Дисертації з теми "Community Atmospheric Model"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Community Atmospheric Model.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-18 дисертацій для дослідження на тему "Community Atmospheric Model".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Porter, William Christian. "Community Earth System Model: Implementation, Validation, and Applications." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/547.

Повний текст джерела
Анотація:
The Community Earth System Model (CESM) is a coupling of five different models which are combined to simulate the dynamic interactions between and within the Earth's atmosphere, ocean, land, land-ice, and sea-ice. In this work, the installation and testing of CESM on Portland State University's Cluster for Climate Change and Aerosol Research (CsAR) is described and documented, and two research applications of the model are performed. First, the improved treatment of cloud microphysics within recent versions of CESM's atmospheric module is applied to an examination of changes in shortwave cloud forcing (SWCF) and results are compared to output from older versions of the model. Second, the CESM model is applied to an examination of the effect that increased methane (CH4) concentrations have had on the catalytic destruction of stratospheric ozone (O3) by ozone depleting compounds (ODCs) such as chlorofluorocarbons (CFCs) and nitrous oxide (N2O).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Huai-Min Ph D. Massachusetts Institute of Technology. "Application of an inverse model in the community modeling effort results." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/58152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sklut, Micah. "Investigating SST influence on the North Atlantic Oscillation using the NCAR community atmospheric model." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 5.62Mb, 121 p, 2005. http://wwwlib.umi.com/dissertations/fullcit/1428196.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mooring, Raymond Derrell. "On using empirical techniques to optimize the shortwave parameterization scheme of the community atmosphere model version two global climate model." Diss., Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-04172005-231106/unrestricted/mooring%5Fraymond%5Fd%5F200505%5Fphd.PDF.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2005.
Dickinson, Robert, Committee Chair ; Jenkins, Gregory, Committee Member ; Vidakovic, Brani, Committee Member ; Fu, Rong, Committee Member ; Cunnold, Derek, Committee Member. Vita. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Aihui, Xubin Zeng, and Donglin Guo. "Estimates of Global Surface Hydrology and Heat Fluxes from the Community Land Model (CLM4.5) with Four Atmospheric Forcing Datasets." AMER METEOROLOGICAL SOC, 2016. http://hdl.handle.net/10150/621989.

Повний текст джерела
Анотація:
Global land surface hydrology and heat fluxes can be estimated by running a land surface model (LSM) driven by the atmospheric forcing dataset. Previous multimodel studies focused on the impact of different LSMs on model results. Here the sensitivity of the Community Land Model, version 4.5 (CLM4.5), results to the atmospheric forcing dataset is documented. Together with the model default global forcing dataset (CRU-NCEP, hereafter CRUNCEP), three newly developed, reanalysis-based, near-surface meteorological datasets (i.e., MERRA, CFSR, and ERA-Interim) with the precipitation adjusted by the Global Precipitation Climatology Project monthly product were used to drive CLM4.5. All four simulations were run at 0.5 degrees x0.5 degrees grids from 1979 to 2009 with the identical initialization. The simulated monthly surface hydrology variables, fluxes, and the forcing datasets were then evaluated against various observation-based datasets (soil moisture, runoff, snow depth and water equivalent, and flux tower measurements). To partially avoid the mismatch between model gridbox values and point measurements, three approaches were taken. The model simulations based on three newly constructed forcing datasets are overall better than the simulation from CRUNCEP, in particular for soil moisture and snow quantities. The ensemble mean from the CLM4.5 simulations using the four forcing datasets is generally superior to individual simulations, and the ensemble mean latent and sensible heat fluxes over global land (60 degrees S-90 degrees N) are 42.8 and 40.3 W m(-2), respectively. The differences in both precipitation and other atmospheric forcing variables (e.g., air temperature and downward solar radiation) contribute to the differences in simulated results. The datasets are available from the authors for further evaluation and for various applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shawky, Sharkawi Sameh Sherif. "Perfromance analysis of the Parallel Community Atmosphere Model (CAM) application." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chang, Loren. "Analysis of the migrating diurnal tide in the Whole Atmosphere Community Climate Model." Diss., Connect to online resource, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1439426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Martin, Chris J. "Chemical models for, and the role of data and provenance in, an atmospheric chemistry community." Thesis, University of Leeds, 2009. http://etheses.whiterose.ac.uk/1596/.

