Дисертації з теми "Completed cohomology"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-46 дисертацій для дослідження на тему "Completed cohomology".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Rodriguez, Camargo Juan Esteban. "Locally analytic completed cohomology of Shimura varieties and overconvergent BGG maps." Thesis, Lyon, 2022. http://www.theses.fr/2022LYSEN027.
Повний текст джерелаIn this thesis, we study the Hodge-Tate structure of the proétale cohomology of Shimura varieties. This document is divided in four main issues. First, we construct an integral model of the perfectoid modular curve. Using this formal scheme, we prove some vanishing results for the coherent cohomology of the perfectoid modular curve, we also provide a description of the dual completed cohomology as an inverse limit of integral modular forms of weight 2 by normalized traces. Secondly, we construct the overconvergent Eichler-Shimura map for the first coherent cohomology group, complementing the work of Andreatta-Iovita-Stevens. More precisely, we construct a map from the overconvergent cohomology with compact support of Boxer-Pilloni to the locally analytic modular symbols of Ash-Stevens. We reinterpret the construction of these maps in terms of the Hodge-Tate period map and the perfectoid modular curve. Thirdly, in a joint work with Joaquín Rodrigues Jacinto, we develop the classical theory of locally analytic representations of p-adic Lie groups in the context of condensed mathematics. Inspired from foundational works of Lazard, Schneider-Teitelbaum and Emerton, we define a notion of solid locally analytic representation for a compact p-adic Lie group. We prove that the category of solid locally analytic representations can be described as modules over algebras of analytic distributions. As an application, we prove a cohomological comparison theorem between solid group cohomology, solid group cohomology of the (derived) locally analytic vectors, and Lie algebra cohomology. Finally, we generalize the work of Lue Pan to arbitrary Shimura varieties. We construct a geometric Sen operator for a particular class of proetale modules over the structural sheaf which we call relative locally analytic. We prove that this Sen operator is related with the p-adic Simpson correspondence, and that it computes proétale cohomology. We apply this theory to Shimura varieties, obtaining that the computation of proétale cohomology can be translated in terms of Lie algebra cohomology over the flag variety via the Hodge-Tate period map. In particular, we prove that the Cp-extension of scalars of the locally analytic completed cohomology can be described as the analytic cohomology of the infinite-at-p level Shimura variety, of the locally analytic sections of the structural sheaf. This implies a rational version of the Calegari-Emerton conjectures for any Shimura variety without the hypothesis of the infinite-at-p level Shimura variety to be perfectoid. Then, we study the isotypic components of the locally analytic completed cohomology for the action of a Borel subalgebra. Using the interpretation as Lie algebra cohomology over the flag variety, we construct overconvergent BGG maps generalizing the previous work for the modular curve. In addition, we give a local proof of the classical Hodge-Tate decompositions for Shimura varieties, using the dual BGG resolution and the Hodge-Tate period map
Paganin, Matteo. "On some generalizations of Tate Cohomology: an overview." Pontificia Universidad Católica del Perú, 2016. http://repositorio.pucp.edu.pe/index/handle/123456789/97253.
Повний текст джерелаEste artículo es una revisión del desarrollo y generalizaciones de la cohomología de Tate. El número de tales generalizaciones es alto y la literatura en torno a muchas de ellas es vasta. Por consiguiente, no pretendemos dar un recuento completo de las ramas que se desprenden de las ideas originales de Tate; esto más bien representa un bosquejo de cómo estas ideas se han ido desarrollando.
Ben, Charrada Rochdi. "Cohomologie de Dolbeault feuilletée de certaines laminations complexes." Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2013. http://tel.archives-ouvertes.fr/tel-00871710.
Повний текст джерелаNucinkis, Brita Erna Anita. "Complete cohomological functors and finiteness conditions." Thesis, Queen Mary, University of London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246487.
Повний текст джерелаCombe, Noémie. "On a new cell decomposition of a complement of the discriminant variety : application to the cohomology of braid groups." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0140.
