Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Competing phases.

Статті в журналах з теми "Competing phases"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Competing phases".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Stroppa, Alessandro, and Maria Peressi. "Competing magnetic phases of Mn5Ge3compound." physica status solidi (a) 204, no. 1 (January 2007): 44–52. http://dx.doi.org/10.1002/pssa.200673014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ranjan, Rajeev, Sanjay Singh, Hans Boysen, Dmytro Trots, S. Banik, A. M. Awasthi, P. K. Mukhopadhyay, and S. R. Barman. "Competing tetragonal and monoclinic phases in Ni2.2Mn0.80Ga." Journal of Applied Physics 106, no. 3 (August 2009): 033510. http://dx.doi.org/10.1063/1.3190527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carmier, Pierre, Oleksii Shevtsov, Christoph Groth, and Xavier Waintal. "Competing topological phases in few-layer graphene." Journal of Computational Electronics 12, no. 2 (April 11, 2013): 175–87. http://dx.doi.org/10.1007/s10825-013-0454-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Alekseechkin, N. V. "On calculating volume fractions of competing phases." Journal of Physics: Condensed Matter 12, no. 43 (October 9, 2000): 9109–22. http://dx.doi.org/10.1088/0953-8984/12/43/301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sharma, Yogesh, Martin V. Holt, Nouamane Laanait, Xiang Gao, Ilia N. Ivanov, Liam Collins, Changhee Sohn, et al. "Competing phases in epitaxial vanadium dioxide at nanoscale." APL Materials 7, no. 8 (August 2019): 081127. http://dx.doi.org/10.1063/1.5115784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alekseechkin, N. V. "On calculation of volume fractions of competing phases." Physics of the Solid State 42, no. 7 (July 2000): 1354–60. http://dx.doi.org/10.1134/1.1131392.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nadeem, M., M. Arshad Farhan, and M. Atif. "Time dependant switchover of competing phases in La0.40Pr0.10Ca0.50MnO3." Materials Letters 169 (April 2016): 107–9. http://dx.doi.org/10.1016/j.matlet.2016.01.113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Chaonan, Liudong Xing, and Gregory Levitin. "Competing failure analysis in phased-mission systems with functional dependence in one of phases." Reliability Engineering & System Safety 108 (December 2012): 90–99. http://dx.doi.org/10.1016/j.ress.2012.07.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dzhumanov, S., and U. T. Kurbanov. "The coexisting of insulating and metallic/superconducting phases and their competing effects in various underdoped cuprates." Modern Physics Letters B 32, no. 26 (September 20, 2018): 1850312. http://dx.doi.org/10.1142/s0217984918503128.

Повний текст джерела
Анотація:
We show that the unconventional electron–phonon interactions and polaronic effects, charge inhomogeneity and charge ordering in underdoped cuprates result in the nanoscale phase separation and the occurrence of competing and coexisting of insulating and metallic/superconducting phases. We identify possible types of localized and mobile charge carriers in these systems, which segregate into insulating (carrier-poor) and metallic/superconducting (carrier-rich) regions as a result of their specific ordering. We found that the coexistence of two competing insulating and metallic phases can persist in the lightly doped cuprates on a local scale, while the coexistence of three competing insulating, metallic and superconducting phases is expected in the underdoped cuprates on a global scale. We demonstrated that the competing effects of these coexisting insulating and metallic/superconducting phases are manifested in the unusual temperature dependences of the magnetic susceptibility and resistivity and in the suppression of superconductivity in various underdoped cuprates.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Markiewicz, R. S., J. Lorenzana, G. Seibold, and A. Bansil. "Competing phases in the cuprates: Charge vs spin order." Journal of Physics and Chemistry of Solids 72, no. 5 (May 2011): 333–36. http://dx.doi.org/10.1016/j.jpcs.2010.10.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Iannuzzi, M., and L. Miglio. "Surface energies and surface relaxation at TiSi2 competing phases." Surface Science 479, no. 1-3 (May 2001): 201–12. http://dx.doi.org/10.1016/s0039-6028(01)00979-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Parks, T. C. ""Leapfrog Thermodynamics" among Binary Magnetic Phases Competing for Stability." Journal of Solid State Chemistry 116, no. 1 (April 1995): 92–94. http://dx.doi.org/10.1006/jssc.1995.1187.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Patsahan, Oksana, Marek Litniewski, and Alina Ciach. "Self-assembly in mixtures with competing interactions." Soft Matter 17, no. 10 (2021): 2883–99. http://dx.doi.org/10.1039/d0sm02072a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