Повний текст джерела
Анотація:
This thesis presents research at the interface of the e-Science and atmospheric chemistry disciplines. Two inter-related research topics are addressed: first, the development of computational models of the troposphere (i.e. in silico experiments); and secondly, provenance capture and representation for data produced by these computational models. The research was conducted using an ethnographic approach, seeking to develop in-depth understanding of current working practices, which then informed the research itself. The research focused on the working practices of a defined research community; the users and developers of the MCM (Master Chemical Mechanism). The MCM is a key data and information repository used by researchers, with an interest in atmospheric chemistry, across the world. A computational modelling system, the OSBM (Open Source Box Model) was successfully developed to encourage researchers to make use of the MCM, within their in silico experiments. Taking advantage of functionality provided by the OSBM, the use of in situ experimental data to constrain zero dimensional box models was explored. Limitations of current methodologies for constraining zero dimensional box models were identified, particularly associated with the use of piecewise constant interpolation and the averaging of constraint data. Improved methodologies for constraining zero dimensional box models were proposed, tested and demonstrated to offer gains in the accuracy of the model results and the efficiency of the model itself. Current data generation and provenance related working practices, within the MCM community, were mapped. An opportunity was identified to apply Semantic Web technologies to improve working practices associated with gathering and evaluating feedback from in silico experiments, to inform the ongoing development of the MCM. These envisioned working practices rely on researchers, performing in silico experiments, that make use of the MCM, capturing data and provenance using an ELN (Electronic Laboratory Notebook). A prototype ELN, employing a user-orientation approach to provenance capture and representation, was then successfully designed, implemented and evaluated. The evaluation of this prototype ELN highlighted the importance of adopting a holistic approach to the development of provenance capture tools and the difficulties of balancing researchers’ requirements for flexibility and structure their scientific processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Collier, Jonathan Craig. "Tropical precipitation simulated by the NCAR Community Climate Model (CCM3): an evaluation based on TRMM satellite measurements." Texas A&M University, 2004. http://hdl.handle.net/1969.1/2715.

Повний текст джерела
Анотація:
This study evaluates the simulation of tropical precipitation by the Community Climate Model, Version 3, developed at the National Center for Atmospheric Research. For an evaluation of the annual cycle of precipitation, monthly-mean precipitation rates from an ensemble of CCM3 simulations are compared to those computed from observations of the TRMM satellite over a 44-month period. On regional and sub-regional scales, the comparison fares well over much of the Eastern Hemisphere south of 10◦S and over South America. However, model - satellite differences are large in portions of Central America and the Caribbean, the southern tropical Atlantic, the northern Indian Ocean, and the western equatorial and southern tropical Pacific. Since precipitation in the Tropics is the primary source of latent energy to the general circulation, such large model - satellite differences imply large differences in the amount of latent energy released. Differences are seasonally-dependent north of 10◦N, where model wet biases occur in realistic wet seasons or model-generated artificial wet seasons. South of 10◦N, the model wet biases exist throughout the year or have no recognizable pattern. For an evaluation of the diurnal cycle of precipitation, hourly-averaged precipitation rates from the same ensemble of simulations and for the same 44-month period are compared to observations from the Tropical Rainfall Measuring Mission (TRMM) satellite. Comparisons are made for 15◦ longitude ?? 10◦ latitude boxes and for larger geographical areas within the Tropics. The temporally- and spatially-averaged hourly precipitation rates from CCM3 and from TRMM are fit to the diurnal harmonic by the method of linear leastsquares regression, and the phases and the amplitudes of the diurnal cycles are compared. The model??s diurnal cycle is too strong over major land masses, particularly over South America (by a factor of 3), and is too weak over many oceans, particularly the northwestern Tropical Pacific (by a factor of 2). The model-satellite phase differences tend to be more homogeneous. The peak in the daily precipitation in the model consistently precedes the observations nearly everywhere. Phase differences are large over Australia, Papua New Guinea, and Saharan Africa, where CCM3 leads TRMM by 4 hours, 5 to 6 hours, and 9 to 11 hours respectively. A model sensitivity experiment shows that increasing the convective adjustment time scale in the model??s deep convective parameterization reduces its positive amplitude bias over land regions but has no effect on the phase of the diurnal cycle.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Foster, Kristi A. "Field Ecology Patterns of High Latitude Coral Communities." NSUWorks, 2011. http://nsuworks.nova.edu/occ_stuetd/82.

