Зміст
Добірка наукової літератури з теми "Combustion – Efficacité"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Combustion – Efficacité".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Combustion – Efficacité"
Asish K Ghosh. "Air-pollutant particulate matter 2.5 (PM2.5)-induced inflammation and oxidative stress in diseases: Possible therapeutic approaches." International Journal of Science and Research Archive 11, no. 1 (February 28, 2024): 2148–62. http://dx.doi.org/10.30574/ijsra.2024.11.1.0213.
Повний текст джерелаThapa, Vesh R., Bijesh Maharjan, Humberto Blanco‐Canqui, Nevin Lawrence, Saurav Das, Cody Creech, and Gary W. Hergert. "Coal combustion residue for crop productivity in the semiarid US High Plains." Agrosystems, Geosciences & Environment 7, no. 2 (May 6, 2024). http://dx.doi.org/10.1002/agg2.20505.
Повний текст джерелаLu, Shanshan, Bin Wang, Jiaqi Wang, Yi Guo, Shanshan Li, Suhong Zhao, Yuanzhen Yang, Yiting Feng, and Zhifang Xu. "Moxibustion for the Treatment of Cancer and its Complications: Efficacies and Mechanisms." Integrative Cancer Therapies 22 (January 2023). http://dx.doi.org/10.1177/15347354231198089.
Повний текст джерелаДисертації з теми "Combustion – Efficacité"
Nehme, Wassim. "Étude et modélisation de fours à gaz sidérurgiques en vue d’améliorer leur efficacité énergétique." Paris, ENMP, 2009. http://www.theses.fr/2009ENMP0001.
Повний текст джерелаGas industrial furnaces have an important potential for reducing energy consumption. To improve energy efficiency of furnaces, a modification of heat recovery system on the stake is required. Depending on the application, an optimal choice of burner type is required. The aim of the thesis is to quantify the effect of burner change on the heated product quality, energy efficiency, and furnace productivity. An experimental comparative study is performed for three types of industrial natural gas burners. The characterization was carried out in a 200 kW experimental cell. At different locations inside the cell in the burner plane, the flue gas composition (O2, CO2, CO, NO, NO2, NOx), the flue gas temperature, the total flux and the radiative flux are measured. The three types of burners are: a regenerative burner, a recuperative burner, and an self-regenerative burner. For each type of burner, different settings are tested by changing the wall temperature, the excess air ratio, the flame mode, the burner capacity, and the combustion air temperature. All measurements were corrected by modeling the measurement probes and using inverse methods. The adjusted measurements were used to validate the choice of the closer models for the resolution of turbulence, combustion, and radiative transfer equations. For each burner, the CFD calculations are compared to measured temperatures and flue gas compositions. Based on the validated CFD models, a generic method for flame representation is developed. In this method the flame is considered as the hot flue gases resulting from combustion. Then flame Emissive Volume Approach (EVA) consists in dividing the flame into concentric isothermal volumes. The method can better represent the flame in a dynamic furnace modeling on component network approach. Finally, a dynamic model of a tube reheating furnace is developed and a comparative study between the three types of burners is carried out. The comparison focuses on product quality, energy efficiency, and furnace productivity
Bélanger, Desbiens Alexandre. "Développement d’un système d’actionnement utilisant la combustion d’une source d’énergie chimique pour la robotique mobile." Mémoire, Université de Sherbrooke, 2016. http://hdl.handle.net/11143/8841.
Повний текст джерелаRottier, Christiane. "Etude expérimentale de l'influence des mélanges gazeux sur la combustion sans flamme." Phd thesis, INSA de Rouen, 2010. http://tel.archives-ouvertes.fr/tel-00557903.
Повний текст джерелаNguyen, Minh Nhat. "Etudes expérimentales des échanges convectifs dûs aux développements d'un film d'air froid." Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2012. https://theses.hal.science/docs/00/68/45/60/PDF/MA_moire_de_ThA_se_NGUYEN_MINH_NHAT.pdf.
