidad en el marco de las redes complejas? Esta tesis se ha desarrollado siguiendo estas tres líneas, que están íntimamente relacionadas entre sí. Hemos profundizado en tres casos de estudio, cada uno de los cuales se ocupa de dos de los macro-temas mencionados. Consideramos la cuestión del carácter incompleto de la información disponible tanto en el caso de redes naturales (Capítulo 2) como de redes artificiales (Capítulo 3). Nos centramos en la sincronización de los osciladores de fase acoplados (Capítulos 2 y 4) en cuanto comportamiento emergente paradigmático, investigando en profundidad cómo los diferentes patrones de conexión puedan afectar la consecución de un estado coherente a nivel global. Por último, analizamos el rol de la movilidad incluyendo agentes móviles en dos marcos diferentes. En un caso, los utilizamos como exploradores de redes desconocidas (Capítulo 3), mientras que en otro los consideramos como unidades que interaccionan y son capaces de establecer conexiones con sus vecinos (Capítulo 4).
Lordan, Oriol. "Airline route networks : a complex network approach." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/144526.
Повний текст джерелаManzano, Castro Marc. "New robustness evaluation mechanism for complex networks." Doctoral thesis, Universitat de Girona, 2014. http://hdl.handle.net/10803/295713.
Повний текст джерелаLa ciència de les xarxes (o network science) ha avançat significativament en l'última dècada, proporcionant coneixement sobre l'estructura subjacent i la dinàmica de les xarxes complexes (o complex networks). Infraestructures crítiques com xarxes de telecomunicacions, juguen un paper fonamental per garantir el bon funcionament de la vida moderna. Aquestes xarxes han de lidiar constantment amb fallades dels seus components. En escenaris de fallades múltiples, on els esquemes de protecció i restauració tradicionals no són adequats degut a la gran quantitat de recursos que serien necessaris, el concepte de robustesa (o robustness) s'utilitza per tal de quantificar com de bona és una xarxa quan es produeix una fallada a gran escala. L'objectiu d'aquesta tesi és, en primer lloc, investigar les amenaces actuals de les xarxes d'avui en dia que poden portar a escenaris de fallades múltiples i, en segon lloc, proposar nous indicadors capaços de quantificar la robustesa d'aquestes xarxes.
Mirshahvalad, Atieh. "Organization of information pathways in complex networks." Doctoral thesis, Umeå universitet, Institutionen för fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-79734.
Повний текст джерелаOllivier, Julien. "Scalable methods for modelling complex biochemical networks." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104586.
Повний текст джерелаAu niveau cellulaire, des réseaux complexes d'interaction biomoléculaire traitent les signaux tant environnementaux qu'endogènes dans le but de contrôler l'expression génétique ainsi que d'autres processus cellulaires. Ceci est un défi pour les chercheurs qui veulent concevoir des modèles mathématiques et calculatoires des réseaux biochimiques. Dans cette thèse, je propose des méthodes qui facilitent la gestion de cette complexité en exploitant la constatation que, tout comme d'autres systèmes biologiques, les réseaux cellulaires se caractérisent par une modularité qui transparaît à tous les niveaux d'organisation.Dans la première partie, je mets l'accent sur les propriétés modulaires des protéines et sur la façon de caractériser leur fonction, compte tenu de leur structure et de leurs propriétés allostériques. J'ai mis au point un cadre modulaire à base de règles ainsi qu'un langage formel de modélisation qui permet de décrire les calculs effectués par les protéines allostériques et qui découle de principes biophysiques. La modélisation à base de règles s'adresse conventionnellement au problème de la complexité combinatoire, où les interactions entre les protéines peuvent générer une explosion combinatoire d'états des complexes protéiques. J'examine, cependant, comment il peut s'avérer nécessaire d'utiliser un nombre combinatoire de paramètres pour décrire ces mêmes interactions. Je démontre que notre cadre à base de règles peut régler efficacement ce problème de la complexité régulatoire, et permet de décrire les protéines et les réseaux allostériques de façon unifiée, cohérente et modulaire. J'utilise le cadre développé dans trois applications. Tout d'abord, je montre que l'allostérie peut rendre l'assemblage macromoléculaire plus efficace lorsqu'une protéine qui unit deux parties distinctes d'un complexe protéique est présente en concentration excessive. Deuxièmement, je démontre qu'il est relativement simple d'analyser les interactions coopératives complexes qui surviennent lorsque des ligands compétitifs se lient à une protéine multimérique. En troisième lieu, j'analyse un nouveau modèle de la signalisation des récepteurs couplés aux protéines G qui explique leur sélectivité fonctionnelle tout en limitant le nombre des paramètres utilisés. Globalement, je montre que ce cadre basé sur des règles, qui est implémenté dans le logiciel ‘Allosteric Network Compiler', peut faciliter la modélisation et l'analyse d'interactions allostériques complexes.Si les réseaux cellulaires sont modulaires, il en résulte que des sous-systèmes peuvent être étudiés séparément, à la condition que les entrées et les perturbations externes du système puissent être modélisées adéquatement. Cependant, ces réseaux sont soumis à l'influence du bruit intrinsèque, qui est endogène au système, mais également au bruit extrinsèque, venant des entrées bruyantes. De plus, de nombreuses entrées peuvent être dynamiques. Cela motive, dans la deuxième partie de ce travail, le développement d'algorithmes efficients de simulation stochastique pour les réseaux biochimiques qui peuvent tenir compte de paramètres biochimiques dynamiques. En me fondant sur la méthode maintenant célèbre de Gillespie, d'appellation ‘First Reaction Method', et sur celle de Gibson et Bruck, la ‘Next Reaction Method', j'ai développé deux nouveaux algorithmes qui permettent des entrées dynamiques de forme fonctionnelle arbitraire tout en s'échelonnant bien sur les systèmes qui comportent de nombreuses réactions biochimiques. J'analyse leurs propriétés d'échelonnement et je constate que, pour certaines applications, la ‘First Reaction Method' modifiée s'échelonne mieux que la ‘Next Reaction Method' modifiée.La troisième et dernière partie cette thèse est la présentation d'un nouvel outil informatique, Facile, qui simplifie la création, la mise à jour et la simulation de modèles de réseaux biochimiques.
Loeh, Hermann. "A coordination framework for complex production networks." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.248422.
Повний текст джерелаBalakrishnan, Hemant. "ALGORITHMS FOR DISCOVERING COMMUNITIES IN COMPLEX NETWORKS." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2478.
Повний текст джерелаPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Science