Повний текст джерела
Анотація:
Some climate models predict that, within the next 30-50 years, sea surface temperatures (SSTs) will frequently exceed the current thermal tolerance of corals (Fitt et al. 2001; Hughes et al. 2003; Hoegh-Guldberg et al. 2007). A potential consequence is that mass coral bleaching may take place (i) during warm El Niño-Southern Oscillation (ENSO) events which are predicted to occur in some regions more frequently than the current 3-7 year periodicity (Hoegh-Guldberg 1999; Sheppard 2003) or (ii) perhaps as often as annually or biannually if corals and their symbionts are unable to acclimate to the higher SSTs (Donner et al. 2005, 2007). Global data also indicate an upward trend toward increasing frequencies, intensities, and durations of tropical hurricanes and cyclones (Emanual 2005; Webster et al. 2005). As coral communities have been shown to require at least 10-30 years to recover after a major disturbance (e.g. Connell 1997; Ninio et al. 2000; Bruno & Selig 2007; Burt et al. 2008), it is possible that future coral communities may be in a constant state of recovery, with regeneration times exceeding the periods between disturbances. Life history traits (e.g. reproduction, recruitment, growth and mortality) vary among species of hard corals; thus, gradients in community structures may have a strong influence on susceptibilities to disturbance and rates of recovery (Connell 1997; Ninio & Meekan 2002). Taxa which are more susceptible to bleaching and mechanical disturbance (e.g. tabular and branching acroporids and pocilloporids) may experience continual changes in population structure due to persistent cycles of regeneration or local extirpation, while the more resistant taxa (e.g. massive poritids and faviids) may display relatively stable population structures (Woodley et al. 1981; Hughes & Connell 1999; Baird & Hughes 2000; Marshall & Baird 2000; Loya et al. 2001; McClanahan & Maina 2003). Determining whether resistant coral taxa have predictable responses to disturbances, with consistent patterns over wide spatial scales, may improve predictions for the future affects of climate change and the composition of reefs (Done 1999; Hoegh-Guldberg 1999; McClanahan et al. 2004). The work presented in this dissertation describes the spatial and temporal patterns in community structures for high latitude coral assemblages that have experienced the types of natural disturbances which are predicted to occur in tropical reef systems with increasing frequency as a result of climate change. The primary area of focus is the southeastern Arabian Gulf, where the coral communities are exposed to natural conditions that exceed threshold limits of corals elsewhere in the world, with annual temperature ranges between 14-36°C (Kinzie 1973; Shinn 1976) and salinities above 40 ppt. Two additional regions are included in this study for comparisons of high latitude coral community structures. The northwestern Gulf of Oman is adjacent to the southeastern Arabian Gulf (i.e. the two bodies of water are connected by the Strait of Hormuz); however, the environmental conditions are milder in the Gulf of Oman such that the number of coral taxa therein is threefold that found in the southeastern Arabian Gulf (i.e. 107 coral species in the Gulf of Oman compared to 34 species in this region of the Arabian Gulf (Riegl 1999; Coles 2003; Rezai et al. 2004)). Broward County, Florida is geographically remote from the Gulfs and, therefore, serves as a benchmark for testing whether consistent patterns in community structures exist despite different climatic and anthropogenic influences. The coral communities within the southeastern Arabian Gulf, the northwestern Gulf of Oman, and Broward County, Florida have been exposed to recurrent elevated sea surface temperature (SST) anomalies, sequential cyclone and red tide disturbances, and frequent hurricanes and tropical storms, respectively. These disturbances and other impacts (e.g. bleaching episodes, disease outbreaks, anthropogenic stresses) have affected the more susceptible acroporids and pocilloporids, resulting in significant losses of coral cover by these families and shifts towards massive corals as the dominant taxa. During the post-disturbance scarcity or absence of branching and tabular corals, the resistant massive taxa have become the crux of the essential hard coral habitat for fish, invertebrates and other marine organisms. Because recovery to pre-disturbance community structures may take decades or may not occur at all, it is vital that scientists and resource managers have a better understanding of the spatial and temporal ecology patterns of the corals that survive and fill in the functional gaps that are created by such disturbances. To aid in this understanding, this dissertation presents spatial and temporal patterns for the coral assemblages which have developed after the respective disturbances. Spatial ecology patterns are analyzed using graphical descriptions (e.g. taxa inventories, area cover, densities, size frequency distributions), univariate techniques (e.g. diversity indices), distributional techniques (e.g. k-dominance curves) and multivariate techniques (e.g. hierarchical clustering, multidimensional scaling). Temporal comparisons at monitoring sites within the southeastern Arabian Gulf and northwestern Gulf of Oman describe the coral population dynamics and are used to create size class transition models that project future population structures of massive corals in the recovering habitats.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Littlefield, Caitlin M. "Atmospheric mercury in the Great Lakes Region and evaluation of the Community Multiscale Air Quality Model and implications for research and policy /." 2009. http://catalog.hathitrust.org/api/volumes/oclc/422804960.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Das, Surajit. "Role Of Sea Surface Temperature Gradient In Intraseasonal Oscillation Of Convection In An Aquaplanet Model." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2583.

