Дисертації з теми "COLOR RENDERING INDEX (CRI)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-30 дисертацій для дослідження на тему "COLOR RENDERING INDEX (CRI)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
KAUR, HARPREET. "OPTIMIZATION OF LUMINESCENT FEATURES IN MULTICOLOR EMITTING RARE EARTH DOPED ALKALINE EARTH VANADATE PHOSPHOR FOR SOLID STATE LIGHTING APPLICATIONS." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18694.
Повний текст джерелаHällvall, Joakim, and Sebastian Gill. "Redovisning av CRI hos Tunable White-armaturer : En undersökning av armaturtillverkares specifikation av Tunable white-armaturer." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Byggnadsteknik och belysningsvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-40916.
Повний текст джерелаTunable white luminaires today form a large part of the market and are expected to increase further in the upcoming years. As many manufacturers today produce and market their own solutions to create a dynamic light, it can be hard to know what quality these solutions have and how well the technical specification is. The purpose of this study were to investigate whether the information to the user is sufficient and whether the presented data of tunable white luminaires is correct. This study is based on two parts. An experimental study where five tunable white luminaires CRI (color rendering) were measured between different CCT levels (color temperature) and then compared these to what providers have specified on their websites. The second part was a survey was conducted to 144 lighting designers based in Sweden, 52 of whom chose to answer the questionnaire. The questions concerned the presented information of tunable white luminaires as well as the importance of a good light quality focusing on CRI. The results from the authors experimental survey showed that all tunable white luminaires that where tested are changing in CRI under different color temperature intervals. The biggest difference that was measured was on manufacturer 3 where 9 CRI shifted between 2700K-6000K. A comparison could be made and showed that two of five of the suppliers specifications did not match with the authors measurements. By analyzing the answers from the survey, some conclusions could be drawn. There were very different opinions regarding the technical specifications of tunable white luminaires. Some felt that it is enough as it is today, while others felt that more information was needed. The majority considered it very important to have a good CRI when selecting tunable white luminaires in their projects. One could also see that many lighting designers wanted to present color reproduction in TM-30-15 instead of the CRI method or to present CRI at given color temperatures. What can be determined by this study is that there is a tendency for some luminaire suppliers to have worse CRI than presented. This study only measured tunable white fixtures from five companies operating in Sweden and only at 100% luminosity. However, the authors consider that this study could lead to a discussion about better specifications for tunable white luminaires, as well as giving the reader an increased understanding of the complexity of the subject.
Vedin, Joel. "Utilizing an efficient color-conversion layer for realization of a white light-emitting electrochemical cell." Thesis, Umeå universitet, Institutionen för fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122097.
Повний текст джерелаNonne, Jordi. "Caractérisation de la qualité des éclairages artificiels (rendu des couleurs et confort visuel) en particulier pour les sources à lumières à diodes électro-luminescentes (DEL)." Thesis, Paris, CNAM, 2015. http://www.theses.fr/2015CNAM1024/document.
Повний текст джерелаThe ENG05 project funded by the European Research Metrology Programme (EMRP) addresses measurement aspects of both quantity and quality of new lighting such as solid-state lighting (SSL).The current Colour Rendering Index (CRI) of the CIE (International Commission on Illumination) fails to predict the subjective ranking of the lighting sources based on DEL (light emitting diode). Along with a study of colour rendering metrics based on an extensive computation of relevant metrics and colorimetric calculations, a study on visual comfort is performed and both are presented in this thesis.For interior lighting standards it doesn’t exist a metric able to predict the visual comfort of an environment. Therefore, the aim of this study consists in a contribution to the human visual comfort characterization according to various realistic configurations considering the comparison between DEL luminaries and traditional lighting technologies (fluorescent, halogen).The analysis of the results DEL to develop a model which could be deemed worthy of consideration by CIE.Keywords: color rendering, visual comfort, lighting quality, subjective experiment, DEL, UGR, CRI, glare, luminance maps
Nekrasova, Y. A., V. A. Aseev, N. V. Nikonorov, E. B. Kolobkova, O. A. Usov, and A. V. Nashchekin. "Red Emitting Phosphors Doped with Mn and Eu Ions for pc-WLEDs." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35375.
Повний текст джерелаLingfors, David. "Illumination properties and energy savings of a solar fiber optic lighting system balanced by artificial lights." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-204664.
Повний текст джерелаVysoudil, Martin. "Fotometrie a spektroradiometrie zapouzdřených LED čipů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219393.
Повний текст джерелаГрушко, Юрій Володимирович. "Методи трасування променів у реальному часі". Master's thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/26709.