SATO, MASAHIRO, SHUNSUKE FURUKAWA, SHIGEKI ONODA, and AKIRA FURUSAKI. "COMPETING PHASES IN SPIN-½ J1-J2 CHAIN WITH EASY-PLANE ANISOTROPY." Modern Physics Letters B 25, no. 12n13 (May 30, 2011): 901–8. http://dx.doi.org/10.1142/s0217984911026607.

Повний текст джерела
Анотація:
We summarize our theoretical findings on the ground-state phase diagram of the spin-½ XXZ chain having competing nearest-neighbor (J1) and antiferromagnetic next-nearest-neighbor (J2) couplings. Our study is mainly concerned with the case of ferromagnetic J1, and the case of antiferromagnetic J1 is briefly reviewed for comparison. The phase diagram contains a rich variety of phases in the plane of J1/J2 versus the XXZ anisotropy Δ: vector-chiral phases, Néel phases, several dimer phases, and Tomonaga–Luttinger liquid phases. We discuss the vector-chiral order that appears for a remarkably wide parameter space, successive Néel-dimer phase transitions, and an emergent nonlocal string order in a narrow region of ferromagnetic J1 side.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Harada, Asuka, and Qui Tran-Cong. "Modulated Phases Observed in Reacting Polymer Mixtures with Competing Interactions." Macromolecules 30, no. 6 (March 1997): 1643–50. http://dx.doi.org/10.1021/ma961542x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

King, P. D. C., H. I. Wei, Y. F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Božović, D. G. Schlom, and K. M. Shen. "Atomic-scale control of competing electronic phases in ultrathin LaNiO3." Nature Nanotechnology 9, no. 6 (April 6, 2014): 443–47. http://dx.doi.org/10.1038/nnano.2014.59.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Zheng, Qiang, Nathaniel J. Schreiber, Hong Zheng, Jiaqiang Yan, Michael A. McGuire, J. F. Mitchell, Miaofang Chi, and Brian C. Sales. "Real Space Visualization of Competing Phases in La0.6Sr2.4Mn2O7 Single Crystals." Chemistry of Materials 30, no. 21 (October 22, 2018): 7962–69. http://dx.doi.org/10.1021/acs.chemmater.8b03589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

McKernan, S. K., S. T. Hannahs, U. M. Scheven, G. M. Danner, and P. M. Chaikin. "Competing Instabilities and the High Field Phases of(TMTSF)2ClO4." Physical Review Letters 75, no. 8 (August 21, 1995): 1630–33. http://dx.doi.org/10.1103/physrevlett.75.1630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Paschen, Silke, and Qimiao Si. "The many faces (phases) of strong correlations." Europhysics News 52, no. 4 (2021): 30–34. http://dx.doi.org/10.1051/epn/2021407.

Повний текст джерела
Анотація:
There has been considerable recent progress in discovering and understanding quantum phases and fluctuations produced by strong correlations. Heavy fermion systems are an ideal platform for systematic studies because low and competing energy scales make them highly tunable. As such the phases (faces) of strong correlations transform continuously into one another.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhang, Yubo, Christopher Lane, James W. Furness, Bernardo Barbiellini, John P. Perdew, Robert S. Markiewicz, Arun Bansil, and Jianwei Sun. "Competing stripe and magnetic phases in the cuprates from first principles." Proceedings of the National Academy of Sciences 117, no. 1 (December 16, 2019): 68–72. http://dx.doi.org/10.1073/pnas.1910411116.