Повний текст джерела
Анотація:
In this thesis we examine intra-seasonal oscillations (ISO) in the aqua-planet setup of the Community Atmospheric Model (CAM) version 5.1, mainly based on July and January climatological sea surface temperature (SST). We investigate mainly two questions -what should be the SST distribution for the existence of (a) northward moving ISO in summer, and (b) eastward moving MJO-like modes in winter. In the first part of the thesis we discuss the northward propagation. A series of experiments were performed with zonally symmetric and asymmetric SST distributions. The basic lower boundary condition is specified from zonally averaged observed July and January SST. The zonally symmetric July SST experiment produced an inter tropical convergence zone (ITCZ) on both sides of the equator. Poleward movement is not clear, and it is confined to the region between the double ITCZ. In July, the Bay of Bengal (BOB) and West Pacific SST is high compared to the rest of the northern tropics. When we impose a zonally asymmetric SST structure with warm SST spanning about 80 of longitude, the model shows a monsoon-like circulation, and some northward propagating convective events. Analysis of these events shows that two adjacent cells with cyclonic and anticyclonic vorticity are created over the warm SST anomaly and to the west. The propagation occurs due to the convective region drawn north in the convergence zone between these vortices. Zonally propagating Madden-Julian oscillations (MJO) are discussed in the second part of the thesis. All the experiments in this part are based on the zonally symmetric SST. The zonally symmetric January SST configuration gives an MJO-like mode, with zonal wave number 1 and a period of 40-90 days. The SST structure has a nearly meridionally symmetric structure, with local SST maxima on either side of the equator, and a small dip in the equatorial region. If we replace this dip with an SST maximum, the time-scale of MJO becomes significantly smaller (20-40 days). The implication is that an SST maximum in the equatorial region reduces the strength of MJO, and a flat SST profile in the equatorial region is required for more energetic of MJO. This result was tested and found to be valid in a series of further experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kumar, Suvarchal. "Impact Of Dynamical Core And Diurnal Atmosphere Occean Coupling On Simulation Of Tropical Rainfall In CAM 3.1, AGCM." Thesis, 2009. http://hdl.handle.net/2005/974.

Повний текст джерела
Анотація:
In first part of the study we discuss impact of dynamical core in simulation of tropical rainfall. Over years many new dynamical cores have been developed for atmospheric models to increase efficiency and reduce numerical errors. CAM3.1 gives an opportunity to study the impact of the dynamical core on simulations with its three dynamical cores namely Eulerian spectral(EUL) , Semilagrangian dynamics(SLD) and Finite volume(FV) coupled to a single parametrization package. A past study has compared dynamical cores of CAM3 in terms on tracer transport and has showed advantages using FV in terms of tracer transport. In this study we compare the dynamical cores in climate simulations and at their optimal configuration, which is the intended use of the model. The model is forced with AMIP type SST and rainfall over seasonal, interannual scales is compared. The significant differences in simulation of seasonal mean exist over tropics and over monsoon regions with observations and among dynamical cores. The differences among EUL and SLD, which use spectral transform methods are lesser compared that of with FV clearly indicating role of numerics in differences. There exist major errors in simulation of seasonal cycle in all dynamical cores and errors in simulation of seasonal means over many regions are associated with errors in simulation of seasonal cycle such as over south china sea. Seasonal cycle in FV is weaker compared to SLD and EUL. The dynamical cores exhibit different interannual variability of rainfall over Indian monsoon region, the period of maximum power corresponding to a dynamical core differs substantially with another. From this study there seems no superiority associated with FV dynamical core over all climate scales as seen in tracer transport. The next part of the study deals with impact of diurnal ocean atmosphere coupling in an AGCM,CAM3.1. Due to relatively low magnitude of diurnal cycle of SST and lack of SST observations over diurnal scales current atmospheric models are forced with SSTs of periods grater than a day. CAM 3.1 standalone model is forced with monthly SSTs but the interpolation is linear to every time step between any two months and this linear interpolation implies a linear diurnal and intraseasonal variation of SST which is not true in nature. To test the sensitivity of CAM3.1 to coupling of SST on diurnal scales, we prescribed over tropics(20S20N) a diurnal cycle of SST over daily mean interpolated SST of different magnitudes and phase comparable to observations. This idea of using a diurnal cycle of SST retaining seasonal mean SST in an atmospheric model is novel and provides an interesting frame work to test sensitivity of model to interpolations used in coupling of boundary conditions. Our analysis shows a high impact of using diurnal cycle of SST on simulation of mean rainfall over tropics. The impact in a case where diurnal cycle of SST is fixed and retained to daily mean SST implies that changes associated with a coupled model are to some extent due to change in representation of diurnal cycle of SST. A decrease of excess rainfall over western coast of Bay of Bengal and an increase of rainfall over northern bay of Bengal in such case is similar to the improvement due to coupling atmospheric model to a slab ocean model. This also implies that problems with current AMIP models in simulation of seasonal mean Indian monsoon rainfall could be due to erroneous representation of diurnal cycle of SST in models over this region where the diurnal cycle of SST is high in observations. The high spatial variability of the impact in various cases over tropics implies that a similar spatial variation of diurnal cycle could be important for accurate simulation of rainfall over tropics. Preliminary analysis shows that impact on rainfall was due to changes in moisture convergence. We also hypothesized that diurnal cycle of SST could trigger convection over regions such as northern Bay of Bengal and rainfall convergence feedback sustains it. The impact was also found on simulation of internal interannual variability of rainfall
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Rao, Samrat. "Structure of the Tropical Easterly Jet in NCAR CAM-3.1 GCM." Thesis, 2013. http://etd.iisc.ernet.in/2005/3449.