Повний текст джерелаThis thesis mainly concerns two closely related classical objects: on the one hand, the variety of unitary complex polynomials of degree $ d> 1 $ with a variable, and with simple roots (hence with a non-zero discriminant), and on the other hand, the $d$ strand Artin braid groups. The work presented in this thesis proposes a new approach allowing explicit cohomological calculations with coefficients in any sheaf. In order to obtain explicit cohomological calculations, it is necessary to have a good cover in the sense of Čech. One of the main objectives of this thesis is to construct such a good covering, based on graphs that are reminiscent of the ''dessins d'enfants'' and which are associated to the complex polynomials. This decomposition of the space of polynomials provides a semi-algebraic stratification. The number of connected components in each stratum is counted in the last chapter of this thesis. Nevertheless, this partition does not immediately provide a ''good'' cover adapted to the computation of the cohomology of Čech (with any coefficients) for two related and obvious reasons: on the one hand the subsets of the cover are not open, and moreover they are disjoint since they correspond to different signatures. Therefore, the main purpose of Chapter 6 is to ''correct'' the cover in order to transform it into a good open cover, suitable for the calculation of the Čech cohomology. It is explicitly verified that there is an open cover such that all the multiple intersections are contractible. This allows an explicit calculation of cohomology groups of Čech with values in a locally constant sheaf
Jaloux, Christophe. "Cohomologie des variétés feuilletées." Phd thesis, Université Claude Bernard - Lyon I, 2008. http://tel.archives-ouvertes.fr/tel-00358710.
Повний текст джерелаJoshi, Janhavi. "On the L² Cohomology of Complete Kähler Convex Manifolds." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1277942962.
Повний текст джерелаPillet, Basile. "Géométrie complexe globale et infinitésimale de l'espace des twisteurs d'une variété hyperkählérienne." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S021/document.
Повний текст джерелаThe purpose of this thesis is to construct geometric objects on a manifold C parametrizing rational curves in the twistor space of a hyperkähler manifold. We shall establish a correspondence between the complex geometry of the twistor space and some differential properties of C (differential operators and curvature of a complex riemannian structure inherited from the base hyperkähler manifold). The first chapters gather some classical results of the theory of hyperkähler manifolds and their twistor spaces. In the chapters 4, 5 and 6, we construct an equivalence of categories between bundles on the twistor space which are trivial on each line and bundles with a connexion of C satisfying certain curvature conditions. The chapter 7 extends this correspondence on the cohomological level whereas the chapter 8 explores its infinitesimal version ; it links curvature of the connexion with thickening (in the sense of LeBrun) of the bundle along the lines
Hoggart, John. "On the cohomology of generalised quadratic complexes over the complex numbers." Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338454.
Повний текст джерелаAnel, Mathieu. "Champs de modules des catégories linéaires et abéliennes." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00085627.
Повний текст джерелаLe résultat principal de la thèse est que, sous des conditions de finitude des objets classifiés, ces champs sont géométriques au sens de C.~Simpson. En particulier, on trouve que les complexes tangents de ces champs en une catégorie $C$, i.e. les objets classifiant les déformations au premier ordre de $C$, sont donnés par des tronqués du complexe de cohomologie de Hochschild de $C$.
En plus, il existe une suite naturelle de morphismes surjectifs de champs :
$$\ukcatiso \tto \ukcateq \tto \ukcatmor \tto \ukab$$
dont on montre que celui du milieu est étale, et celui de droite une équivalence.
Gurrola, Perez Pedro. "Cohomologie quaternionique bivariante et caractère de Chern hermitien." Montpellier 2, 1992. http://www.theses.fr/1992MON20190.
Повний текст джерелаLond, Daniel. "On Reductive Subgroups of Algebraic Groups and a Question of Külshammer." Thesis, University of Canterbury. Mathematics and Statistics, 2013. http://hdl.handle.net/10092/8033.
Повний текст джерелаFlexor-Mangeney, Marguerite. "Images directes en cohomologie cohérente." Paris 11, 1986. http://www.theses.fr/1986PA112032.
Повний текст джерелаLet S be an affine scheme, f: X → S a morphism of finite type and F a coherent OX-module. When f is proper and F is flat over S , Rf. F is a perfect complex (A. Grothendieck). Conversely we show that, any perfect complex L. Of Os-modules is of the form R. F*, where f:IPn → S and F is opn-module locally free (cf. 1st article with L. Szpiro). When f is quasi-projectif, F flat over S, when Rif*F is an Os -module of finite type for i≤p , where p is a fixed integer, we show, when F satisfies some conditions on depth, that there exists a perfect complex L. Over S , a morphism L. → R. F*F which induces an isomorphism on the cohomology in degrees ≤ P The construction of L. Is obtained by showing that Rf*F is a direct limit of a family of perfect complexes, the troncated complexes in degree form an essentially constant family. For that, we have to consider the categories of Ind-objects "lim"Lα. And by duality of pro-objects "lim"Kα
Schulze, Bert-Wolfgang, and Nikolai N. Tarkhanov. "A Lefschetz fixed point formula in the relative elliptic theory." Universität Potsdam, 1998. http://opus.kobv.de/ubp/volltexte/2008/2515/.