Повний текст джерелаRelevance of the topic. The actual task of computer graphics is to obtain realistic images that are actively in demand in industry, gaming and film industry. A photorealistic image is characterized by such effects as soft shadows, partial shade, caustic, dynamic blur, depth of field, fuzzy reflection, shine, translucency. Among the existing approaches of photorealistic visualization, ray tracing methods are the most accurate because they are based on a physical model of light propagation. There is a wide range of different ray-tracing methods, and therefore there is a need to select the most efficient, accurate ray-tracing methods that will, in average, work correctly for a wide range of static (future dynamic) scenes, and are being visualized. The object of the research is the process of physically sound rendering and the ray tracing process. The subject of research is the methods of ray tracing and methods for calculating the color rendering index. Objective: to study the methods of PBR (Physical Based Rendering), their simultaneous use to obtain the maximum effect of realism; assessment of the ability of a light source to detect all the frequencies of its color spectrum compared to the control light. The scientific novelty, or rather, an innovative solution, is that the engine developed implements the calculations of the color rendering index (CRI - Color Rendering Index) with a high degree of accuracy relative to the expected values of the control light sources. The practical value of the research is the development of a new PBRE, which employs empirical lighting models for rendering scenes; BRDF models such as Lambert, Oren Nayar, Torrens Sparrow, specular reflection, specular transmission and measured BRDF are implemented. Implemented support for several ray tracing techniques: Traced by Wyted and path tracing. Colors are calculated using spectral data and CIE XYZ color space in PBR scenes to achieve high color rendering. TTFD also supports Color Rendering Index (CRI) calculations. This indicator describes the ability of a light source to accurately reflect all the frequencies of its color spectrum compared to ideal reference light of a similar type. Structure and scope of work. Master thesis project consists of introduction, four chapters and conclusions. The introduction presents a general description of the work, assesses the current state of the problem, substantiates the relevance of the research area, formulates the goals and objectives of the research, shows the scientific novelty of the results and practical value of the work. The first section discusses the principles of colorimetry and radiometry. They form the basis of some key TTFD key features. In particular, color calculations and lighting / shading methods implemented in TTFD use the concept presented in this section. The second section deals with ray tracing: photorealistic rendering (visualization). Brief classification of ray tracing algorithms. Solution of the rendering equation. The third section presents the features of the implementation of the developed system. The fourth section presents approaches to testing the system as a whole and individual modules. The findings present the results of this work. The work is presented on 116 pages, contains links to the list of references used.
Актуальность темы. Актуальной задачей компьютерной графики является получение реалистичных изображений, которые активно пользуются спросом в промышленности, игровой индустрии и кино. Фотореалистичное изображение характеризуется такими эффектами, как мягкие тени, полутени, каустика, динамическое размытие, глубина резкости, нечеткие отражение, блеск, полупрозрачность. Среди существующих подходов фотореалистичной визуализации методы трассировки лучей являются наиболее точными, поскольку они базируются на физической модели распространения света. Существует богатый спектр различных методов трассировки лучей, следовательно появляется необходимость в выборке наиболее эффективных точных методов трассировки лучей, которые будут в средней степени правильно работать для широкого ряда статических (в будущем и динамических) сцен, проходят визуализацию. Объектом исследования является процесс физически обоснованного рендеринга и процесс трассировки лучей. Предметом исследования являются способы трассировки лучей и методы расчета индекса цветопередачи. Цель работы: исследование методов PBR (Physical Based Rendering), их одновременного использования для получения максимального эффекта реализма; оценка способности источника света выявлять все частоты его цветового спектра по сравнению с контрольным светом. Научная новизна, а точнее - инновационное решение, заключается в том, что разработан двигатель реализует вычисления индекса цветопередачи (CRI - Color Rendering Index) с высокой степенью точности относительно ожидаемых значений контрольных источников света. Практическая ценность проведенных исследований состоит в разработке нового PBRE, который для рендеринга сцен использует эмпирические модели освещения; реализованы такие модели BRDF, как Ламберта, Орена Найара, Торренса Спарроу, зеркального отражения, зеркального пропускания и измеренного BRDF. Реализована поддержка нескольких техник трассировки лучей: трассировки Уайтеда и трассировки пути. Рассчитываются цвета с использованием спектральных данных и цветовое пространство CIE XYZ в сценах PBR для достижения высокой цветопередачи. TTFD также поддерживает вычисления индекса цветопередачи (CRI - Color Rendering Index). Этот показатель описывает способность источника света точно отражать все частоты его цветового спектра по сравнению с идеальным эталонным светом аналогичного типа. Структура и объем работы. Магистерский дипломный проект состоит из введения, четырех глав и выводов. Во введении представлена общая характеристика работы, произведена оценка современного состояния проблемы, обоснована актуальность направления исследований, сформулированы цели и задачи исследований, показано научную новизну полученных результатов и практическую ценность работы. В первом разделе рассмотрены принципы колориметрии и радиометрии. Они составляют основу некоторых основных ключевых особенностей TTFD. В частности, расчет цвета и методы освещения / затенения, реализованные в TTFD, используют понятие, представленные данном разделе. Во втором разделе рассмотрены трассировки лучей: фотореалистичный рендеринг (визуализация). Краткая классификация алгоритмов трассировки лучей. Решение уравнения рендеринга. В третьем разделе приведены особенности реализации разработанной системы. В четвертом разделе представлены подходы к тестированию системы в целом и отдельных модулей. В выводах представлены результаты проведенной работы. Работа представлена на 116 листах, содержит ссылки на список использованных литературных источников.