Повний текст джерела
Анотація:
Realistic description of competing phases in complex quantum materials has proven extremely challenging. For example, much of the existing density-functional-theory-based first-principles framework fails in the cuprate superconductors. Various many-body approaches involve generic model Hamiltonians and do not account for the interplay between the spin, charge, and lattice degrees of freedom. Here, by deploying the recently constructed strongly constrained and appropriately normed (SCAN) density functional, we show how the landscape of competing stripe and magnetic phases can be addressed on a first-principles basis both in the parent insulator YBa2Cu3O6and the near-optimally doped YBa2Cu3O7as archetype cuprate compounds. In YBa2Cu3O7, we find many stripe phases that are nearly degenerate with the ground state and may give rise to the pseudogap state from which the high-temperature superconducting state emerges. We invoke no free parameters such as the HubbardU, which has been the basis of much of the existing cuprate literature. Lattice degrees of freedom are found to be crucially important in stabilizing the various phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Mao, Jianjun, and Yue Chen. "Band engineering and hybridization of competing arsenene allotropes: a computational study." Physical Chemistry Chemical Physics 21, no. 44 (2019): 24499–505. http://dx.doi.org/10.1039/c9cp04961d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Lausmann, Ana C., Eleonir J. Calegari, Sergio G. Magalhaes, and Peter S. Riseborough. "Competing antiferromagnetic phases of the under-screened Anderson lattice model (INVITED)." Progress in Nuclear Science and Technology 5 (November 1, 2018): 86–89. http://dx.doi.org/10.15669/pnst.5.86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Kundu, S., and V. Tripathi. "Competing phases and critical behaviour in three coupled spinless Luttinger liquids." New Journal of Physics 23, no. 10 (October 1, 2021): 103031. http://dx.doi.org/10.1088/1367-2630/ac2ce3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Govindaraj, R., and C. S. Sundar. "Competing magnetic phases in La0.7Sr0.3MnO3as deduced from Mn site hyperfine parameters." Journal of Physics: Condensed Matter 18, no. 32 (July 31, 2006): 7651–58. http://dx.doi.org/10.1088/0953-8984/18/32/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Capone, Barbara, Jean-Pierre Hansen, and Ivan Coluzza. "Competing micellar and cylindrical phases in semi-dilute diblock copolymer solutions." Soft Matter 6, no. 24 (2010): 6075. http://dx.doi.org/10.1039/c0sm00738b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Mani, Ethayaraja, Wolfgang Lechner, Willem K. Kegel, and Peter G. Bolhuis. "Equilibrium and non-equilibrium cluster phases in colloids with competing interactions." Soft Matter 10, no. 25 (April 2, 2014): 4479–86. http://dx.doi.org/10.1039/c3sm53058b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Coniglio, A., A. de Candia, and A. Fierro. "Modulated phases and structural arrest in colloidal systems with competing interactions." Molecular Physics 109, no. 23-24 (December 10, 2011): 2981–87. http://dx.doi.org/10.1080/00268976.2011.624556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Chen, L. P., and J. Gao. "Reversible in situ modulation of competing phases in manganite/ferroelectrics heterostructures." EPL (Europhysics Letters) 93, no. 4 (February 1, 2011): 47009. http://dx.doi.org/10.1209/0295-5075/93/47009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Cadorin, Jair L., and Carlos S. O. Yokoi. "Stability of commensurate phases of a planar model with competing interactions." Physical Review B 56, no. 18 (November 1, 1997): 11635–41. http://dx.doi.org/10.1103/physrevb.56.11635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ecer, S., S. Altundağ, S. Altin, and S. Avci. "Na0.67Mn0.33Ni0.33Co0.33O2: Effect of synthesis technique on competing P3 and P2 phases." Materials Science and Engineering: B 287 (January 2023): 116106. http://dx.doi.org/10.1016/j.mseb.2022.116106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Cao, Yuan, Daniel Rodan-Legrain, Jeong Min Park, Noah F. Q. Yuan, Kenji Watanabe, Takashi Taniguchi, Rafael M. Fernandes, Liang Fu, and Pablo Jarillo-Herrero. "Nematicity and competing orders in superconducting magic-angle graphene." Science 372, no. 6539 (April 15, 2021): 264–71. http://dx.doi.org/10.1126/science.abc2836.