Повний текст джерелаBiolley, Anne-Laure. "Cohomologie de Floer, hyperbolicités symplectique et pseudo-complexe." Palaiseau, Ecole polytechnique, 2003. http://www.theses.fr/2003EPXX0052.
Повний текст джерелаBeaudouin, Thomas. "Etude de la cohomologie d'algèbres de Leibniz via des suites spectrales." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4102/document.
Повний текст джерелаThis thesis is devoted to the study of different spectral sequences for the cohomology of Leibniz alebras in general or in certain specific examples. Some of the results are motivated by work of G.Hochschild and J.-P. Serre for Lie algebras and groups as well as the thesis of A.V. Gnedbaye on the homology of Leibniz algebras with values in a special kind of modules. In the first chapter we define the notion of aLeibniz algebras as a generalization of a Lie algebras with a non-antisymmetric bracket. We also prove some basic properties of Leibniz algebras. The second chapter is a general introduction to spectral sequences, especially those defined from a filtration of a complex. Among other topics, we consider the notion of convergence of a spectral sequence. In the third chapter four different filtrations of Loday’s complex defining Leibniz cohomology are studied. We compute the first pages for the spectral sequences arising from each of these filtrations. As a consequence we derive some properties of Leibniz cohomology. The last chapter give some other applications of the results obtain in Chapter 3
Nave, Lee Stewart. "The cohomology of finite subgroups of Morava stabilizer groups and Smith-Toda complexes /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5803.
Повний текст джерелаCharles, François. "Cycles algébriques et cohomologie de certaines variétés projectives complexes." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2010. http://tel.archives-ouvertes.fr/tel-00472932.
Повний текст джерелаGhazizadeh, Parisa. "On the torsion part in the cohomology of Deligne-Lusztig varieties." Thesis, Université de Paris (2019-....), 2019. https://theses.md.univ-paris-diderot.fr/GHAZIZADEH_Parisa_va2.pdf.
Повний текст джерелаIn this thesis, we study some geometric methods due to Deligne and Lusztig to construct the representation theory of finite reductive groups. We restrict ourselves to the general linear algebraic group and study the unipotent representations via the cohomology of Deligne-Lusztig varieties associated to unipotent blocks of the group. The Deligne-Lusztig varieties are those involved in the geometric version of the abelian defect group conjecture. We find a modular analogue for understanding the representation theory in positive characteristic. For transferring the information from characteristic zero to positive characteristic, we need to study the cohomology of Deligne-Lusztig varieties over Zι. Our main result is to show torsion-free property for their cohomology groups. The first usage of this property is to compute the cohomology groups of Deligne-Lusztig varieties in positive characteristic. The second usage is to find a representative for the cohomology complex. As the second result, we prove that, under specific assumptions cohomology complex of Deligne-Lusztig varieties is partial-tilting complex
Biolley, Anne-Laure. "Cohomologie de Floer, hyperbolicités symplectique et pseudocmplexe." Phd thesis, Ecole Polytechnique X, 2008. http://pastel.archives-ouvertes.fr/pastel-00000702.
Повний текст джерелаWagemann, Friedrich. "Sur la cohomologie de Gelfand-Fuks des champs de vecteurs holomorphes." Lyon 1, 1999. http://www.theses.fr/1999LYO10147.
Повний текст джерелаZhao, Tiehong. "Géométries des réseaux hyperboliques complexes." Paris 6, 2011. http://www.theses.fr/2011PA066613.
Повний текст джерелаKaddar, Mohamed. "Constructions cohomologiques dans l'espace des cycles." Nancy 1, 1994. http://www.theses.fr/1994NAN10048.
Повний текст джерелаBurel, Thomas. "Déformation des feuilletages par variétés complexes." Thesis, Dijon, 2010. http://www.theses.fr/2010DIJOS058.
Повний текст джерелаThe aim of this work is to generalise the study of deformations of complex manifolds by kodaira and Spencer to the case of manifolds foliated by complex manifolds. After defning the notion of family of deformations of compact manifold foliated by complex manifolds, we prove a theorem of rigidity, one of completeness and one of existence in our framework. We can not apply one potential theory here, so we have to use power series technics
Vasserot, Eric. "Formule asymptotique de la torsion analytique de Ray-Singer d'un fibré vectoriel positif, classe de Segre équivariante et représentation de groupes quantiques dans l'espace de cohomologie de la variété des drapeaux non complets." Paris 7, 1992. http://www.theses.fr/1992PA077203.
Повний текст джерелаDing, Yiwen. "Formes modulaires p-adiques sur les courbes de Shimura unitaires et compatibilité local-global." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112035/document.
Повний текст джерелаThe subject of this thesis is in the p-adic Langlands programme. Let L be a finite extension of \Q_p, \rho_L a 2-dimensional p-adic representation of the Galois group \Gal(\overline{\Q_p}/L) of L, if \rho_L is the restriction of a global modular Galois representation \rho (i.e. \rho appears in the étale cohomology of Shimura curves), one can associate to \rho an admissible Banach representation \widehat{\Pi}(\rho) of \GL_2(L) by using Emerton's completed cohomology theory. Locally, if \rho_L is crystalline (and sufficiently generic), following Breuil, one can associate to \rho_L a locally analytic representation \Pi(\rho_L) of \GL_2(L). In this thesis, we prove results on the compatibility of \widehat{\Pi}(\rho) and \Pi(\rho_L), called local-global compatibility, in the unitary Shimura curves case. By locally analytic representations theory (for \GL_2(L)), the problem of local-global compatibility can be reduced to the study of eigenvarieties X constructed from the completed H^1 of unitary Shimura curves. We prove results on local-global compatibility in non-critical case by using global triangulation theory. We also study the p-adic modular forms over unitary Shimura curves, from which we construct some closed rigid subspaces of X by Coleman-Mazur's method. We prove the existence of overconvergent companion forms (over unitary Shimura curves) by using p-adic comparison theorems, from which we deduce some results on local-global compatibility in critical case
Grivaux, Julien. "Quelques problèmes de géométrie complexe et presque complexe." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2009. http://tel.archives-ouvertes.fr/tel-00460334.
Повний текст джерелаMenet, Grégoire. "Cohomologie entière et fibrations lagrangiennes sur certaines variétés holomorphiquement symplectiques singulières." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10050/document.
Повний текст джерелаThe starting point of the thesis was the study of a singular irreducible holomorphically symplectic variety (IHSV) of dimension 4 with orbifold singularities which was constructed by Markushevich—Tikhomirov in 2007 as a compactification of a Lagrangian family of (1,2)-polarized Prym surfaces. This family of Prym surfaces is associated to a linear system of genus-3 curves on a quartic K3 surface endowed with an anti-symplectic involution. In the fist part of the thesis, the Beauville—Bogomolov form (BB) on the second integer cohomology group of this IHSV is computed. The existence of the BB form for an IHSV with singular locus of codimension 4 was proved by Namikawa, but no explicit example of such a form was known. The thesis provides the first concrete examples of BB forms on singular IHSV. The calculation of these BB forms required the development of some tools for computing the integer cohomology of varieties quotiented by automorphism groups of prime order. In the second part of the thesis, the mirror family of dual abelian surfaces for the Markushevich—Tikhomirov IHSV is determined. As it turns out, it is also a family of Prym surfaces associated to a quartic K3 surface with an anti-symplectic involution and hence admits a compactification, which is the mirror of the original IHSV. A very precise geometric description of this duality is given, using Pantazis's bigonal construction. Moreover, it is proved that the mirror symmetry constructed in this way represents a non-trivial birational involution on the moduli space of Markushevich—Tikhomirov IHSV
Reynaud, Eric. "Le groupe fondamental algébrique." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2002. http://tel.archives-ouvertes.fr/tel-00202368.
Повний текст джерелаMorel, Sophie. "Complexes d'intersection des compactifications de Baily-Borel : le cas des groupes unitaires sur Q." Paris 11, 2005. http://www.theses.fr/2005PA112250.
Повний текст джерелаIn this work, we calculate the trace of a power of the Frobenius endomorphism on the fibers of the intersection complex of the Baily-Borel compactification of a Shimura variety associated to a unitary group over Q. Our main tool is Pink's theorem about the restriction to the strata of the Baily-Borel compactification of a local system on the Shimura variety. To use this theorem, we give a new construction of the intermediate extension of a pure perverse sheaf as a weight truncated of the full direct image. More generally, we are able to define analogs in positive characteristic of the weighted cohomology complexes introduced by Goresky, Harder and MacPherson
Benzeghli, Brahim. "Étude explicite de quelques n-champs géométriques." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00868795.
Повний текст джерелаGorinov, Alexei. "Résolutions coniques des variétés : discriminants et applications à la géométrie algébrique complexe et réelle." Paris 7, 2004. https://tel.archives-ouvertes.fr/tel-00012101.
Повний текст джерелаSambou, Salomon. "Equation de Cauchy-Riemann pour les courants prolongeables." Université Joseph Fourier (Grenoble ; 1971-2015), 2001. http://www.theses.fr/2001GRE10081.
Повний текст джерелаMcBride, Aaron. "Grothendieck Group Decategorifications and Derived Abelian Categories." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33000.
Повний текст джерелаGriveau, Amélie. "Characterization and function of Dbx1-derived Cajal-Retzius cells during cerebral cortex development." Paris 6, 2009. http://www.theses.fr/2009PA066265.
Повний текст джерелаNemati, Navid. "Syzygies : algebra, combinatorics and geometry." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS284.
Повний текст джерелаCastelnuovo-Mumford regularity is one of the main numerical invariants that measure the complexity of the structure of homogeneous finitely generated modules over polynomial rings. It measures the maximum degrees of generators of the syzygies. In this thesis we study the Castelnuovo-Mumford regularity with different points of view and, in some parts, we mainly focus on linear syzygies. In Chapter 2 we study the regularity of Koszul homologies and Koszul cycles of one dimensional quotients. In Chapter 3 we study the weak and strong Lefschetz properties of a class of artinain monomial ideals. We show how the structure of the minimal free resolution could force weak or strong Lefschetz properties. In Chapter 4 and 5we study two different asymptotic behavior of Castelnuovo-Mumford regularity. In Chapter 4 we work on a quotient of a standard graded Noetherian algebra by homogeneous regular sequence. It is a celebrated result that the regularity of powers of an ideal in a polynomial ring becomes a linear function. In Chapter 5, we study the regularity of powers of dumbbell graphs. In Chapter 6, we work on product of projective spaces. In the begining of this chapter, we present a package for the computer software Macaulay2. Furthermore, we study the cohomologies of the “complete intersections'' in Pn x Pm
Bertini, Valeria. "Rational curves on irreducible symplectic varieties of OG10 type." Thesis, Strasbourg, 2019. https://publication-theses.unistra.fr/public/theses_doctorat/2019/Bertini_Valeria_2019_ED269.pdf.
Повний текст джерелаIrreducible holomorphic symplectic varieties (IHSV) are the algebraic analogue of the hyperkähler Riemannian manifolds. An IHSV of dimension 2 is a K3 surface; in this case, if furthermore X is projective, any ample curve on X is linearly equivalent to a sum of rational curves (Bogomolov, Mumford). Charles, Mongardi and Pacienza proved the existence of uniruled divisors on (almost) any ample linear system on a IHSV that is deformation equivalent to an Hilbert scheme on a K3 surface, or to a generalized Kummer variety. The existence of many rational curves on X semplifies the structure of the 0-Chow group of X. In my thesis, I worked on the OG10 case, the IHSV defined by O’Grady; the variety OG10 isimportant and very actively studied. The main result of my thesis proves the existence of ample uniruled divisors on any IHSV inside three connected components of the moduli space of OG10 varieties
Menegatti, Paolo. "Action du groupe de Klein sur une surface K3." Thesis, Poitiers, 2019. http://www.theses.fr/2019POIT2297.
Повний текст джерелаThe aim of this work is to classify the actions of the Klein group G on a K3 surface X, where G≃(ℤ/2ℤ)² contains a non-symplectic involution which acts trivially on Neron-Severi lattice, as well as computing the number of points composing the fixed locus.This result is achieved through purely algebraic methods, due to Smith’s theory, which relates the cohomology of the fixed locus H*(Xᴳ, F₂) to the group cohomology H*(X, F₂).Firstly, we identify all possibilities for the cohomology of the G-module H²(X, F₂) (and therefore the cohomology of fixed locus Xᴳ), providing some partial results for the general case G≃(ℤ/pℤ)ⁿ.Thereafter, we study the extension of the cohomology lattice H²(X, ℤ) induced by the action of G and we prove a formula giving the number of fixed points composing Xᴳ from some numerical invariants of the extension.Namely the dimensions of discriminant groups of invariant lattices, but also a new numerical invariant, essential for the computation of the fixed locus, which we prove to be unrelated to other ones.Finally, via Torelli theorem, we find all possibilities for G acting on X and we provide some geometric examples -confirming our results- using elliptic fibrations
Benzerga, Mohamed. "Structures réelles sur les surfaces rationnelles." Thesis, Angers, 2016. http://www.theses.fr/2016ANGE0081.