Hsien, Chih-Peng, and 謝志朋. "A Study of High Color-Rendering Index(CRI) and Against Luminous Decay Techniques." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/26918307250498524408.
Повний текст джерела大葉大學
電機工程學系碩士在職專班
96
The dissertation will focus on the energy conservation sends the photo source at present the market condition to mix the white light LED technology inking that including Muliti-Chip LED Approach、the chromatic aberration compensation method, the color warm compensation method and so on because of the present high electrovalence and the environmental protection subject.There are some defects of white light LED that heat to drift and serious light fades, this paper will research four colors to mix light LED (R to be red) (the G green) (the B blue color) (the Y yellow) and to use RGBY LED to mix the white light LED test research light to fade the potency and the present market condition fluorescent lamp tube, Cold Cathode Fluorescent Lamp, the white light LED degree of illumination experiment. It is supposed to make the graph its result to study its province electricity potency and the light fades the degree.
Lee, Tsung-Tai, and 李宗泰. "Color rendering index study for white light emitting diode." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/54279463595086691006.
Повний текст джерела華梵大學
機電工程學系博碩專班
97
In recent years, with the enhancement of material, process and technology, it greatly upgrades the luminous efficacy and power capacity, enables the possibility of having white light - emitting diodes replacing existing lighting sources. A fine quality in indoor lighting source requires conditions of high color rendering index, high luminous efficacy and low manufacturing cost. This research adopts blue light-emitting diodes with 6 lumens per watt in conjunction with market available phosphors with different wavelengths to analyze the synthesized frequency emitted after mixed with phosphors. And the absorptive quotient which the blue light should possesses and the emitted frequency functions for the phosphor will be used as basis to design each type of white light source with high color rendering index so as to promote and upgrade the luminous efficacy for light-emitting diode. From the design method of synthesized frequency for phosphor, the experimentation resulted with emitted color temperature of 3150 K of coloring rendering index of 96.51 and luminous efficacy of 28 lm/w; color temperature at 4700K with color rendering index of 95.5 and luminous efficacy of 30 lm/w; color temperature of 5200K with color rendering index of 94.21 and luminous efficacy of 30 lm/w for white light-emitting diode frequency range. In comparison to typical blue light-emitting diode covered with YAG phosphors, which would emit color temperature of 3800K with color rendering index of 62.6 and luminous efficacy of 44 lm/w, the above indicated that, the research findings point to the fact that, with slightly lowering of the luminous efficacy, it would have better performance in color rendering effect and it could generate the white light spectrum close to that of Planck’s and can readily replace the filament lamp lighting.
Chen, Sian-Wei, and 陳仙瑋. "Package of White-Light LED with High Color Rendering Index." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/10755023780921548933.
Повний текст джерела國立臺灣科技大學
光電工程研究所
96
Although white-light light emitting diode (LED) has become a main goal for the new generation of illumination light source in the recent years, the color rendering index (CRI) for the blue LED chips excited yellow phosphors is around 80, and that falls short of the future lighting applications such as the street lighting. In order to achieve high CRI for white-light LEDs, we proposed a new phosphors blend for excitation using ultra violet LED (UV-LED) chips with wavelength around 380 nm, and compared the resultant light source with standard light source. Since the conversion characteristic of commercially available UV excited RGB phosphors may result in a low CRI white light source; on the other hand, use blue LED chips excited YAG based yellow phosphors has high conversion efficiency. We combined the characteristics of these phosphors to achieve phosphors conversion spectra with CRI above 90, the color coordinate approximates to the ideal white point. But we faced another problem “the leakage of UV light”. We use the full band gap idea of the photonic crystal (PhC.) or omni-directional reflector (ODR) by packaging the ODR with the conventional white-light LED. As a result of the UV beams can be omni-directionally reflected at any incidence. In this study the luminous efficiency of different package structures of ODR are also proposed. The ODR package will enhance the white light generation and prevent UV leak from the device. This novel white LED is constructed with an air gap between the phosphors layer and the ODR lead to the highest luminous efficiency. Specifically, the color coordinate for the light source made is (0.319, 0.320), the CRI has a value of 93.7, the correlated color temperature is 6188K and the luminous efficiency is 9.5 lm/W. The experimental data shows that a high CRI light source can be achieved without high quality RGB phosphors, by controlling the composition and concentration of phosphors blend layer.
WEI-CHUN, HSU, and 徐維駿. "Research on developing Super High Color Rendering Index White LED." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/2jhs2m.
Повний текст джерела元智大學
光電工程學系
106
The project is try to use the different wavelength phosphor to improve the CRI in the led.Althoutgh the led application in the lighting market is more and more,the average CRI is around 80 to 90.Not only the luminous but also the color rendering which is more important. Ther high CRI led can use in the show room,foods light,restroom and bathroom which show deeply connect to our vision and sense.From market requirement I try to improve the CRI 90 led to CRI99. In this Project I compare the conventional lamp’s spectrum (CRI 100) with the led’s spectrum in the 2700K~3500K to make cure the led’s CRI is similar to the conventional lamp’s CRI. In the experiment I try to mix the diffenrent wavelength phosphor like the green and red phosphor with special ratio improve the CRI 90 to the CRI 99.The conventional lamp’s spectrum play a important rule in the CRI 100.Accordning to this spectrum’s data that I have a direction to adjust the phosphor make up the spectrum’s blank. In the final test.Base on the Planckian Radiator.The 3000K CRI is 98~99.High CRI LED have a good result to replace the conventional lamp for sunlight spectrum.
Chen, Xuan-Fu, and 陳軒甫. "High Color Rendering Index and Chromatic-Stable Tandem White OLED." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/a775d8.
Повний текст джерела國立高雄應用科技大學
電子工程系碩士班
102
We demonstrate the electroluminescence (EL) properties of a low power consumption, high efficiency and stability of tandem organic light emitting diode (OLED). Its EL properties were improved by using a charge generation unit (CGU) combining a doped hole transporting layer (HTL) with bipolar transport ability. In addition, the design of a mechanism to align the energy level between the HTL and CGU shows effectively decreasing the operating voltage of the devices.The deposition of a LiF/Al/NPB:HAT-CN CGU in tandem OLED achieves in more than twofold improvement in the current efficiency. Our findings show that bipolar transport ability is a promising approach for easy-fabrication as well as high color rendering index and chromatic-stable tandem white OLED for future display and lighting application.
Wu, Yu-En, and 吳羽恩. "Enhancement brightness on high color rendering index white light emitting diodes." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/6z5ad6.
Повний текст джерела義守大學
電子工程學系
102
The high-efficiency blue light-emitting diodes had been successful developed in 1993, The monochromatic light source was still tobe the indicator. Since 1996, the Nichia Chemical launched blue light emitting diodes to produce white LED by exciting yellow phosphor (YAG). From that time , the used LED is as lighting applications. LED brightness is higher than traditional incandescent bulbs, this is a large advantage to replace it. In addition to the brightness, the ability to show the true color of object is also an important consideration. The color Rendering Index (CRI) is defined as the standard of real objects colorimetric. The CRI of sunlight is 100, the CRI of blue LED excitation YAG phosphors is about 60 to 80, which is lower compared with sunlight. In this study, the investigated near-ultraviolet excited grains of red, green, blue phosphors had been used to produce a variety of high CRI white LED. With the proportion deployment of three powders under CCT is 2800K, the CRI of white LED increased to 97. Due to the reduced brightness using by of near-ultraviolet excited tricolor fluorescent powders, in this study, the different dosages of gold nanoparticles had been inserted to the phosphors, depend on the higher refractive phenomenon of gold, the brightness increased from 59 lm to 62 lm, and the CRI of white LED still keeps 97.
Shih, Heng-Hui, and 施恒慧. "Effects of LED Light Color Temperature, Illumination and Color Rendering Index on Consumers’Choice of Fruits." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/58173596588537749758.
Повний текст джерела大同大學
工業設計學系(所)
100
In the present study, consumers’ seletivtiy of fruits as affected by color temperature, illumination and color rendering index of LED lights was determined. To evaluate the change of light perception in interior space, the experiment was conducted in the darkroom controlled at Munsell blackness. By using the method of semantic differential, a total of 16 trials consisted of two types of fruits, two levels of color temperature, color rendering index and illumination, respectively, was set. The data obtained were analyzed by ANOVA (Anlysis of Variance) with SPSS software. The changes in phycological condition of consumers as affected by various illumination conditions of LED lights were found as following: 1. The highest transactional value of purchase for fruits under various illumination conditions was obtained when color temperature, illumination and color rendering index of LED light were 4000°K, 70 CRI and 1500 Lux, respectively. 2. The highest transactional value of purchase for guavas was obtained when color temperature, illumination and color rendering index of LED light were 4000°K, 70 CRI and 750 Lux, respectively. 3. The highest transactional value of purchase for apples was obtained when color temperature, illumination and color rendering index of LED light were 4000°K, 70 CRI and 1500 Lux, respectively. The results showed a significant difference in appearance of fruits under various light sources. It was worthy to further investigate the transactional value of purchase for various colors of fruits under various types of light conditions. The results obtained in the present work will provide the information for illumination designers and fruits suppliers to improve the illumination conditions with higher transactional value of purchase.
Su, Wen-Lung, and 蘇文龍. "White Light-Emitting Diodes Efficiency Improve Study of High Color Rendering Index." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/74329734854399119837.
Повний текст джерела國立中興大學
精密工程學系所
99
For the huge demand of lighting and LCD back light area, high power package is needed fot LED light source with good efficiency and good color rendering index (CRI) larger than 85. The most convenient way is using red and green mixed phosphors stimulated with blue LED chip. However, due to the reach sorption of green light for the red phosphor, the efficiency is low. In this thesis, we propose a layered structure that seperates the green and red phosphors. Because of the index difference in each layer, the light extraction efficiency can be improved by about 5 to 8 mW. The simulation tool TracePro is utilige to verify the experiment’s results, and they are consistant. With this novel layered structure, the overall light output power efficiency can be raised by 5% and the CRI is 91.
Lin, Su-Yi, and 林蘇逸. "The research on high color rendering index white light light-emitting diode." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/40873053261909833507.
Повний текст джерела臺灣大學
光電工程學研究所
95
The major market of the light-emitting diode was the monochromatic light LED in the past. The application of LED was the indicative light on the products. Until the Nichia chemical company in Japan developed the high efficiency white light LED which was combined the blue LED chip with the yellow phosphor (YAG) in 1996, people started to expect the coming of the white light LED illuminative period. With the improving of the blue LED chip’s efficiency, the luminous efficiency of the high power white light LED is 90lm/W which is higher than the fluorescent lamp. The functions of the illumination are showing the shape, color and size of the object. The ability of showing the true colors is an important assize to estimate an illumination, and the color rendering index (CRI) is a stander to estimate this ability. The CRI of the general white light LED is about 50~70, and it’s not enough for the illumination. This study aims at discuss on the simulation of the high CRI white light LED which was combined the blue chip with multi-color phosphor, and calculate the optical properties of the high CRI white light LED. The accuracy of simulation results is improved by improving the phosphor daub. This study simulates the spectra of high CRI white light LEDs and makes the high CRI white light LEDs with the CCT 3000K CRI 96 and CCT 6500K CRI 87.6 by multi-layers phosphor daub. The simulation results and experimental results are similar. It’s believed this simulation can estimate the phosphors’ abilities to make the high CRI white light LED and the multi-layer phosphor daub can decrease the absorption of the light which is emitted by the phosphors. In the study of high CRI white light source which is formed by multi-color LED chip, I use the Gaussion distribution to simulate the LED’s spectrum. When the temperature is rising, the thermal effects on the LED chip are the decreasing of radiation power, red shift of peak wavelength and increasing of FWHM. By choosing the LEDs combination and using the feedback system the high CRI white light source can be made. The simulation results show that the CRI of four-color LED white light source is higher the three-color one and the four-color LED white light source with the smaller CRI shift when temperature rising. It’s is believed that four-color LED white light sources is a better illumination than three-color one.
Chen, Chih-Wei, and 陳志瑋. "The Optimal Design for White-light LEDs with high color rendering index." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/80320662216050285377.
Повний текст джерела國立雲林科技大學
電子與光電工程研究所碩士班
100
A procedure is the high color rendering index of lamp type hybrid optical modules is discussed in this study. The experiment divided into two steps in this study,first is modules design and simulation. Second is fabrication and measurement.After measure the LED’s property, calculating the ratio of each colored LEDs by using Grassmann’s Law,modeling by Solidworks, and simulating the front study by optical software TracePro. Using four-color mixing with self-developed formula to avoid the present white light emitting diode patent, and the four-color grains are Red, Green, Blue and adding Y to modify the overall quality of the mixed light. The phosphor produce Steabler-Wronsk hardly in the high temperature as compared to four-color mixing.Using four-color mixing to produce higher color rendering index than yellow phosphor. Series-parallel array of grain arrangement adopted to achieve the high demand for uniformity, while simplifying the design conditions by a certain current instead of the general mixed light-driven complex driver circuit, the completion of the mixing module using integrating sphere, light spectrum on the spectrophotometer, optical power, color coordinates values, such as mixing uniformity measurements. The chromaticity coordinates errors after complete results of the mixing module measurement and simulation can be controlled under (0.01x, 0.01y).
Tseng, Pei-Yu, and 曾培瑜. "Study of Light Emitting Diodes with High Luminous Efficiency and Color Rendering Index." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/87059701475615745782.
Повний текст джерела國立臺灣大學
光電工程學研究所
101
Historically, light is the most important invention for human beings. From using fire to using lamps, the lighting technology is becoming more and more advanced. But the energy from earth is not unlimited. It is better to save the energy from lighting. Because LED can save more energy than the conventional lamps, it becomes a good candidate in the future lighting. But not any white light spectrum can be conducted for people. The luminous efficiency and the color rendering index are very essential for the light source. To improve the color rendering index of a LED, conventionally, the red phosphor was added into the white light LED. But it will make the luminous efficiency of LED decreased. This thesis developed the optical model and investigated the dominant factors of CRI. The controlling factors include the thickness and concentration of phosphors layer. The disadvantage caused by the phenomenon of re-absorption is also demonstrated in our model. This thesis proposed a novel structure of both silicone and phosphor and investigated the controlling factors of this new model. Obviously it can reduce the iv phenomenon of re-absorption. We proved that the new structure can increase the color rendering index of LED without decreasing the luminous efficiency. Finally, we propose using more different kinds of phosphors to generate any color of light we wish in the future work.
Li, Ya-Ting, and 李雅婷. "The optimized color rendering index of white LEDs by using the electrophoretic phosphor." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/5za23z.
Повний текст джерела國立虎尾科技大學
電子工程系碩士班
101
In this thesis, we propose three methods to improve the color rendering index (Ra) of phosphor plates in white light-emitting diodes (WLEDs). The phosphor plates throughout this thesis were prepared by using the electrophoretic deposition (EPD) technique. The first method is by electroplating a thin gold layer, the second is using the mixed-color (Red and yellow) phosphors, and the third is that the EPD phosphors were deposited layer-by-layer. Three kinds of structures of the layer-by-layer EPD phosphors were performed to compare with other methods. The electrophoretic deposition technique was a non-aqueous suspension solution, and given a constant voltage, thus the phosphor plate was uniformly deposited on the cathode. After that, in order to completely lift off the phosphor layer from the cathode, the thin silicon paste was firstly coated onto the phosphor layer. Then, the acid solution was used to lift off the phosphor plate. In the final, the phosphor plate was packaged with the blue LED die to form the white light. After the EPD process, in the acid reaction, the more time need to lift off the phosphor plate results in the more lost in thickness of phosphor plate. Therefore, it was found that in the red phosphor plate deposition experiment, the red phosphor will be lost more so the Ra value obtained cannot reach enough. Compared to five structures(method I(1), method II(1), and method II(3)) of EPD deposition and measured its color rendering index of the packaged LED, it is obviously found that the Red-Yellow-Red (RYR) three-layer structure has the best Ra value.
Lin, Chun-Jen, and 林純仁. "Very-High Color-Rendering Index Organic Light-Emitting Diode with Double White Emissive Layers." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/28906801513444813954.
Повний текст джерелаLu, ChunYen, and 呂俊諺. "Study of High-Efficiency Packaging of Double-Phosphor Chessboard Structure with High Color Rendering Index." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/3wf67y.
Повний текст джерела國立中央大學
光電科學與工程學系
104
This thesis aims to improve the packaging efficiency and the CRI of LEDs. In the beginning, we studied the efficiency of two YAG phosphors in different radiuses. By applying professor Sun phosphor optical model to generate two models for both phosphors, it can be concluded that the packing efficiency of the wider radius phosphor was better than the narrow one. Additionally, the yellow phosphor optical model of the wider phosphor was used to simulate a chessboard structure LED package. In order to improve the packaging efficiency of the white light LED and to analyze the influence caused by the distribution of the chessboard structure LED package. Yet, with consideration of its CRI, by improving the packaging method of the chessboard structure LED, adding both red and green phosphors into the study, and applying with addition simulation optimization and analyzation, a high packaging efficiency and high CRI LED can be manufactured.
Liang-Wei, Lin, and 林良緯. "Synthesis of CuInS2/ZnS Quantum Dots and it’s Application to Highly Color-Rendering-Index White LED." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/crgyez.
Повний текст джерела國立臺南大學
電機工程學系碩博士班
102
In this study, CuInS2/ZnS quantum dots (CIS/ZnS QDs) were synthesized via non-coordinated system. We used polyetheramine (D400) and Octadecene (ODE) as solvent. We compared with their material and optical Characterization. The CIS QDs reaction temperature of D400 is better than ODE. We successfully synthesized CIS QDs. The structural model of CIS/ZnS QDs was established by using composition analysis, absorption spectroscopy and emission spectroscopy, and investigated their applications as light emitting devices. The emission wavelength of CIS/ZnS QDs shifted to short wavelength and Photoluminescence (PL) quantum yield (QY) could increase the composition of Zn. The results demonstrated that the band gap of CIS/ZnS QDs was not only tunable with size, but also with composition of reactant. In this work, we also used composition analysis, absorption and emission spectroscopy to speculate the structural model of CIS/ZnS QDs by gradient or core-shell model successfully. XRD could demonstrate CIS/ZnS with between chalcopyrite and zinc blende structure. Finally, we fabricated CIS/ZnS QDs as phosphor and packaged in the light emitting diode. With an appropriate external current, the CIS/ZnS QDs-based LED could emit a wide range of colors. Elelctroluminescent (EL) properties of the resulting white LED are described, and compared to a blue LED-pumped, too. CIS/ZnS QDs-based white LED with a limited color-rendering-index (CRI) property, and results demonstrated that the CRI of CIS/ZnS QDs-based white LED was higher than phosphor-based white LED.
Li, Hung-chung, and 李宏中. "Estimating Unified Glare Rating and Color Rendering Index of a Lit Environment using a Digital Camera." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/45060484130100792274.
Повний текст джерела國立臺灣科技大學
色彩與照明科技研究所
101
The glare and color rendering in lighting environment are the factors considered in interior lighting design. In order to reduce the costs of estimation, the study propose a method based on digital camera can easily estimate the glare and color rendering of light source. To estimate the CIE UGR and Color Rendering Index accurately, the digital camera should be calibrated in priority. In the study, the XYZ chromatic values of HDR image could be acquired with the methods of multiple exposure and polynomial regression at first. To improve visual comfort of our living environment, a colorimetric imaging device is designed to capture scene luminance and chromaticity of HDR panoramic image for evaluating visual responses to the scene. Basically, quote the calculation principle of CIE unified glare rating to calculate the UGR values of any gaze points in a scene by illuminance estimation, camera geometric correction and watershed algorithm. Two psychophysical experiments were conducted to fine-tune the glare thresholds. The results confirm the usability of the Index and it can be used to evaluate visual discomfort of a living environment in night time. To calculate CRIs, a spectroradiometer is normally used to measure the spectral power distribution of a light source. However, the spectral data cannot be acquired by a RGB camera directly. The aim of this study is thus to provide a method to accurately estimate CRIs using calibrated RGB camera with the widespread ColorChecker. It involves colorimetric camera calibration, camera-based CCT estimation, reference color prediction, chromatic adaptation, color difference calculation, and CRI fitting. Once the color differences of the patches can be accurately measured, it’s possible to transfer the color of the image to any given light source while the spectral reflectances of the scene are similar to that of the ColorChecker.
Chang, James, and 張繼聖. "A Comparative Study of high power efficiency and color rendering index White Organic Light Emitting Diodes." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/95383202286583641706.
Повний текст джерела國立交通大學
顯示科技研究所
96
OLED panels might become a booming future for next generation displays or solid state lighting. This study fabricated a highly efficient and improved color rendering index white OLED device with a “tetra-chromatic” emission system. The device achieved a CRI of 87, and is tuneable from the twilight to daylight sky color. However, due to the low efficiencies, phosphorescent based device structures were hence developed. A fluorescent blue plus phosphorescent green and red emission layer device is demonstrated to have an efficiency of 13.5 cd/A and color rendering index over 80, which is acceptable for illumination. We also adopted a phosphorescent sensitizer to excite a fluorescent dye through resonant energy transfer by replacing the phosphorescent red material Ir(piq)3 into a fluorescent red material DCJTB. By using this mechanism and by inefficient transfer from the green to red, a higher efficiency of 16.7 cd/A was reached due to the higher eye sensitivity of the orange-reddish emission color of DCJTB. Finally, an external color tuning layer to simplify the fabrication process of white devices by using a blue device plus yellow down conversion layer, which is a common technology in LED industry was developed. By the concept of complementary colors, these two colors produced white emission. In this part, we also studied the effect of graded devices, and found that a graded phosphorescent blue device provided a higher efficiency.
Chang, Jui-Fu, and 張瑞夫. "Synthesis of CuInS2 quantum dots charactization and application on white LED to improve color rendering index." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/72452319845408967170.
Повний текст джерела國立臺南大學
電機工程學系碩士班
101
In this study, CuInS2 quantum dots (QDs) were synthesized via non-coordinated system. The structural model of CuInS2 QDs was established by using composition analysis, absorption spectroscopy and emission spectroscopy. When the molar ratio of I group element, III group element and VI group element was employed to control the structure of CuInS2 QDs, we found that CuInS2 QDs would precipitate easily if I group element was excess and CuInS2 QDs with high photoluminescence quantum yield (PL QY) could be produced if I group element was excess. In addition, the emission wavelength and PL QY could be modulated by controlling the composition ratio of Cu and In in the injection stock solution. The emission wavelength of CuInS2 QDs shifts to short wavelength and PL QY could also increase with increasing the composition of In. The results demonstrated that the band gap of CuInS2 QDs was not only tunable with size, but also with composition of reactant. In the study, we also used composition analysis, size distribution and absorption spectroscopy to speculate the structural model of CuInS2 QDs by gradient or core-shell model successfully. This study proved higher temperature that we get better results, about quantum dots synthesized under vacuum in the non-oil phase chemistry, affecting the merits of its synthetic product, discuss the following three ways. Investigate the influence of temperature on QDs. Similar sized CIS cores, which were confirmed by TEM. The CuInS2 cores have a gradient diameter that is different and shapes to the surface of the core, which explains the broad emission spectrum.
Huang, Yu-Ming, and 黃俞銘. "Improve the color rendering index of cold cathode fluorescent lamp backlight by quantum dots with liquid crystal cell." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/k2575h.
Повний текст джерела國立臺北科技大學
光電工程系研究所
104
In this paper, we use the white light of CCFL-backlight to excite the quantum dots (QDs) which are the fluorescent materials. The fluorescent of QDs will mix the light of backlight and improve the color rendering index. About the experiments, we put QDs layers on the top of liquid crystal (LC) cell. The fluorescent of QDs layers will be excited when the white light of backlight through the QDs layers. After using an integrating sphere to mix light and be linked the spectrometer by optical fiber, we measure the color rendering index. Further, we mix the QDs and LC, into LC cell. The fluorescent of QDs will be excited when the white light of backlight gets through the LC cell. We measure after using an integrating sphere to mix light and be linked the spectrometer by optical fiber, the color rendering index. The color rendering index improve to 85 at the last.
Wu, BO YI, and 吳柏毅. "Synthesis of CuInS2/ZnS and InP/ZnS Quantum Dots and their applications in White Light-Emitting Diodes with High Color Rendering Index." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/u7r28z.
Повний текст джерела國立臺南大學
電機工程學系碩博士班
103
In this study, CuInS2/ZnS quantum dots (CIS/ZnS QDs) and InP/ZnS quantum dots (InP/ZnS QDs) were synthesized via non-vaccum system, we used Octadecene (ODE) as solvent, we compared with their material and optical Characterization. The QDs quantum yield of InP is better than CIS. We successfully synthesized CIS and InP QDs. The structural model of CIS and InP QDs was established by using composition analysis, absorption spectroscopy and emission spectroscopy, and investigated their applications as light emitting devices. The emission wavelength of QDs shifted to short wavelength and Photoluminescence (PL) quantum yield (QY) could increase the composition of Zn. The results demonstrated that the band gap of QDs was not only tunable with size, but also with composition of reactant. In this work, we also used XRD (X-ray diffraction) and TEM (Transmission Electron Microscopy) to speculate the structural model of QDs by gradient or core-shell model successfully. XRD could demonstrate CIS and InP with between chalcopyrite and zinc blende structure. Finally, we will encapsulate CuInS2/ZnS and InP/ZnS quantum dots in the light-emitting diodes. CuInS2 quantum dots with mixed appropriate phosphor and direct using InP quantum dots, Quantum dots can emit a broad range of colors on a light-emitting diode. The experimental results can proved quantum dot in LED's Packages CRI will be higher than phosphor-based white LED.
Hung-YiKuo and 郭弘毅. "The Optical Properties of YAG-based Phosphors and their Applications in the Enhancement of Color Rendering Index of White Light-Emitting Diodes." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/27151383105671891715.
Повний текст джерела國立成功大學
電機工程學系碩博士班
100
Yttrium aluminum garnet (YAG) phosphor powders have always been the mainstream material for the fabrication of white light-emitting diodes (WLEDs). Such phosphors were applied to WLED because of their high quantum efficiency and low cost. However, a commercial yellow phosphor YAG:Ce3+-based WLED with a blue-LED chip has disadvantage of poor color rendering index (CRI) due to the lack of red components in its emission spectrum. In this study, an attempt was made to improve the CRI value of YAG:Ce3+-based WLEDs by doping Gd3+、Pr3+ and Si4+ (N3-) ions into YAG:Ce3+ phosphors using the solid-state reaction. As Pr3+ ions were co-doped in the system, a red emission peak at 610-nm appeared in the emission spectrum under 450-nm excitation. Furthermore, Y2.95-mGdmAl5O12:0.05Ce3+ and Y2.95Al5-nSirO12-nNr:0.05Ce3+ phosphors produced red-shift in their emission spectra under 450-nm excitation because of the crystal field variation and the presence of Ce3+ ion around the Si-N bond, respectively. For the purpose of energy saving, 7 wt% boric acid flux was added to reduce the required calcined temperature. And the pure YAG phase could be obtained under 1500oC for 2 h. Compared with the sample without the addition of the flux, the external quantum efficiency (EQE) of the YAG:Ce3+ phosphor was increased up to 10% using 7 wt% boric acid as the flux. In order to evaluate the feasibility of our synthesized phosphors for the application of phosphor-converted WLEDs (pc-WLEDs), the C.I.E. chromaticity coordinate, EQE, and lumen equivalent (LE) were taken into consideration. Moreover, pc-WLEDs were fabricated using phosphors synthesized herein with 450-nm blue chips. By utilizing the remote phosphor-converted technology and the optimum curvature of the phosphor gel, the luminous efficacy of conventional WLEDs could be improved by 6% and 17.4%, respectively. Noteworthily, the correlated color temperatures (CCTs) of all the WLEDs were fixed in the range of 4214-4243 K. The WLED with YAG:Ce3+ phosphors exhibited the luminous efficacy of 71.761 lm/W, CCT at 4227 K, CRI at 63, and chromaticity coordinates at (0.387, 0.4409) at 350-mA driving current. The CRI could be increased to 73.7 by using the composition-modified YAlSiON:Ce3+ instead of YAG:Ce3+.
cheng, heng huan, and 鄭恆桓. "Design and Simulation of surgical light lamp which does not have the shade and be possess of high color rendering index with LED." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/43115029608371233127.
Повний текст джерела長庚大學
光電工程研究所
99
This research is using optical simulation software “FRED” to study and analyze the light space of surgical light lamp module with LED light source. Nowadays, the degree of accuracy of optical simulation software already has high dependability; moreover, before developing a new process, using optical simulation software can effectively reduce errors, time and cost. In this paper, we use cool white and warm white LEDs to be the lighting sources and mix two kinds of LEDs color to design the surgical light lamp for increasing color rendering index. The process of design can be divided into two steps: First, calculating and designing the TIR lensand reflector for LED single module. Second, using single module of TIR lens and reflector designs the entirety module to achieve the goals of the color rendering index: 130000 lux, the color rendering index Ra 91.4 and the color temperature 4370.7k at the goals of the color rendering index.