Добірка наукової літератури з теми "COLOR RENDERING INDEX (CRI)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "COLOR RENDERING INDEX (CRI)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "COLOR RENDERING INDEX (CRI)"
Nazarenko, L. A., O. M. Didenko, and D. O. Usichenko. "New Color Rendering Metrics." Metrology and instruments, no. 1 (March 2, 2020): 37–44. http://dx.doi.org/10.33955/2307-2180(1)2020.37-44.
Повний текст джерелаZhang, Minhao, Yu Chen, and Guoxing He. "Color Temperature Tunable White-Light LED Cluster with Extrahigh Color Rendering Index." Scientific World Journal 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/897960.
Повний текст джерелаLi, Cheng, M. Ronnier Luo, Changjun Li, and Guihua Cui. "The CRI-CAM02UCS colour rendering index." Color Research & Application 37, no. 3 (July 15, 2011): 160–67. http://dx.doi.org/10.1002/col.20682.
Повний текст джерелаTsai, Chun-Chin. "Color Rendering Index Thermal Stability Improvement of Glass-Based Phosphor-Converted White Light-Emitting Diodes for Solid-State Lighting." International Journal of Photoenergy 2014 (2014): 1–6. http://dx.doi.org/10.1155/2014/407239.
Повний текст джерелаYadav, Amit, Ilya Titkov, Alexei Sakharov, Wsevolod Lundin, Andrey Nikolaev, Grigorii Sokolovskii, Andrey Tsatsulnikov, and Edik Rafailov. "Di-Chromatic InGaN Based Color Tuneable Monolithic LED with High Color Rendering Index." Applied Sciences 8, no. 7 (July 17, 2018): 1158. http://dx.doi.org/10.3390/app8071158.
Повний текст джерелаJiang, Huan, Min Huang, Fu Song Yang, and Yu Liu. "Evaluation of Color Rendering Index for LED and Fluorescent Light Sources." Applied Mechanics and Materials 731 (January 2015): 22–26. http://dx.doi.org/10.4028/www.scientific.net/amm.731.22.
Повний текст джерелаYu, Wenjuan, Xu Jia, Mengnan Yao, Linghui Zhu, Yongbing Long, and Liang Shen. "Semitransparent polymer solar cells with simultaneously improved efficiency and color rendering index." Physical Chemistry Chemical Physics 17, no. 37 (2015): 23732–40. http://dx.doi.org/10.1039/c5cp03467a.
Повний текст джерелаLiu, Xin, Yunsen Zhao, Jiangsheng Yu, and Rihong Zhu. "High-performance bifacial semitransparent organic photovoltaics featuring a decently transparent TeO2/Ag electrode." Materials Chemistry Frontiers 5, no. 23 (2021): 8197–205. http://dx.doi.org/10.1039/d1qm01142a.
Повний текст джерелаLiu, Xin, Yunsen Zhao, Jiangsheng Yu, and Rihong Zhu. "High-performance bifacial semitransparent organic photovoltaics featuring a decently transparent TeO2/Ag electrode." Materials Chemistry Frontiers 5, no. 23 (2021): 8197–205. http://dx.doi.org/10.1039/d1qm01142a.
Повний текст джерелаMiao, Yanqin, Kexiang Wang, Bo Zhao, Long Gao, Jiacong Xu, Hua Wang, and Bingshe Xu. "Ultra-simple white organic light-emitting diodes employing only two complementary colors with color-rendering index beyond 90." RSC Adv. 7, no. 78 (2017): 49769–76. http://dx.doi.org/10.1039/c7ra10205d.
Повний текст джерелаДисертації з теми "COLOR RENDERING INDEX (CRI)"
KAUR, HARPREET. "OPTIMIZATION OF LUMINESCENT FEATURES IN MULTICOLOR EMITTING RARE EARTH DOPED ALKALINE EARTH VANADATE PHOSPHOR FOR SOLID STATE LIGHTING APPLICATIONS." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18694.
Повний текст джерелаHällvall, Joakim, and Sebastian Gill. "Redovisning av CRI hos Tunable White-armaturer : En undersökning av armaturtillverkares specifikation av Tunable white-armaturer." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Byggnadsteknik och belysningsvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-40916.
Повний текст джерелаTunable white luminaires today form a large part of the market and are expected to increase further in the upcoming years. As many manufacturers today produce and market their own solutions to create a dynamic light, it can be hard to know what quality these solutions have and how well the technical specification is. The purpose of this study were to investigate whether the information to the user is sufficient and whether the presented data of tunable white luminaires is correct. This study is based on two parts. An experimental study where five tunable white luminaires CRI (color rendering) were measured between different CCT levels (color temperature) and then compared these to what providers have specified on their websites. The second part was a survey was conducted to 144 lighting designers based in Sweden, 52 of whom chose to answer the questionnaire. The questions concerned the presented information of tunable white luminaires as well as the importance of a good light quality focusing on CRI. The results from the authors experimental survey showed that all tunable white luminaires that where tested are changing in CRI under different color temperature intervals. The biggest difference that was measured was on manufacturer 3 where 9 CRI shifted between 2700K-6000K. A comparison could be made and showed that two of five of the suppliers specifications did not match with the authors measurements. By analyzing the answers from the survey, some conclusions could be drawn. There were very different opinions regarding the technical specifications of tunable white luminaires. Some felt that it is enough as it is today, while others felt that more information was needed. The majority considered it very important to have a good CRI when selecting tunable white luminaires in their projects. One could also see that many lighting designers wanted to present color reproduction in TM-30-15 instead of the CRI method or to present CRI at given color temperatures. What can be determined by this study is that there is a tendency for some luminaire suppliers to have worse CRI than presented. This study only measured tunable white fixtures from five companies operating in Sweden and only at 100% luminosity. However, the authors consider that this study could lead to a discussion about better specifications for tunable white luminaires, as well as giving the reader an increased understanding of the complexity of the subject.
Vedin, Joel. "Utilizing an efficient color-conversion layer for realization of a white light-emitting electrochemical cell." Thesis, Umeå universitet, Institutionen för fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-122097.
Повний текст джерелаNonne, Jordi. "Caractérisation de la qualité des éclairages artificiels (rendu des couleurs et confort visuel) en particulier pour les sources à lumières à diodes électro-luminescentes (DEL)." Thesis, Paris, CNAM, 2015. http://www.theses.fr/2015CNAM1024/document.
Повний текст джерелаThe ENG05 project funded by the European Research Metrology Programme (EMRP) addresses measurement aspects of both quantity and quality of new lighting such as solid-state lighting (SSL).The current Colour Rendering Index (CRI) of the CIE (International Commission on Illumination) fails to predict the subjective ranking of the lighting sources based on DEL (light emitting diode). Along with a study of colour rendering metrics based on an extensive computation of relevant metrics and colorimetric calculations, a study on visual comfort is performed and both are presented in this thesis.For interior lighting standards it doesn’t exist a metric able to predict the visual comfort of an environment. Therefore, the aim of this study consists in a contribution to the human visual comfort characterization according to various realistic configurations considering the comparison between DEL luminaries and traditional lighting technologies (fluorescent, halogen).The analysis of the results DEL to develop a model which could be deemed worthy of consideration by CIE.Keywords: color rendering, visual comfort, lighting quality, subjective experiment, DEL, UGR, CRI, glare, luminance maps
Nekrasova, Y. A., V. A. Aseev, N. V. Nikonorov, E. B. Kolobkova, O. A. Usov, and A. V. Nashchekin. "Red Emitting Phosphors Doped with Mn and Eu Ions for pc-WLEDs." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35375.
Повний текст джерелаLingfors, David. "Illumination properties and energy savings of a solar fiber optic lighting system balanced by artificial lights." Thesis, Uppsala universitet, Fasta tillståndets fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-204664.
Повний текст джерелаVysoudil, Martin. "Fotometrie a spektroradiometrie zapouzdřených LED čipů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219393.
Повний текст джерелаГрушко, Юрій Володимирович. "Методи трасування променів у реальному часі". Master's thesis, Київ, 2018. https://ela.kpi.ua/handle/123456789/26709.
Повний текст джерелаRelevance of the topic. The actual task of computer graphics is to obtain realistic images that are actively in demand in industry, gaming and film industry. A photorealistic image is characterized by such effects as soft shadows, partial shade, caustic, dynamic blur, depth of field, fuzzy reflection, shine, translucency. Among the existing approaches of photorealistic visualization, ray tracing methods are the most accurate because they are based on a physical model of light propagation. There is a wide range of different ray-tracing methods, and therefore there is a need to select the most efficient, accurate ray-tracing methods that will, in average, work correctly for a wide range of static (future dynamic) scenes, and are being visualized. The object of the research is the process of physically sound rendering and the ray tracing process. The subject of research is the methods of ray tracing and methods for calculating the color rendering index. Objective: to study the methods of PBR (Physical Based Rendering), their simultaneous use to obtain the maximum effect of realism; assessment of the ability of a light source to detect all the frequencies of its color spectrum compared to the control light. The scientific novelty, or rather, an innovative solution, is that the engine developed implements the calculations of the color rendering index (CRI - Color Rendering Index) with a high degree of accuracy relative to the expected values of the control light sources. The practical value of the research is the development of a new PBRE, which employs empirical lighting models for rendering scenes; BRDF models such as Lambert, Oren Nayar, Torrens Sparrow, specular reflection, specular transmission and measured BRDF are implemented. Implemented support for several ray tracing techniques: Traced by Wyted and path tracing. Colors are calculated using spectral data and CIE XYZ color space in PBR scenes to achieve high color rendering. TTFD also supports Color Rendering Index (CRI) calculations. This indicator describes the ability of a light source to accurately reflect all the frequencies of its color spectrum compared to ideal reference light of a similar type. Structure and scope of work. Master thesis project consists of introduction, four chapters and conclusions. The introduction presents a general description of the work, assesses the current state of the problem, substantiates the relevance of the research area, formulates the goals and objectives of the research, shows the scientific novelty of the results and practical value of the work. The first section discusses the principles of colorimetry and radiometry. They form the basis of some key TTFD key features. In particular, color calculations and lighting / shading methods implemented in TTFD use the concept presented in this section. The second section deals with ray tracing: photorealistic rendering (visualization). Brief classification of ray tracing algorithms. Solution of the rendering equation. The third section presents the features of the implementation of the developed system. The fourth section presents approaches to testing the system as a whole and individual modules. The findings present the results of this work. The work is presented on 116 pages, contains links to the list of references used.
Актуальность темы. Актуальной задачей компьютерной графики является получение реалистичных изображений, которые активно пользуются спросом в промышленности, игровой индустрии и кино. Фотореалистичное изображение характеризуется такими эффектами, как мягкие тени, полутени, каустика, динамическое размытие, глубина резкости, нечеткие отражение, блеск, полупрозрачность. Среди существующих подходов фотореалистичной визуализации методы трассировки лучей являются наиболее точными, поскольку они базируются на физической модели распространения света. Существует богатый спектр различных методов трассировки лучей, следовательно появляется необходимость в выборке наиболее эффективных точных методов трассировки лучей, которые будут в средней степени правильно работать для широкого ряда статических (в будущем и динамических) сцен, проходят визуализацию. Объектом исследования является процесс физически обоснованного рендеринга и процесс трассировки лучей. Предметом исследования являются способы трассировки лучей и методы расчета индекса цветопередачи. Цель работы: исследование методов PBR (Physical Based Rendering), их одновременного использования для получения максимального эффекта реализма; оценка способности источника света выявлять все частоты его цветового спектра по сравнению с контрольным светом. Научная новизна, а точнее - инновационное решение, заключается в том, что разработан двигатель реализует вычисления индекса цветопередачи (CRI - Color Rendering Index) с высокой степенью точности относительно ожидаемых значений контрольных источников света. Практическая ценность проведенных исследований состоит в разработке нового PBRE, который для рендеринга сцен использует эмпирические модели освещения; реализованы такие модели BRDF, как Ламберта, Орена Найара, Торренса Спарроу, зеркального отражения, зеркального пропускания и измеренного BRDF. Реализована поддержка нескольких техник трассировки лучей: трассировки Уайтеда и трассировки пути. Рассчитываются цвета с использованием спектральных данных и цветовое пространство CIE XYZ в сценах PBR для достижения высокой цветопередачи. TTFD также поддерживает вычисления индекса цветопередачи (CRI - Color Rendering Index). Этот показатель описывает способность источника света точно отражать все частоты его цветового спектра по сравнению с идеальным эталонным светом аналогичного типа. Структура и объем работы. Магистерский дипломный проект состоит из введения, четырех глав и выводов. Во введении представлена общая характеристика работы, произведена оценка современного состояния проблемы, обоснована актуальность направления исследований, сформулированы цели и задачи исследований, показано научную новизну полученных результатов и практическую ценность работы. В первом разделе рассмотрены принципы колориметрии и радиометрии. Они составляют основу некоторых основных ключевых особенностей TTFD. В частности, расчет цвета и методы освещения / затенения, реализованные в TTFD, используют понятие, представленные данном разделе. Во втором разделе рассмотрены трассировки лучей: фотореалистичный рендеринг (визуализация). Краткая классификация алгоритмов трассировки лучей. Решение уравнения рендеринга. В третьем разделе приведены особенности реализации разработанной системы. В четвертом разделе представлены подходы к тестированию системы в целом и отдельных модулей. В выводах представлены результаты проведенной работы. Работа представлена на 116 листах, содержит ссылки на список использованных литературных источников.
Hsien, Chih-Peng, and 謝志朋. "A Study of High Color-Rendering Index(CRI) and Against Luminous Decay Techniques." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/26918307250498524408.
Повний текст джерела大葉大學
電機工程學系碩士在職專班
96
The dissertation will focus on the energy conservation sends the photo source at present the market condition to mix the white light LED technology inking that including Muliti-Chip LED Approach、the chromatic aberration compensation method, the color warm compensation method and so on because of the present high electrovalence and the environmental protection subject.There are some defects of white light LED that heat to drift and serious light fades, this paper will research four colors to mix light LED (R to be red) (the G green) (the B blue color) (the Y yellow) and to use RGBY LED to mix the white light LED test research light to fade the potency and the present market condition fluorescent lamp tube, Cold Cathode Fluorescent Lamp, the white light LED degree of illumination experiment. It is supposed to make the graph its result to study its province electricity potency and the light fades the degree.
Lee, Tsung-Tai, and 李宗泰. "Color rendering index study for white light emitting diode." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/54279463595086691006.
Повний текст джерела華梵大學
機電工程學系博碩專班
97
In recent years, with the enhancement of material, process and technology, it greatly upgrades the luminous efficacy and power capacity, enables the possibility of having white light - emitting diodes replacing existing lighting sources. A fine quality in indoor lighting source requires conditions of high color rendering index, high luminous efficacy and low manufacturing cost. This research adopts blue light-emitting diodes with 6 lumens per watt in conjunction with market available phosphors with different wavelengths to analyze the synthesized frequency emitted after mixed with phosphors. And the absorptive quotient which the blue light should possesses and the emitted frequency functions for the phosphor will be used as basis to design each type of white light source with high color rendering index so as to promote and upgrade the luminous efficacy for light-emitting diode. From the design method of synthesized frequency for phosphor, the experimentation resulted with emitted color temperature of 3150 K of coloring rendering index of 96.51 and luminous efficacy of 28 lm/w; color temperature at 4700K with color rendering index of 95.5 and luminous efficacy of 30 lm/w; color temperature of 5200K with color rendering index of 94.21 and luminous efficacy of 30 lm/w for white light-emitting diode frequency range. In comparison to typical blue light-emitting diode covered with YAG phosphors, which would emit color temperature of 3800K with color rendering index of 62.6 and luminous efficacy of 44 lm/w, the above indicated that, the research findings point to the fact that, with slightly lowering of the luminous efficacy, it would have better performance in color rendering effect and it could generate the white light spectrum close to that of Planck’s and can readily replace the filament lamp lighting.
Частини книг з теми "COLOR RENDERING INDEX (CRI)"
Gooch, Jan W. "Color Rendering Index." In Encyclopedic Dictionary of Polymers, 157. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_2663.
Повний текст джерелаSchanda, János. "CIE Color-Rendering Index." In Encyclopedia of Color Science and Technology, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-27851-8_2-1.
Повний текст джерелаSchanda, János. "CIE Color-Rendering Index." In Encyclopedia of Color Science and Technology, 145–49. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4419-8071-7_2.
Повний текст джерелаYaguchi, Hirohisa. "CIE Color Rendering Index." In Encyclopedia of Color Science and Technology, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-642-27851-8_457-1.
Повний текст джерелаLi, Jie, Weihao Yang, and Sugang Wang. "Effects of Color Rendering Index of Light Source on Color Task of Comparison and Fast Identification." In Proceedings of the 14th International Conference on Man-Machine-Environment System Engineering, 259–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44067-4_32.
Повний текст джерелаKumar, Sudhir, Jwo-Huei Jou, Chun-Yu Hsieh, Yung-Cheng Jou, and Jing-Ru Tseng. "An Energy Efficient and High Color Rendering Index Candle Light-Style Organic Light Emitting Diode for Illumination." In Physics of Semiconductor Devices, 919–21. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_237.
Повний текст джерелаAli, Amjad, Qian Li, Hongyan Fu, and Syed Raza Mehdi. "Blue Laser Diode-Based Visible Light Communication and Solid-State Lighting." In Antenna Systems [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100106.
Повний текст джерела"Color rendering index." In Encyclopedic Dictionary of Polymers, 210. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-30160-0_2617.
Повний текст джерелаТези доповідей конференцій з теми "COLOR RENDERING INDEX (CRI)"
Peng, Yang, Yun Mou, Xujia Xu, Hao Cheng, Hong Li, Mingxiang Chen, and Xiaobing Luo. "All-Inorganic Multi-Color Converter Based on Eu3+-Doped Phosphor-in-Glass for White Light-Emitting Diodes." In ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/ipack2018-8225.
Повний текст джерелаXie, Bin, Haochen Liu, Xiao Wei Sun, Xingjian Yu, Kai Wang, and Xiaobing Luo. "Reduced Working Temperature of Quantum Dots-Light-Emitting Diodes Optimized by QDs@Silica-on-Chip Structure." In ASME 2018 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/ipack2018-8301.
Повний текст джерелаZwinkels, Joanne C. "Issues and Strategies for Improving Measurement Uncertainties for Solid-State Lighting." In NCSL International Workshop & Symposium. NCSL International, 2016. http://dx.doi.org/10.51843/wsproceedings.2016.23.
Повний текст джерелаKruschwitz, Jennifer. "Designing color correcting coatings for optimum color rendering index and light output." In Optical Interference Coatings. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/oic.2001.tub2.
Повний текст джерелаMiki, Mitsunori, Shohei Fujimoto, Yo Motoya, and Ryoga Okunishi. "Maximization of the Average Color Rendering Index of Color Temperature and Illuminance Constraints." In 2013 IEEE International Conference on Systems, Man and Cybernetics (SMC 2013). IEEE, 2013. http://dx.doi.org/10.1109/smc.2013.780.
Повний текст джерелаIwasaki, Hiroaki, Tetsuya Hayashida, Kenichiro Masaoka, Masanori Shimizu, Takayuki Yamashita, and Wataru Iwai. "Color Rendering Index Value Requirement for Wide-Gamut UHDTV Production." In SMPTE Technical Conference. IEEE, 2015. http://dx.doi.org/10.5594/m001627.
Повний текст джерелаZhao, Fangchao, Hongmei Zhang, and Dongge Ma. "Hybrid white organic light-emitting diodes with high color-rendering index and stable color." In Solid-State and Organic Lighting. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/soled.2012.lt2b.1.
Повний текст джерелаNewman, W. Paydon, and Joseph Rebman. "The effects of increased color rendering index on stress and depression." In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE, 2016. http://dx.doi.org/10.1109/iceeot.2016.7754739.
Повний текст джерелаDemir, Hilmi Volkan, Sedat Nizamoglu, and Gulis Zengin. "Warm white light generating nanocrystal hybridized LEDs with high color rendering index." In LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS 2008). IEEE, 2008. http://dx.doi.org/10.1109/leos.2008.4688558.
Повний текст джерелаLai, Chun-Feng, and Chia-Jung Wu. "Phosphor-saving, Excellent Color-Rendering Index Candlelight LEDs Containing Composite Photonic Crystals." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_at.2014.jtu4a.47.
Повний текст джерела