Повний текст джерелаThe aim of this PhD thesis is to give a partial answer to the finiteness problem for R-isomorphism classes of real forms of any smooth projective complex rational surface X, i.e. for the isomorphism classes of R-schemes whose complexification is isomorphic to X. We study this problem in terms of real structures (or antiholomorphic involutions, which generalize complex conjugation) on X: the advantage of this approach is that it helps us rephrasing our problem with automorphism groups of rational surfaces, via Galois cohomology. Thanks to recent results on these automorphism groups, using hyperbolic geometry and, to a lesser extent, holomorphic dynamics and metric geometry, we prove several finiteness results which go further than Del Pezzo surfaces and can apply to some rational surfaces with large automorphism groups
Sjöström, Dyrefelt Zakarias. "K-stabilité et variétés kähleriennes avec classe transcendante." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30126/document.
Повний текст джерелаIn this thesis we are interested in questions of geometric stability for constant scalar curvature Kähler (cscK) manifolds with transcendental cohomology class. As a starting point we develop generalized notions of K-stability, extending a classical picture for polarized manifolds due to G. Tian, S. Donaldson, and others, to the setting of arbitrary compact Kähler manifolds. We refer to these notions as cohomological K-stability. By contrast to the classical theory, this formalism allows us to treat stability questions for non-projective compact Kähler manifolds as well as projective manifolds endowed with non-rational polarizations. As a first main result and a fundamental tool in this thesis, we study subgeodesic rays associated to test configurations in our generalized sense, and establish formulas for the asymptotic slope of a certain family of energy functionals along these rays. This is related to the Deligne pairing construction in algebraic geometry, and covers many of the classical energy functionals in Kähler geometry (including Aubin's J-functional and the Mabuchi K-energy functional). In particular, this yields a natural potential-theoretic aproach to energy functional asymptotics in the theory of K-stability. Building on this foundation we establish a number of stability results for cscK manifolds: First, we show that cscK manifolds are K-semistable in our generalized sense, extending a result due to S. Donaldson in the projective setting. Assuming that the automorphism group is discrete we further show that K-stability is a necessary condition for existence of constant scalar curvature Kähler metrics on compact Kähler manifolds. More precisely, we prove that coercivity of the Mabuchi functional implies uniform K-stability, generalizing results of T. Mabuchi, J. Stoppa, R. Berman, R. Dervan as well as S. Boucksom, T. Hisamoto and M. Jonsson for polarized manifolds. This gives a new and more general proof of one direction of the Yau-Tian-Donaldson conjecture in this setting. The other direction (sufficiency of K-stability) is considered to be one of the most important open problems in Kähler geometry. We finally give some partial results in the case of compact Kähler manifolds admitting non-trivial holomorphic vector fields, discuss some further perspectives and applications of the theory of K-stability for compact Kähler manifolds with transcendental cohomology class, and ask some questions related to stability loci in the Kähler cone
Venkatesh, Saraswathi. "Completed Symplectic Cohomology and Liouville Cobordisms." Thesis, 2018. https://doi.org/10.7916/D8FJ3ZWZ.
Повний текст джерела陳韋達. "Local Cohomology and Čech Complexes." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/9ds8tb.
Повний текст джерелаCyr, Olivier. "Suites spectrales et exemples d'applications." Thèse, 2006. http://hdl.handle.net/1866/17299.
Повний текст джерелаHunsicker, Eugenie. "L (superscript 2)-cohomology and L (superscript 2)-harmonic forms for complete noncompact Kahler and warped product metrics /." 1999. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:9943079.
Повний текст джерелаSCHUHMACHER, Frank. "L-infini déformations et cohomologie de Hochschild." Phd thesis, 2004. http://tel.archives-ouvertes.fr/tel-00007197.
Повний текст джерелаTCHOUDJEM, Alexis. "Représentations d'algèbres de Lie dans des groupes de cohomologie à support." Phd thesis, 2002. http://tel.archives-ouvertes.fr/tel-00002269.
Повний текст джерела