Повний текст джерела
Анотація:
Strongly interacting electrons in solid-state systems often display multiple broken symmetries in the ground state. The interplay between different order parameters can give rise to a rich phase diagram. We report on the identification of intertwined phases with broken rotational symmetry in magic-angle twisted bilayer graphene (TBG). Using transverse resistance measurements, we find a strongly anisotropic phase located in a “wedge” above the underdoped region of the superconducting dome. Upon its crossing with the superconducting dome, a reduction of the critical temperature is observed. Furthermore, the superconducting state exhibits an anisotropic response to a direction-dependent in-plane magnetic field, revealing nematic ordering across the entire superconducting dome. These results indicate that nematic fluctuations might play an important role in the low-temperature phases of magic-angle TBG.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Serna, Horacio, Antonio Díaz Pozuelo, Eva G. Noya, and Wojciech T. Góźdź. "Formation and internal ordering of periodic microphases in colloidal models with competing interactions." Soft Matter 17, no. 19 (2021): 4957–68. http://dx.doi.org/10.1039/d1sm00445j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Wang, Liran, Mingquan He, Daniel D. Scherer, Frédéric Hardy, Peter Schweiss, Thomas Wolf, Michael Merz, Brian M. Andersen, and Christoph Meingast. "Competing Electronic Phases near the Onset of Superconductivity in Hole-doped SrFe2As2." Journal of the Physical Society of Japan 88, no. 10 (October 15, 2019): 104710. http://dx.doi.org/10.7566/jpsj.88.104710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Radic, D., A. Bjelis, and D. Zanchi. "Competing SDW phases and quantum oscillations in (TMTSF)2ClO4 in magnetic field." Journal de Physique IV 12, no. 9 (November 2002): 89–90. http://dx.doi.org/10.1051/jp4:20020365.

Повний текст джерела
Анотація:
We propose a new approach for studying spin density waves (SDW) in the Bechgaard salt (TMTSF)2ClO4 where lattice is dimerized in transverse direction due to anion ordering. The SDW response is calculated in the matrix formulation that rigorously treats the hybridization of inter-band and intra-band SDW correlations. Since the dimerization gap is large, of the order of transverse bandwidth, we also develop an exact treatment of magnetic breakdown in the external magnetic field. The obtained results agree with the experimental data on the fast magneto-resistance oscillations. Experimentally found 260T rapid oscillations and the characteristic Tc dependance on magnetic field of relaxed material are fitted with our results for anion potential of the order of interchain hopping.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Orrman-Rossiter, Kevin G., D. R. G. Mitchell, S. E. Donnelly, C. J. Rossouw, S. R. Glanvill, P. R. Miller, Amir H. Al-Bayati, J. A. van den Berg, and D. G. Armour. "Evidence for competing growth phases in ion-beam-deposited epitaxial silicon films." Philosophical Magazine Letters 61, no. 6 (June 1990): 311–18. http://dx.doi.org/10.1080/09500839008206498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Forrester, P. J., and Colin J. Thompson. "Modulated phases and the mean-field theory of magnetism with competing interactions." Journal of Statistical Physics 51, no. 3-4 (May 1988): 519–36. http://dx.doi.org/10.1007/bf01028470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Belik, Alexei A., Yoshitaka Matsushita, Masahiko Tanaka, Roger D. Johnson, and Dmitry D. Khalyavin. "A plethora of structural transitions, distortions and modulations in Cu-doped BiMn7O12 quadruple perovskites." Journal of Materials Chemistry C 9, no. 32 (2021): 10232–42. http://dx.doi.org/10.1039/d1tc02344f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Budzianowski, Armand, Anna Olejniczak, and Andrzej Katrusiak. "Competing hydrogen-bonding patterns and phase transitions of 1,2-diaminoethane at varied temperature and pressure." Acta Crystallographica Section B Structural Science 62, no. 6 (November 14, 2006): 1078–89. http://dx.doi.org/10.1107/s010876810602982x.