Повний текст джерела
Анотація:
This thesis examines the structure of the Tropical Easterly Jet (TEJ) in a General Circulation Model (GCM). The TEJ is observed only during the Indian summer monsoon period and is strongest during July and August. The jet structure simulated by an atmospheric GCM (CAM-3.1) in July has been compared with reanalysis data. The simulated TEJ was displaced westward by ~ 25◦ when compared to observations. The removal of orography had no impact on the jet structure. This demonstrated that the Tibetan Plateau did not play an important role in the location and structure of the jet. The changes in cumulus scheme in the GCM had a large influence on the location of the jet maxima. To examine the factors which control the location and structure of the jet, a series of experiments were conducted using an aqua-planet version of the model. The impact of different sea surface temperature (SST) profiles was studied. The rainfall in the GCM was primarily in the regions where the SST attained a maximum. By altering the location of SST maximum (and hence the rainfall maximum), the impact of location of rainfall maximum on the location and structure of the jet was studied. When the rainfall maximum was located close to the equator, it did not generate a strong jet but had an influence on the vertical structure of the jet. A large number of simulations were conducted with multiple rainfall maxima and the need for these was demonstrated since only then was the observed jet structure well simulated. Based on the simulations, it was concluded that the simulation of the TEJ by CAM-3.1 was unrealistic because of large unrealistic rainfall over Saudi Arabia in this GCM. Equatorial heating has been shown to be important to simulate proper jet structure. The zonal structure of the jet was also influenced by rainfall in the Pacific Ocean. Although the aqua-planet configuration of the CAM-3.1 GCM provided several useful insights, the simulation was not perfect on account of errors in the simulation of the temperature profile in the lower troposphere. An ideal-physics configuration of the GCM was used. This removed the cumulus physics and instead imposed the observed heating pro-files. Both upper tropospheric friction and radiative-convective atmospheric temperatures were required to simulate the TEJ. The problems with the simulation of structure in the jet exit region was corrected by using radiative-convective atmospheric temperatures that were qualitatively similar to those observed in northern hemisphere summer time. The ideal-physics configuration reconfirmed that the Saudi Arabian rainfall was responsible for the westward shift of the TEJ in the simulations. The ideal-physics simulations showed that the simple analytical model proposed by Gillin1980 was not suitable for the simulation of TEJ. The above the simulations indicate that a shift in the location of the jet is related to a shift in the rainfall pattern. Based on this insight one would expect that the jet location will be different in good and bad monsoon periods. This is indeed the case. In July 2002 the Indian monsoon failed after beginning well in June. In June the TEJ is consequently located west ward compared to July. The same situation prevails even in good and poor monsoon years. In a good monsoon year (July 1988) the jet maximum is located westward when compared to a bad monsoon year (July 2002). In this thesis we have clearly demonstrated the role of anomalous rainfall on the location of the TEJ. This thesis has shown that an accurate simulation of the TEJ depends upon the accurate simulation of various rainfall centers that act as multiple heat sources in the atmosphere. The rainfall in the equatorial region does not influence the strength of the TEJ but alters the vertical structure of the jet. The strength the jet is dependent on the intensity of rainfall and the latitudinal distance from the equator. The complex vertical structure of the jet is not simulated by simple analytical models of the jet.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Dixit, Vijay Vishal. "Structure and Dynamics of the Inter-tropical Convergence zones." Thesis, 2015. http://etd.iisc.ernet.in/2005/3964.

Повний текст джерела
Анотація:
The east-west oriented cloud bands in the tropics are called the Inter-tropical Con-vergence Zones (ITCZ). Till recently, the ITCZ has been assumed to have a simple vertical structure with convergence near the surface boundary layer and divergence near the tropopause. Recent work has shown that the ITCZ can have a complex ver-tical structure with multi-level ows. This complex structure has a profound impact on the mass, momentum and energy budget in the ITCZ. This thesis addresses the factors that govern the shallow meridional circulation that occurs in the ITCZ and the mechanisms that govern the abrupt poleward transition and the gradual poleward migration . The shallow meridional circulation forms when the boundary layer ow that con-verges in the ITCZ, rises above the boundary layer and diverges in the lower tropo-sphere. The ow above the boundary layer is in the direction opposite to the direction of the ow within the boundary layer. Some authors have argued that this is caused by the reversal of pressure gradients just above the boundary layer in response to strong sea surface temperature gradients. This hypothesis neglects the eect of plan-etary rotation on the ow and was found to be insucient to explain the formation of shallow meridional circulation. In the east Pacic ocean, the shallow circulation forms only to the south of the ITCZ when the ITCZ forms away from the equator, while it is absent when the ITCZ forms close to the equator. The aqua-planet simulations of the equatorial and the o-equatorial ITCZ were conducted using Community Atmosphere Model (CAM 3.0). The model used the Eulerian dynamical core with T42 horizontal resolution and 26 levels in vertical. Each simulation was run for 3 years and analysis of last six months was presented. The simulations reproduced the contrast in the vertical structure of the equatorial and o-equatorial ITCZ. The shallow circulation was simulated with-out the reversal of pressure gradients and the SST gradients were weakest when the shallow circulation was simulated. We have proposed a new mechanism for the exis-tence of shallow meridional circulation in the ITCZ. We have argued that, in Earth's atmosphere, the mean horizontal ow generally occurs in the direction perpendicular to the direction of applied pressure gradient due to the action of Coriolis force. If the local rotational eects of the ow (relative vorticity) cancels the action of the Coriolis force, then a ow along the pressure gradient is possible. We demonstrated that this condition was satised only to the south of the ITCZ when it forms away from the equator. The ITCZ is characterized by the maximum mass convergence in the boundary layer. The mass convergence is mainly caused by the deceleration of poleward ow in the boundary layer. When the ITCZ forms close to the equator, the ow in the boundary layer is a resultant of vector addition of three forces, a pressure gradient force in the north-south direction (i.e., the ow towards low pressure), a Coriolis force which acts in the east-west direction( perpendicular to the direction of the ow), and surface friction which opposes the resultant ow. When the ITCZ forms away from the equator a three way balance does not capture the dynamics of ow. As the poleward ow is accelerated towards low pressure, it has to advect a considerable amount of zonal momentum with it which acts to retard the poleward ow. This eect of advection of zonal momentum has to be included in the force balance to obtain an accurate estimate of the ow and associated convergence. The ITCZ acts like a heat engine. The energy is gained near the surface, some energy is transported towards pole while some is utilized in driving the meridional circulation. The rest is rejected near the tropopause. The transport within the troposphere occurs through the vertical or horizontal advection of the energy due to vertical and horizontal motions respectively. Our analysis of the ITCZ suggests that; a large amount of transport occurs through horizontal motions that was neglected in the previous studies. The detailed analysis suggests that the latent energy in the form of mass of water vapor is exported out of the ITCZ at dierent levels in association with the multilevel ows. The equatorial and the o-equatorial ITCZ are dierent because, evaporation is larger in the o-equatorial ITCZ when compared to the equatorial ITCZ. The ITCZ shows a strong sub-seasonal variability in its location in the Indian Ocean and the west Pacic Ocean during boreal summer. There are two favorable locations, one near the equator and another away from the equator, for formation of the ITCZ. The equatorial ITCZ either propagates abruptly or gradually to the o-equatorial location. A detailed analysis of moisture and momentum budget of the simulated abrupt and gradual propagations enabled us to separate the role of thermo-dynamic and dynamic processes. We found that, if the equatorial ITCZ would propa-gate abruptly or gradually to the o-equatorial location is decided by the availability of the water vapor in the boundary layer between the two locations of the ITCZ, i.e., by the thermodynamic processes. But, such a transition to the o-equatorial location is allowed only when the constraints imposed by the re-adjustment in the circulation are satised. In simple terms, these constraints emerge due to two processes. 1. The Earth (lower boundary of the atmosphere) spins at maximum eective radius near the equator. As a result, the atmosphere gains maximum angular momentum near the equator (`zonal momentum' in Cartesian co-ordinates) . The ITCZ is one of the primary avenues to transport the zonal momentum from the lower troposphere to the upper troposphere. When the favorable location of ITCZ is near the equator, the location of ITCZ and the location where atmosphere gains maximum zonal momentum are coincident. The ITCZ and associated meridional circulation transports the zonal momentum upwards which is then transported polewards. As the favorable location of ITCZ moves away from the equator, the two locations are die rent. As a result, the atmospheric ow has to re-adjust so that the zonal momentum is transported from the equator to the favorable location of the ITCZ which then transports it upwards and polewards. In summary, this thesis proposes a new mechanism for the generation of shallow meridional circulation, the abrupt transition and the gradual propagations of the ITCZ.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Kumar, V. Santhosh. "Improving The Communication Performance Of I/O Intensive And Communication Intensive Application In Cluster Computer Systems." Thesis, 2006. http://hdl.handle.net/2005/453.

Повний текст джерела
Анотація:
Cluster computer systems assembled from commodity off-the-shelf components have emerged as a viable and cost-effective alternative to high-end custom parallel computer systems.In this thesis, we investigate how scalable performance can be achieved for database systems on clusters. In this context we specfically considered database query processing for evaluation of botlenecks and suggest optimization techniques for obtaining scalable application performance. First we systematically demonstrated that in a large cluster with high disk bandwidth, the processing capability and the I/O bus bandwidth are the two major performance bottlenecks in database systems. To identify and assess bottlenecks, we developed a Petri net model of parallel query execution on a cluster. Once identified and assessed,we address the above two performance bottlenecks by offoading certain application related tasks to the processor in the network interface card. Offoading application tasks to the processor in the network interface cards shifts the bottleneck from cluster processor to I/O bus. Further, we propose a hardware scheme,network attached disk ,and a software scheme to achieve a balanced utilization of re-sources like host processor, I/O bus, and processor in the network interface card. The proposed schemes result in a speedup of upto 1.47 compared to the base scheme, and ensures scalable performance upto 64 processors. Encouraged by the benefits of offloading application tasks to network processors, we explore the possibilities of performing the bloom filter operations in network processors. We combine offloading bloom filter operations with the proposed hardware schemes to achieve upto 50% reduction in execution time. The later part of the thesis provides introductory experiments conducted in Community At-mospheric Model(CAM), a large scale parallel application used for global weather and climate prediction. CAM is a communication intensive application that involves collective communication of large messages. In our limited experiment, we identified CAM to see the effect of compression techniques and offloading techniques (as formulated for database) on the performance of communication intensive applications. Due to time constraint, we considered only the possibility of compression technique for improving the application performance. However, offloading technique could be taken as a full-fledged research problem for further investigation In our experiment, we found compression of messages reduces the message latencies, and hence improves the execution time and scalability of the application. Without using compression techniques, performance measured on 64 processor cluster resulted in a speed up of only 15.6. While lossless compression retains the accuracy and correctness of the program, it does not result in high compression. We therefore propose lossy compression technique which can achieve a higher compression, yet retain the accuracy and numerical stability of the application while achieving a scalable performance. This leads to speedup of 31.7 on 64 processors compared to a speedup of 15.6 without message compression. We establish that the accuracy within prescribed limit of variation and numerical stability of CAM is retained under lossy compression.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Xavier, Prince K. "Extended Range Predictability And Prediction Of Indian Summer Monsoon." Thesis, 2006. http://hdl.handle.net/2005/431.

Повний текст джерела
Анотація:
Indian summer monsoon (ISM) is an important component of the tropical climate system, known for its regular seasonality and abundance of rainfall over the country. The droughts and floods associated with the year-to-year variation of the average seasonal rainfall have devastating effect on people, agriculture and economy of this region. The demand for prediction of seasonal monsoon rainfall, therefore, is overwhelming. A number of attempts to predict the seasonal mean monsoon have been made over a century, but neither dynamical nor empirical models provide skillful forecasts of the extremes of the monsoon such as the unprecedented drought of 2002. This study investigates the problems and prospects of extended range monsoon prediction. An evaluation of the potential predictability of the ISM with the aid of an ensemble of Atmospheric General Circulation Model (AGCM) simulations indicates that the interannual variability (IAV) of ISM is contributed equally by the slow boundary forcing (‘externally’ forced variability) and the inherent climate noise (‘internal’ variability) in the atmosphere. Success in predicting the ISM would depend on our ability to extract the predictable signal from a background of noise of comparable amplitude. This would be possible only if the ‘external’ variability is separable from the ‘internal’ variability. A serious effort has been made to understand and isolate the sea surface temperature (SST) forced component of ISM variability that is not strongly influenced by the ‘internal’ variability. In addition, we have investigated to unravel the mechanism of generation of ‘internal’ IAV so that the method of isolating it from forced variability may be found. Since the primary forcing mechanism of the monsoon is the large-scale meridional gradient of deep tropospheric heat sources, large-scale changes in tropospheric temperature (TT) due to the boundary forcing can induce interannual variations of the timing and duration of the monsoon season. The concept of interannually varying monsoon season is introduced here, with the onset and withdrawal of monsoon definitions based on the reversal of meridional gradient of TT between north and south. This large scale definition of the monsoon season is representative of the planetary scale influence of the El Ni˜no Southern Oscillation (ENSO) on monsoon through the modification of TT and the cross equatorial pressure gradient over the ISM region. A sig- nificant relationship between ENSO and monsoon, that has remained steady over the decades, is discovered by which an El Ni˜no (La Ni˜na) delays (advances) the onset, advances (delays) the withdrawal and suppresses (enhances) the strength of the monsoon. The integral effect of the meridional gradient of TT from the onset to withdrawal proves to be a useful index of seasonal monsoon which isolates the boundary forced signal from the influence of internal variations that has remained steady even in the recent decades. However, consistent with the estimates of potential predictability, the boundary forced variability isolated with the above definitions explains only about 50% of the total interannual variability of ISM. Detailed diagnostics of the onset and withdrawal processes are performed to understand how the ENSO forcing modifies the onset and withdrawal, and thus the seasonal mean monsoon. It is found that during an El Ni˜no, the onset is delayed due to the enhanced adiabatic subsidence that inhibits vertical mixing of sensible heating from the warm landmass during pre-monsoon months, and the withdrawal is advanced due to the horizontal advective cooling. This link between ENSO and monsoon is realized through the advective processes associated with the stationary waves in the upper troposphere set up by the tropical ENSO heating. The remaining 50% of the monsoon IAV is governed by internal processes. To unravel the mechanism of the generation of internal IAV, we perform another set of AGCM simulations, forced with climatological monthly mean SSTs, to extract the pure internal IAV. We find that the spatial structure of the intraseasonal oscillations (ISOs) in these simulations has significant projection on the spatial structure of the seasonal mean and a common spatial mode governs both intraseasonal and interannual variability. Statistical average of ISO anomalies over the season (seasonal ISO bias) strengthens or weakens the seasonal mean. It is shown that interannual anomalies of seasonal mean are closely related to the seasonal mean of intraseasonal anomalies and explain about 50% of the IAV of the seasonal mean. The seasonal mean ISO bias arises partly due to the broadband nature of the ISO spectrum, allowing the intraseasonal time series to be aperiodic over the season and partly due to a non-linear process where the amplitude of ISO activity is proportional to the seasonal bias of ISO anomalies. The later relationship is a manifestation of the binomial character of the rainfall time series. The remaining part of IAV may arise due to the complex land-surface processes, scale interactions, etc. We also find that the ISOs over the ISM region are not significantly modulated by the Pacific and Indian Ocean SST variations. Thus, even with a perfect prediction of SST, only about 50% of the observed IAV of ISM could be predicted with the best model in forced mode. Even so, prediction of all India rainfall (AIR) representing the average conditions of the whole country and the season may not always serve the purposes of monsoon forecasting. One reason is the large inhomogeneities in the rainfall distribution during a normal seasonal monsoon. Agriculture and hydrological sector could benefit more if provided with regional scale forecasts of active/break spells 2-3 weeks ahead. Therefore, we advocate an alternative strategy to the seasonal prediction. Here, we present a method to estimate the potential predictability of active and break conditions from daily rainfall and circulation from observations for the recent 24 years. We discover that transitions from break to active conditions are much more chaotic than those from active to break, a fundamental property of the monsoon ISOs. The potential predictability limit of monsoon breaks (∼20 days) is significantly higher than that of the active conditions (∼10 days). An empirical real- time forecasting strategy to predict the sub-seasonal variations of monsoon up to 4 pentads (20 days) in advance is developed. The method is physically based, with the consideration that the large-scale spatial patterns and slow evolution of monsoon intraseasonal variations possess some similarity in their evolutions from one event to the other. This analog method is applied on NOAA outgoing longwave radiation (OLR) pentad mean data which is available on a near real time basis. The elimination of high frequency variability and the use of spatial and temporal analogs produces high and useful skill of predictions over the central and northern Indian region for a lead-time of 4-5 pentads. An important feature of this method is that, unlike other empirical methods to forecast monsoon ISOs, this uses minimal time filtering to avoid any possible end-point effects, and hence it has immense potential for real-time applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Dlamini, Nohlahla. "Simulating South African Climate with a Super parameterized Community Atmosphere Model (SP-CAM)." Diss., 2019. http://hdl.handle.net/11602/1495.

Повний текст джерела
Анотація:
MENVSC
Department of Geography and Geo-Information Sciences
The process of cloud formation and distribution in the atmospheric circulation system is very important yet not easy to comprehend and forecast. Clouds affect the climate system by controlling the amount of solar radiation, precipitation and other climatic variables. Parameterised induced General Circulation Model (GCMs) are unable to represent clouds and aerosol particles explicitly and their influence on the climate and are thought to be responsible for most of the uncertainty in climate predictions. Therefore, the aim of the study is to investigate the climate of South Africa as simulated by Super Parameterised Community Atmosphere Model (SPCAM) for the period of 1987-2016. Community Atmosphere Model (CAM) and SPCAM datasets used in the study were obtained from Colorado State University (CSU), whilst dynamic and thermodynamic fields were obtained from the NCEP reanalysis ll. The simulations were compared against rainfall and temperature observations obtained from the South African Weather Service (SAWS) database. The accuracy of the model output from CAM and SPCAM was tested in simulating rainfall and temperature at seasonal timescales using the Root Mean Square Error (RMSE). It was found that CAM overestimates rainfall over the interior of the subcontinent during December - February (DJF) season whilst SPCAM showed a high performance in depicting summer rainfall particularly in the central and eastern parts of South Africa. During June – August (JJA), both configurations (CAM and SPCAM) had a dry bias with simulating winter rainfall over the south Western Cape region in cases of little rainfall in the observations. CAM was also found to underestimate temperatures during DJF with SPCAM results closer to the reanalysis. The study further analyzed inter-annual variability of rainfall and temperature for different homogenous regions across the whole of South Africa using both configurations. It was found that SPCAM had a higher skill than CAM in simulating inter-annual variability of rainfall and temperature over the summer rainfall regions of South Africa for the period of 1987 to 2016. SPCAM also showed reasonable skill simulating (mean sea level pressure, geopotential height, omega etc) in contrast to the standard CAM for all seasons at the low and middle levels (850 hPa and 500 hPa). The study also focused on major El Niño Southern Oscillation (ENSO) events and found that SPCAM tended to compare better in general with the observations. Although both versions of the model still feature substantial biases in simulating South African climate variables (rainfall, temperature, etc), the magnitude of the biases are generally smaller in the super parameterized CAM than the default CAM, suggesting that the implementation of the super parameterization in CAM improves the model performance and therefore seasonal climate prediction.
NRF
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії