Добірка наукової літератури з теми "Collision de navire"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Collision de navire".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Collision de navire"
Li, Xiang-Yu, Axel Brandenburg, Gunilla Svensson, Nils E. L. Haugen, Bernhard Mehlig, and Igor Rogachevskii. "Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment." Journal of the Atmospheric Sciences 77, no. 1 (December 26, 2019): 337–53. http://dx.doi.org/10.1175/jas-d-19-0107.1.
Повний текст джерелаBARANGER, C. "MODELLING OF OSCILLATIONS, BREAKUP AND COLLISIONS FOR DROPLETS: THE ESTABLISHMENT OF KERNELS FOR THE T.A.B. MODEL." Mathematical Models and Methods in Applied Sciences 14, no. 05 (May 2004): 775–94. http://dx.doi.org/10.1142/s0218202504003441.
Повний текст джерелаINOUE, O., Y. HATTORI, and T. SASAKI. "Sound generation by coaxial collision of two vortex rings." Journal of Fluid Mechanics 424 (November 16, 2000): 327–65. http://dx.doi.org/10.1017/s0022112000002123.
Повний текст джерелаLohrasbi, Alireza, and Moharram D. Pirooz. "Navier Stokes model of solitary wave collision." Chaos, Solitons & Fractals 68 (November 2014): 139–50. http://dx.doi.org/10.1016/j.chaos.2014.08.003.
Повний текст джерелаAlmady, Wasif. "Analytical Solution for Boltzmann Collision Operator for the1-D Diffusion equation." International Journal for Research in Applied Science and Engineering Technology 9, no. 9 (September 30, 2021): 1514–17. http://dx.doi.org/10.22214/ijraset.2021.38189.
Повний текст джерелаNaso, Aurore, Jennifer Jucha, Emmanuel Lévêque, and Alain Pumir. "Collision rate of ice crystals with water droplets in turbulent flows." Journal of Fluid Mechanics 845 (April 27, 2018): 615–41. http://dx.doi.org/10.1017/jfm.2018.238.
Повний текст джерелаLin, S. C., T. C. Kuo, and C. C. Chieng. "Particle Trajectories Around a Flying Slider." Journal of Tribology 120, no. 1 (January 1, 1998): 69–74. http://dx.doi.org/10.1115/1.2834192.
Повний текст джерелаXU, KUN, and ZHAOLI GUO. "GENERALIZED GAS DYNAMIC EQUATIONS WITH MULTIPLE TRANSLATIONAL TEMPERATURES." Modern Physics Letters B 23, no. 03 (January 30, 2009): 237–40. http://dx.doi.org/10.1142/s0217984909018096.
Повний текст джерелаMayhew, Kent W. "Illusions of Elastic Collisions in the Sciences:." European Journal of Engineering Research and Science 5, no. 1 (January 23, 2020): 87–90. http://dx.doi.org/10.24018/ejers.2020.5.1.1693.
Повний текст джерелаMayhew, Kent W. "Illusions of Elastic Collisions in the Sciences:." European Journal of Engineering and Technology Research 5, no. 1 (January 23, 2020): 87–90. http://dx.doi.org/10.24018/ejeng.2020.5.1.1693.
Повний текст джерелаДисертації з теми "Collision de navire"
Ladeira, Icaro. "Développement d'un solveur rapide et fiable basé sur des formules simplifiées pour évaluer la réponse des supports tubulaires d'éoliennes offshore soumis à l 'impact d'un navire." Electronic Thesis or Diss., Ecole centrale de Nantes, 2023. http://www.theses.fr/2023ECDN0016.
Повний текст джерелаThis thesis focuses on thedevelopment of simplified methodologies toassess the ship collision response of offshorewind turbines (OWT) supported by standalonetubular members such as monopiles and sparfloaters, with the inclusion of elasticcontributions, and the capability to address bothlow and high-energy impactsThe research is divided into two parts. The firstpart concerns the quasi-static elasto-plasticimpact response of typical OWTs. A timesteppingalgorithm was developed based ontheoretical formulations and implemented in astructural solver that is capable of predicting theOWT’s complete deformation process.The second part examines the dynamic elasticresponse of a monopile to a ship impact. Asimplified two-step framework based ontransfer matrices was developed to assess theresponse of the OWT to a given collision load,in particular the RNA acceleration.This thesis was conducted in the framework ofthe ColFOWT project, which aims to develop acomprehensive and rapid assessment tool forship-OWT collisions. The tool will be capable ofmodelling the multi-mechanism energy transferprocess that takes place during a collisionevent, including local and global deformationmechanisms, hydrodynamic effects, andmooring response
Arlemark, Erik Johan. "Extending the applicability of the Navier-Stokes equations to micro gas flows by considering molecular collisions with boundaries." Thesis, University of Strathclyde, 2010. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=12398.
Повний текст джерелаBaranger, Céline. "Modélisation, étude mathématique et simulation des collisions." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2004. http://tel.archives-ouvertes.fr/tel-00008826.
Повний текст джерелаLe premier résultat que nous présentons est consacré à l'étude mathématique d'un couplage entre une équation cinétique de type Vlasov et les équations d'Euler isentropiques. Ces équations modélisent un spray fin. Nous démontrons l'existence en temps petit d'une solution régulière pour le couplage Vlasov-Euler isentropique.
Ensuite, nous présentons les équations précises relatives à la modélisation des collisions, coalescences et fragmentations dans un spray.
Nous décrivons par la suite la simulation numérique du couplage fluide-cinétique dans un code industriel (Commissariat à l'Énergie Atomique), en particulier l'ajout des phénomènes de collisions.
Un deuxième modèle de fragmentation est également présenté. Ce modèle est plus pertinent dans les cas où les particules de la phase dispersée ont un grand nombre de Weber.
Enfin, nous présentons un résultat concernant une estimation explicite de trou spectral pour l'opérateur de Boltzmann avec potentiels durs linéarisé, et pour l'opérateur de Landau avec potentiels durs linéarisé.
Huang, Zhujun. "Efficacité de Capture dans les Procédés de Flottation." Toulouse, INSA, 2009. http://eprint.insa-toulouse.fr/archive/00000335/.
Повний текст джерелаThis work is devoted to determine the efficiency of particles capture by the fluid inclusion (air bubble), which is the basis of the flotation process. This capture process, sometimes called heterocoagulation, combines the dynamics of particle-bubble collision and film drainage with the thermodynamics of the interfacial forces which link the bubble and the particles forming an aggregate. With the aim of better understanding of different mechanisms, the study is based on direct numerical simulation (DNS) by using the code JADIM of IMFT and the experimental approach is performed by the local visualization and various measurements. The numerical study focuses on the collision of the capture process. The resolution of Navier- Stokes equations gives the local flow field around a bubble and the Lagrangian tracking of a particle in this flow field allows us to find out the critical trajectory that determines the collision efficiency. The numerical simulations cover a wide range of the parameters which characterize this problem (bubble’s Reynolds number, particle to bubble size ratio, particle’s Stokes number, particle to bubble terminal velocity ratio and bubble surface contamination level). The collision efficiency increases with the bubble’s Reynolds number and the particle to bubble size ratio. Particle’s inertia has a positive effect for large Stokes numbers, which leads a significant augmentation of the collision efficiency. Meanwhile for small Stokes numbers, a negative inertial effect has been observed, known as centrifuge force that pushes the particles from the bubble surface and therefore reduces the collision efficiency. Bubble’s surface mobility (surface contamination level) shows an important impact on the collision efficiency, because it totally changes the liquid flow around the bubble. On the experimental point of view, direct visualization of the interaction between the bubble and the particles allows us to link the stagnant cap model and surface coverage of the bubble by the captured particles. The later one reduces the bubble rising velocity during the particles capture, since on one hand, the captured particles reduced the bubble’s buoyancy by increases the bubbles affective density, and on the other hand, the change of interface mobility results in an important increase of bubble drag force. A new experimental approach to measure the capture efficiency is established based on the relationship between the bubble rising velocity, the surface covered by particles and the number of particles captured. The comparison between the experimental values with those given by the numerical simulation shows a good agreement
Despringre-Bessière, Karine. "Détection d'obstacles sur route par télémétrie laser : évaluation des caractéristiques d'un système intégré." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0071.
Повний текст джерелаTine, Léon Matar. "Analyse mathématique et numérique de modèles de coagulation-fragmentation." Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10147/document.
Повний текст джерелаThis thesis concerns the mathematical and numerical analysis of the asymptotic behavior of some coagulation-fragmentation type models arising in physics or in biology.In the first part we consider the Lifshitz-Slyozov system that models the dumping of a population of macro-particles in interaction with a bath of monomers. This model develops in long time a behavior depending in a very particular way on the initial data abd its technical specificities make a real challenge for the numerical simulation. We introduce a new numerical finite volume type scheme based on an anti-dissipative strategy; this scheme succeeds in capturing the asymptotic profiles waited by the theory and exceeds in performances the methods used before. The numerical investigation ispursued by taking into account in the model the phenomena of coalescence between macro-particles through the Smoluchowski operator. The question is to find by numerical experiment how these phenomena influence the asymptotic behavior. We also consider an extension of the classical Lifshitz-Slyozov model which takes into account the spatial effects via the diffusion of monomers. We establish the existence and the uniqueness of the solutions of the corresponding hyperbolic-parabolic coupled system.The second part of this thesis deals with approaches coagulation-fragmentation models stemming from biology. Indeed, we are interest in equations describing the phenomena of growth and division for a celles population caracterised by its size density repartition. The asymptotic behavior of this size density repartition is accessible to the experiment and can be established in theory. The biological stake consists, from measured data of the cellular density, to estimate the cellular division rate which is not experimentally measurable. So, to find this cellular division rate requires the study of an inverse problem which we approach numerically and theoretically by techniques of regularizations by quasi-reversibility and by filtering.This third part of this thesis work is devoted to coupled systems describing fluid-particles interactions with coagulation-fragmentation terms of Becker-Döring type. We study the stability properties of the model and we present some asymptotic results corresponding to the regime with strong friction force
Andeme, Raeann. "Development of an Oriented-Eddy Collision Model for Turbulence." 2008. https://scholarworks.umass.edu/theses/161.
Повний текст джерелаКниги з теми "Collision de navire"
Parsons, Robert Charles. Collision at dawn: And other thrilling stories of the sea. St. John's, N.L: Creative Publishers, 2008.
Знайти повний текст джерелаCollision at dawn: And other thrilling stories of the sea. St. John's, N.L: Creative Publishers, 2008.
Знайти повний текст джерелаGretar, Tryggvason, and United States. National Aeronautics and Space Administration., eds. Numerical simulations of drop collisions. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Знайти повний текст джерелаEuropean Court of Human Rights. Affaire Pressos Compania Naviera S.A. et autres c. Belgique : arrêt du 20 Novembre 1995 =: Case of Pressos compania Naviera S.A. and others v. Belgium : judgment of 20 November 1995. Strasbourg: Greffe de la Cour, Conseil de l'Europe, 1996.
Знайти повний текст джерелаЧастини книг з теми "Collision de navire"
Sathish, P., and D. Krishna Reddy. "Predictive Data Optimization of Doppler Collision Events for NavIC System." In Numerical Optimization in Engineering and Sciences, 583–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3215-3_57.
Повний текст джерелаТези доповідей конференцій з теми "Collision de navire"
Wang, Y., and C. Shu. "Numerical Investigation on Head-On Collisions of Binary Micro-Droplets by an Improved Multiphase Lattice Boltzmann Flux Solver." In ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6533.
Повний текст джерелаVance, Marion W., and Kyle D. Squires. "An Approach to Parallel Computing in an Eulerian-Lagrangian Two-Phase Flow Model." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31225.
Повний текст джерелаAhmadi, Goodarz, Hojjat Nasr, and John B. McLaughlin. "Turbulent Two-Phase Flows and Particle Deposition in a Duct at High Concentrations." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30828.
Повний текст джерелаFujimoto, Hitoshi, Yu Shiotani, Albert Y. Tong, and Hirohiko Takuda. "Numerical and Experimental Study on Oblique Collision of Water Droplet With a Solid Substrate." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-80338.
Повний текст джерелаSathish, P., D. Krishna Reddy, A. D. Sarma, and K. Sudershan Reddy. "Investigations of Doppler Collision Effects on NavIC." In 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2018. http://dx.doi.org/10.1109/rteict42901.2018.9012450.
Повний текст джерелаArlemark, Erik J., S. Kokou Dadzie, and Jason M. Reese. "An Extension to the Navier-Stokes-Fourier Equations by Considering Molecular Collisions With Boundaries." In ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62222.
Повний текст джерелаFinn, Justin R., Sourabh V. Apte, and Ming Li. "Numerical Simulation of Sand Ripple Evolution in Oscillatory Boundary Layers." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-22065.
Повний текст джерелаFujimoto, Hitoshi, Natsuo Hatta, and Hirohiko Takuda. "Collision Dynamics of Two Droplets." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0770.
Повний текст джерелаWang, S., and H. Ninokata. "Numerical Simulation of 3D Flow in Turbomolecular Pump by Direct Simulation Monte Carlo Method." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77364.
Повний текст джерелаVolkov, Aleksei N., and Yury M. Tsirkunov. "CFD/Monte Carlo Simulation of Collision-Dominated Gas-Particle Flows Over Bodies." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31222.
Повний текст джерела