Повний текст джерелаOur work focuses on the technique of film cooling used, for example, for cooling wall of the combustion chamber. This study consists of two parts : The first part consists of an experimental study on the film cooling in conditions of low temperature : 40°C for the mainstream flow and 20°C for the coolant flow. The blowing ratio M ranges from 1 to 4. The test rig consists of a plate with 81 injection holes inclined at 30° with respect to the surface of the plate. The first, we study the influence of blowing ratio M and the influence of the opening of the rows of holes on the formation of the film cooling. This first step has determined a base configuration. This configuration corresponds to the minimum required number of rows of holes for the formation of the film cooling. The second, we studied the influence of two geometric parameters on the film cooling: the inter-holes distance p/D = 4, 8, 12 and the inter-rows distance s/D = 4, 8, 12. The results showed that increasing of the spacing between injections leads to the decrease of the adiabatic effectiveness of film cooling and the decrease of the heat transfer coefficient. The last, the goal of our work is to optimize the maintenance of the cooling layer. For this, we proposed adding a further injection pattern following the basic configuration. Thus, we found that the opening of one additional row improve the cooling effectiveness whatever the position of the adding row of holes is from the base configuration. On the other hand, the opening of three additional rows gives significant improvements of the adiabatic effectiveness of film cooling. We have noted better maintenance of the film cooling by adding rows adjacent to the base configuration. The second part is devoted to studies of cooling on a virtual test bench industrial bench called Thalie. This test bench allows to reproduce conditions similar to those aero-thermal encountered in a combustion chamber (temperature up to 1400K and pressures up to 7. 10 5 Pa). However, these extreme conditions do not allow the direct application of the experimental techniques developed in the conditions of lower temperature and pressures. Therefore, the objective of this experimental part is to conduct a feasibility study on a new measurement technique. For this, a technique for measuring transient is proposed. The principle of this method is to impose a level of temperature on the primary flow and monitor the temperature field of the wall. The heat transfer coefficients between the wall and flows are identified by minimizing the difference between the wall temperature measured by infrared thermography and the one calculated by solving the equation of heat transfer
Chahine, May. "Etude des effets magnétiques et des effets de l'enrichissement en oxygène sur la combustion d'une flamme de diffusion laminaire CH4-Air : optimisation de l'efficacité énergétique." Phd thesis, Université d'Orléans, 2012. http://tel.archives-ouvertes.fr/tel-00747330.
Повний текст джерелаVásquez, Salcedo Wenel Naudy. "Biο jet fuels prοductiοn frοm lignοcellulοsic biοmass : butyl levulinate a prοmising mοlecule tοwards the develοpment οf sustainable aviatiοn fuels". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR12.
Повний текст джерелаIn the context of the aviation sector, which poses significant challenges due to the complexity and stringent standards of fuel, our research proposal gains particular relevance. We aim to develop an integrated approach that fully valorizes lignocellulosic biomass into jet fuels, thereby contributing to the sustainable development of society. Lignocellulosic biomass is a renewable resource that can be used as feedstock to produce high-value materials and chemicals, such as jet fuel. This type of biomass valorization includes many transformation steps, for which the kinetics and the thermal risk of the chemical reaction are not necessarily known. This work focuses on a specific compound: butyl levulinate (BL). This compound can be obtained from lignocellulosic biomass and can be transformed into gamma-valerolactone (GVL) via hydrogenation. The GVL is a vital platform molecule that can serve as a feedstock to produce substitutes for fossil fuels like gasoline, diesel, and jet fuels. The main objectives of this research are: 1) To develop a robust and reliable kinetic model for BL hydrogenation to produce GVL. Here, we seek to develop a kinetic model experimentally in different thermal modes of operation, i.e., isothermal, isoperibolic, and adiabatic. This model type not only predicts kinetics and the corresponding heat-flow rate but also allows the assessment of the thermal risk related to the chemical reaction. The experiments for developing this kinetic model were performed in the calorimeter reactor Mettler-Toledo RC1. 2) The complete valorization of lignocellulosic biomass targets the industrial scale. Therefore, the continuous production of GVL from BL should be assessed. In that sense, we studied the thermal stability of the continuous production of GVL from BL in a CSTR reactor (continuous stirred tank reactor). 3) One of the intriguing aspects of our research is the potential use of butyl levulinate (BL) as a fuels additive. We have conducted a thorough assessment of the suitability of BL as a kerosene additive, aiming to understand how its addition affects the combustion efficiency and operating limits in a gas turbine combustion chamber. The results obtained concerning the kinetic model showed that the Non-Competitive Langmuir-Hinshelwood models predict the experimental data of concentration and temperature for BL hydrogenation with good accuracy. The thermal risk analysis, linked to BL hydrogenation, showed that the energy released during the reaction is relatively low, ΔH_{hyd} = -35.28 kJ/mol +/- 1.00 kJ/mol, and subsequently the thermal stability study showed that for values of Ua > 1500 W/m³/K in a continuous reactor, the risk of thermal instabilities is low. The evaluation of BL as a kerosene additive showed that adding up to 20% of BL into Kerosene does not significantly change the physical properties, neither the combustion efficiency nor the operating limits in the operating conditions considered during the combustion assessment
En el contexto del sector de la aviación, que plantea importantes retos debido a la complejidad y a los estrictos estándares de combustible, nuestra propuesta de investigación cobra especial relevancia. Nuestro objetivo es desarrollar un enfoque integrado que valorice plenamente labiomasa lignocelulósica en combustibles para aviones, contribuyendo así al desarrollo sostenible de la sociedad. La biomasa lignocelulósica es un recurso renovable que se puede utilizar como materia prima para producir materiales y productos químicos de alto valor, como el combustible para aviones. Este tipo de valorización de la biomasa incluye muchas etapas de transformación, para las cuales no necesariamente se conoce la cinética y el riesgo térmico de la reacción química. Este trabajo se centra en un compuesto específico: el levulinato de butilo (BL). Este compuesto se puede obtener a partir de biomasa lignocelulósica y se puede transformar en gamma-valerolactona (GVL) mediante hidrogenación. El GVL es una molécula plataforma vital que puede servir como materia prima para producir sustitutos de combustibles fósiles como la gasolina, el diésel y los combustibles para aviones. Los principales objetivos de esta investigación son: 1. Desarrollar un modelo cinético robusto y fiable para la hidrogenación de BL para producir GVL. Aquí, buscamos desarrollar un modelo cinético experimentalmente en diferentesmodos de operación térmica, es decir, isotérmico, isoperibólico y adiabático. Este tipo de modelo no solo predice la cinética y el flujo de calor correspondiente, sino que también permite evaluar el riesgo térmico relacionado con la reacción química. Los experimentos para el desarrollo de este modelo cinético se realizaron en el reactor calorímetro Mettler-Toledo RC1. 2. La valorización completa de la biomasa lignocelulósica se dirige a la escala industrial. Por lo tanto, debe evaluarse la producción continua de GVL a partir de BL. En ese sentido, estudiamos la estabilidad térmica de la producción continua de GVL a partir de BL en un reactor CSTR (reactor continuo de tanque agitado). 3. Uno de los aspectos intrigantes de nuestra investigación es el potencial uso del levulinato de butilo (BL) como aditivo de combustibles. Hemos llevado a cabo una evaluación exhaustiva de la idoneidad del BL como aditivo de queroseno, con el objetivo de comprender cómo su adición afecta la eficiencia de la combustión y los límites de funcionamiento en una cámara de combustión de turbina de gas. Los resultados obtenidos en relación con el modelo cinético mostraron que los modelos no competitivos de Langmuir-Hinshelwood predicen los datos experimentales de concentración y temperatura para la hidrogenación de BL con buena precisión. El análisis de riesgo térmico, vinculado a la hidrogenación BL, mostró que la energía liberada durante la reacción es relativamente baja, ΔH_{hyd} = -35.28 kJ/mol +/- 1.00 kJ/mol, y posteriormente el estudio de estabilidad térmica mostró que para valores de Ua > 1500 W/m ³/K en un reactor continuo, el riesgo de inestabilidades térmicas es bajo. La evaluación del BL como aditivo de queroseno mostró que la adición de hasta un 20% de BL al queroseno no cambia significativamente las propiedades físicas, ni la eficiencia de la combustión ni los límites de funcionamiento en las condiciones de funcionamiento consideradas durante la evaluación de la combustión