Повний текст джерела
Анотація:
1,2-Diaminoethane has been in-situ pressure- and temperature-frozen; apart from two known low-temperature phases, Iα and II, three new phases, Iβ, Iγ and III, have been observed and their structures determined by X-ray diffraction. The measurements at 0.1 MPa were carried out at 274, 243 and 224 K, and 296 K measurements were made at 0.15 GPa (phase Iα), at 0.3 and 1.1 GPa (phase Iβ), at 1.5 GPa (phase Iγ), and at 0.2, 0.3 and 0.5 GPa (phase III). All these phases are monoclinic, space group P21/c, but the unit-cell dimension of phases Iα and III are very different at 296 K: a Iα = 5.078 (5), b Iα = 7.204 (8), c Iα = 5.528 (20) Å, β Iα = 115.2 (2)° at 0.15 GPa, and a III = 5.10 (3), b III = 5.212 (2), c III = 7.262 (12) Å, β III = 111.6 (4)° at 0.2 GPa, respectively; in both phases Z = 2. An ambient-pressure low-temperature phase II has been observed below 189 K. Discontinuities in the unit-cell dimensions and in the N...N distance mark the isostructural transition between phases Iα and Iβ at 0.2 GPa, which can be attributed to a damping process of the NH2 group rotations. In phase Iγ the unit-cell parameter a doubles and Z increases to 4. The molecule has inversion symmetry in all the structures determined. 1,2-Diaminoethane can be considered as a simple structural ice analogue, but with NH...N hydrogen bonds and with the H-atom donors (four in one molecule) in excess over H-atom acceptors (two per molecule). Thus, the transformations of 1,2-diaminoethane phases involving the conformational dynamics affect the hydrogen-bonding geometry and molecular association in the crystal. The 1,2-diaminoethane:1,2-dihydroxyethane mixture has been separated by pressure-freezing, and a solid 1,2-diaminoethane crystal in liquid 1,2-dihyroxyethane has been obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Muller, Eric A., Thomas P. Gray, Zhou Zhou, Xinbin Cheng, Omar Khatib, Hans A. Bechtel, and Markus B. Raschke. "Vibrational exciton nanoimaging of phases and domains in porphyrin nanocrystals." Proceedings of the National Academy of Sciences 117, no. 13 (March 13, 2020): 7030–37. http://dx.doi.org/10.1073/pnas.1914172117.

Повний текст джерела
Анотація:
Much of the electronic transport, photophysical, or biological functions of molecular materials emerge from intermolecular interactions and associated nanoscale structure and morphology. However, competing phases, defects, and disorder give rise to confinement and many-body localization of the associated wavefunction, disturbing the performance of the material. Here, we employ vibrational excitons as a sensitive local probe of intermolecular coupling in hyperspectral infrared scattering scanning near-field optical microscopy (IR s-SNOM) with complementary small-angle X-ray scattering to map multiscale structure from molecular coupling to long-range order. In the model organic electronic material octaethyl porphyrin ruthenium(II) carbonyl (RuOEP), we observe the evolution of competing ordered and disordered phases, in nucleation, growth, and ripening of porphyrin nanocrystals. From measurement of vibrational exciton delocalization, we identify coexistence of ordered and disordered phases in RuOEP that extend down to the molecular scale. Even when reaching a high degree of macroscopic crystallinity, identify significant local disorder with correlation lengths of only a few nanometers. This minimally invasive approach of vibrational exciton nanospectroscopy and -imaging is generally applicable to provide the molecular-level insight into photoresponse and energy transport in organic photovoltaics, electronics, or proteins.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

MARTIN, I., G. ORTIZ, A. V. BALATSKY, and A. R. BISHOP. "COMPETING QUANTUM ORDERINGS IN CUPRATE SUPERCONDUCTORS: A MINIMAL MODEL." International Journal of Modern Physics B 14, no. 29n31 (December 20, 2000): 3567–76. http://dx.doi.org/10.1142/s0217979200003630.

Повний текст джерела
Анотація:
We present a minimal model for cuprate superconductors. At the unrestricted mean-field level, the model produces homogeneous superconductivity at large doping, striped superconductivity in the underdoped regime and various antiferromagnetic phases at low doping and for high temperatures. On the underdoped side, the superconductor is intrinsically inhomogeneous and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. The model is applied to calculate experimentally measurable ARPES spectra.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Kim, Younghak, Sangkyun Ryu, and Hyoungjeen Jeen. "Strain-effected physical properties of ferromagnetic insulating La0.88Sr0.12MnO3 thin films." RSC Advances 9, no. 5 (2019): 2645–49. http://dx.doi.org/10.1039/c8ra09851d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Takushima, Yoshihiro, Akihisa Koga, and Norio Kawakami. "Competing Spin-Gap Phases in a Frustrated Quantum Spin System in Two Dimensions." Journal of the Physical Society of Japan 70, no. 5 (May 15, 2001): 1369–74. http://dx.doi.org/10.1143/jpsj.70.1369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Hunold, Oliver, Yen-Ting Chen, Denis Music, Per O. Å. Persson, Daniel Primetzhofer, Moritz to Baben, Jan-Ole Achenbach, Philipp Keuter, and Jochen M. Schneider. "Correlative theoretical and experimental investigation of the formation of AlYB14 and competing phases." Journal of Applied Physics 119, no. 8 (February 28, 2016): 085307. http://dx.doi.org/10.1063/1.4942664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Chaudhuri, Pinaki, Pablo I. Hurtado, Ludovic Berthier, and Walter Kob. "Relaxation dynamics in a transient network fluid with competing gel and glass phases." Journal of Chemical Physics 142, no. 17 (May 7, 2015): 174503. http://dx.doi.org/10.1063/1.4919645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

He, Y., T. Wu, G. Wu, Q. J. Zheng, Y. Z. Liu, H. Chen, J. J. Ying, et al. "Evidence for competing magnetic and superconducting phases in superconducting Eu1 −xSrxFe2 −yCoyAs2single crystals." Journal of Physics: Condensed Matter 22, no. 23 (May 21, 2010): 235701. http://dx.doi.org/10.1088/0953-8984/22/23/235701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Landig, Renate, Lorenz Hruby, Nishant Dogra, Manuele Landini, Rafael Mottl, Tobias Donner, and Tilman Esslinger. "Quantum phases from competing short- and long-range interactions in an optical lattice." Nature 532, no. 7600 (April 2016): 476–79. http://dx.doi.org/10.1038/nature17409.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Chen, Z. Y., and M. B. Walker. "Symmetry modes, competing interactions, and universal description for modulated phases in the dielectricA2BX4family." Physical Review B 43, no. 7 (March 1, 1991): 5634–48. http://dx.doi.org/10.1103/physrevb.43.5634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Iannuzzi, Marcella, Paolo Raiteri, and Leo Miglio. "Self-diffusion of silicon in TiSi2 competing phases by tight-binding molecular dynamics." Computational Materials Science 20, no. 3-4 (March 2001): 394–400. http://dx.doi.org/10.1016/s0927-0256(00)00199-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Schmalfu , D., R. Herms, J. Richter, and J. Schulenburg. "Ground-state phases in a system of two competing square-lattice Heisenberg antiferromagnets." Journal of Physics: Condensed Matter 15, no. 17 (April 22, 2003): 2667–79. http://dx.doi.org/10.1088/0953-8984/15/17/319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Inam, F., D. N. Tafen, Gang Chen, and D. A. Drabold. "Competing stoichiometric phases and the intermediate phase in Ge x Se1−x glasses." physica status solidi (b) 246, no. 8 (July 6, 2009): 1849–53. http://dx.doi.org/10.1002/pssb.200982016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії