Добірка наукової літератури з теми "Coli CcdB"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Coli CcdB".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Coli CcdB"

1

Wang, Hailong, Xiaoying Bian, Liqiu Xia, Xuezhi Ding, Rolf Müller, Youming Zhang, Jun Fu, and A. Francis Stewart. "Improved seamless mutagenesis by recombineering using ccdB for counterselection." Nucleic Acids Research 42, no. 5 (December 24, 2013): e37-e37. http://dx.doi.org/10.1093/nar/gkt1339.

Повний текст джерела
Анотація:
Abstract Recombineering, which is the use of homologous recombination for DNA engineering in Escherichia coli, usually uses antibiotic selection to identify the intended recombinant. When combined in a second step with counterselection using a small molecule toxin, seamless products can be obtained. Here, we report the advantages of a genetic strategy using CcdB as the counterselectable agent. Expression of CcdB is toxic to E. coli in the absence of the CcdA antidote so counterselection is initiated by the removal of CcdA expression. CcdB counterselection is robust and does not require titrations or experiment-to-experiment optimization. Because counterselection strategies necessarily differ according to the copy number of the target, we describe two variations. For multi-copy targets, we use two E. coli hosts so that counterselection is exerted by the transformation step that is needed to separate the recombined and unrecombined plasmids. For single copy targets, we put the ccdA gene onto the temperature-sensitive pSC101 Red expression plasmid so that counterselection is exerted by the standard temperature shift to remove the expression plasmid. To reduce unwanted intramolecular recombination, we also combined CcdB counterselection with Redα omission. These options improve the use of counterselection in recombineering with BACs, plasmids and the E. coli chromosome.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Allali, Noureddine, Hassan Afif, Martine Couturier, and Laurence Van Melderen. "The Highly Conserved TldD and TldE Proteins of Escherichia coli Are Involved in Microcin B17 Processing and in CcdA Degradation." Journal of Bacteriology 184, no. 12 (June 15, 2002): 3224–31. http://dx.doi.org/10.1128/jb.184.12.3224-3231.2002.

Повний текст джерела
Анотація:
ABSTRACT Microcin B17 (MccB17) is a peptide antibiotic produced by Escherichia coli strains carrying the pMccB17 plasmid. MccB17 is synthesized as a precursor containing an amino-terminal leader peptide that is cleaved during maturation. Maturation requires the product of the chromosomal tldE (pmbA) gene. Mature microcin is exported across the cytoplasmic membrane by a dedicated ABC transporter. In sensitive cells, MccB17 targets the essential topoisomerase II DNA gyrase. Independently, tldE as well as tldD mutants were isolated as being resistant to CcdB, another natural poison of gyrase encoded by the ccd poison-antidote system of plasmid F. This led to the idea that TldD and TldE could regulate gyrase function. We present in vivo evidence supporting the hypothesis that TldD and TldE have proteolytic activity. We show that in bacterial mutants devoid of either TldD or TldE activity, the MccB17 precursor accumulates and is not exported. Similarly, in the ccd system, we found that TldD and TldE are involved in CcdA and CcdA41 antidote degradation rather than being involved in the CcdB resistance mechanism. Interestingly, sequence database comparisons revealed that these two proteins have homologues in eubacteria and archaebacteria, suggesting a broader physiological role.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aguirre-Ramírez, Marisela, Jesús Ramírez-Santos, Laurence Van Melderen, and M. Carmen Gómez-Eichelmann. "Expression of the F plasmid ccd toxin–antitoxin system in Escherichia coli cells under nutritional stress." Canadian Journal of Microbiology 52, no. 1 (January 1, 2006): 24–30. http://dx.doi.org/10.1139/w05-107.

Повний текст джерела
Анотація:
The ccd system of the F plasmid encodes CcdB, a protein toxic to DNA-gyrase, and CcdA, its antitoxin. The function attributed to this system is to contribute to plasmid stability by killing bacteria that lose the plasmid during cell division. However, the function of ccd in resting bacteria is not clear. Results presented show that ccd transcription increases as bacteria enter stationary phase and that the amount of the Ccd proteins is higher in bacteria under nutritional stress than in growing bacteria. Moreover, an increase in the frequency of Lac+ "adaptive" mutations was observed in stationary-phase bacteria that over-express the Ccd proteins.Key words: ccd system, nutritional stress, adaptive mutation.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Qing, Zhenya Yan, Yan Xu, Jian Sun, and Guangdong Shang. "Characterization of Inducible ccdB Gene as a Counterselectable Marker in Escherichia coli Recombineering." Current Microbiology 74, no. 8 (June 1, 2017): 961–64. http://dx.doi.org/10.1007/s00284-017-1273-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

BAJAJ, Kanika, Ghadiyaram CHAKSHUSMATHI, Kiran BACHHAWAT-SIKDER, Avadhesha SUROLIA, and Raghavan VARADARAJAN. "Thermodynamic characterization of monomeric and dimeric forms of CcdB (controller of cell division or death B protein)." Biochemical Journal 380, no. 2 (June 1, 2004): 409–17. http://dx.doi.org/10.1042/bj20031528.

Повний текст джерела
Анотація:
The protein CcdB (controller of cell division or death B) is an F-plasmid-encoded toxin that acts as an inhibitor of Escherichia coli DNA gyrase. The stability and aggregation state of CcdB have been characterized as a function of pH and temperature. Size-exclusion chromatography revealed that the protein is a dimer at pH 7.0, but a monomer at pH 4.0. CD analysis and fluorescence spectroscopy showed that the monomer is well folded, and has similar tertiary structure to the dimer. Hence intersubunit interactions are not required for folding of individual subunits. The stability of both forms was characterized by isothermal denaturant unfolding and calorimetry. The free energies of unfolding were found to be 9.2 kcal·mol−1 (1 cal≈4.184 J) and 21 kcal·mol−1 at 298 K for the monomer and dimer respectively. The denaturant concentration at which one-half of the protein molecules are unfolded (Cm) of the dimer is dependent on protein concentration, whereas the Cm of the monomer is independent of protein concentration, as expected. Although thermal unfolding of the protein in aqueous solution is irreversible at neutral pH, it was found that thermal unfolding is reversible in the presence of GdmCl (guanidinium chloride). Differential scanning calorimetry in the presence of low concentrations of GdmCl in combination with isothermal denaturation melts as a function of temperature were used to derive the stability curve for the protein. The value of ΔCp (representing the change in excess heat capacity upon protein denaturation) is 2.8±0.2 kcal·mol−1·K−1 for unfolding of dimeric CcdB, and only has a weak dependence on denaturant concentration.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hashimi, Saeed M., Melisa K. Wall, Andrew B. Smith, Anthony Maxwell, and Robert G. Birch. "The Phytotoxin Albicidin is a Novel Inhibitor of DNA Gyrase." Antimicrobial Agents and Chemotherapy 51, no. 1 (January 2007): 181–87. http://dx.doi.org/10.1128/aac.00918-06.

Повний текст джерела
Анотація:
ABSTRACT Xanthomonas albilineans produces a family of polyketide-peptide compounds called albicidins which are highly potent antibiotics and phytotoxins as a result of their inhibition of prokaryotic DNA replication. Here we show that albicidin is a potent inhibitor of the supercoiling activity of bacterial and plant DNA gyrases, with 50% inhibitory concentrations (40 to 50 nM) less than those of most coumarins and quinolones. Albicidin blocks the religation of the cleaved DNA intermediate during the gyrase catalytic sequence and also inhibits the relaxation of supercoiled DNA by gyrase and topoisomerase IV. Unlike the coumarins, albicidin does not inhibit the ATPase activity of gyrase. In contrast to the quinolones, the albicidin concentration required to stabilize the gyrase cleavage complex increases 100-fold in the absence of ATP. The slow peptide poisons microcin B17 and CcdB also access ATP-dependent conformations of gyrase to block religation, but in contrast to albicidin, they do not inhibit supercoiling under routine assay conditions. Some mutations in gyrA, known to confer high-level resistance to quinolones or CcdB, confer low-level resistance or hypersensitivity to albicidin in Escherichia coli. Within the albicidin biosynthesis region in X. albilineans is a gene encoding a pentapeptide repeat protein designated AlbG that binds to E. coli DNA gyrase and that confers a sixfold increase in the level of resistance to albicidin in vitro and in vivo. These results demonstrate that DNA gyrase is the molecular target of albicidin and that X. albilineans encodes a gyrase-interacting protein for self-protection. The novel features of the gyrase-albicidin interaction indicate the potential for the development of new antibacterial drugs.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Loris, Remy, Minh-Hoa Dao-Thi, El Mustapha Bahassi, Laurence Van Melderen, Freddy Poortmans, Robert Liddington, Martine Couturier, and Lode Wyns. "Crystal structure of CcdB, a topoisomerase poison from E. coli 1 1Edited by T. Richmond." Journal of Molecular Biology 285, no. 4 (January 1999): 1667–77. http://dx.doi.org/10.1006/jmbi.1998.2395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Maki, S., S. Takiguchi, T. Miki, and T. Horiuchi. "Modulation of DNA supercoiling activity of Escherichia coli DNA gyrase by F plasmid proteins. Antagonistic actions of LetA (CcdA) and LetD (CcdB) proteins." Journal of Biological Chemistry 267, no. 17 (June 1992): 12244–51. http://dx.doi.org/10.1016/s0021-9258(19)49831-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baishya, S., A. Das Talukdar, and M. Dutta Choudhury. "Secondary resistance gene ccdB and repA2 facilitates carbapenem resistance in Escherichia coli carrying New Delhi Metallo-beta-lactamase." International Journal of Infectious Diseases 101 (December 2020): 36–37. http://dx.doi.org/10.1016/j.ijid.2020.09.129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sundararaj, S. "The CyberCell Database (CCDB): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of Escherichia coli." Nucleic Acids Research 32, no. 90001 (January 1, 2004): 293D—295. http://dx.doi.org/10.1093/nar/gkh108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Coli CcdB"

1

Salmon, Michel André. "Etude génétique et biochimique des propriétés 'poison-antidote' et régulatrices des protéines CcdA et CcdB du plasmide F de Escherichia coli." Doctoral thesis, Universite Libre de Bruxelles, 1993. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wilbaux, Myriam. "Le système toxine-antitoxine ccdO157 d'Escherichia coli: caractérisation fonctionelle et distribution." Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210503.

Повний текст джерела
Анотація:
Les systèmes toxine-antitoxine (TA) bactériens ont été découverts il y a une vingtaine d’année sur les plasmides à bas nombre de copie. Ils sont composés de deux gènes organisés en opéron, l’un codant pour une toxine stable et l’autre pour une antitoxine instable capable de neutraliser l’effet de la toxine. Les systèmes TA sont fortement représentés au sein de l’ensemble des génomes bactériens. Ils se localisent aussi bien sur des éléments génétiques mobiles (plasmides, phages, transposons,…) que dans les chromosomes, ce qui suggère que le transfert horizontal de gènes participe à leur dissémination. Le système TA ccd du plasmide F d’Escherichia coli (ccdF) est composé de l’antitoxine CcdA et de la toxine CcdB. Le système ccdF contribue à la stabilité du plasmide F en tuant les bactéries-filles n’ayant pas reçu de copies plasmidiques lors de la division bactérienne (tuerie post-ségrégationelle).

Au cours de ce travail, nous avons caractérisé un homologue du système toxine-antitoxine ccd du plasmide F (ccdF) qui se situe dans le chromosome de la souche pathogène E. coli O157:H7 EDL933 entre les gènes folA et apaH (ccdO157). Les systèmes ccdF et ccdO157 coexistent naturellement dans les souches d’E. coli O157:H7, le système ccdF se trouvant sur le plasmide pO157 qui dérive du plasmide F. Nos résultats montrent que l’antitoxine plasmidique CcdAF neutralise l’effet de la toxine chromosomique CcdBO157, tandis que l’antitoxine chromosomique CcdAO157 ne contrecarre pas la toxicité de la toxine plasmidique CcdBF. Nous avons également montré que le système ccdF cause une tuerie post-ségrégationelle, lorsqu’il est cloné dans un plasmide instable, dans une souche possédant le système chromosomique ccdO157. Le système ccdF est donc fonctionnel en présence de son homologue chromosomique.

Le système ccdO157 est absent du chromosome de la souche de laboratoire E. coli K-12 MG1655, où une région intergénique de 77 pb sépare les gènes folA et apaH. Celle-ci contient une séquence cible pour la transposition. Nous avons étudié la distribution du système ccdO157 au sein de 523 souches d’E. coli représentatives de l’ensemble des sérogroupes décrits. Nos résultats montrent que le système ccdO157 est présent au sein de souches appartenant à 47 sérogroupes différents. Nos résultats mettent en évidence la diversité de la région intergénique folA-apaH d’E. coli. Celle-ci peut contenir gènes codant pour des protéines présentant de l’homologie avec des protéines d’espèce bactériennes éloignées d’E. coli ou d’organismes eucaryotes, ainsi qu’un élément génétique mobile, l’IS621, ce qui montre que le système ccdO157 a intégré le chromosome d’E. coli via le transfert horizontal de gènes.


Doctorat en Sciences
info:eu-repo/semantics/nonPublished

Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Coli CcdB"

1

Ternes, Tyler H. "Cardiac Conduction Devices." In Chest Imaging, 47–51. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780199858064.003.0009.

Повний текст джерела
Анотація:
Cardiac conduction devices (CCDs) include pacemakers and implantable cardioverter defibrillators (ICDs) and are used for permanent management of cardiac conduction abnormalities. Most CCDs consist of a generator which houses the battery and computer. They gather electronic information and send electric pulses through their attached leads. Typically, the leads are placed via transvenous approach into the right atrial appendage, right ventricle, or coronary sinus, depending on the purpose. A single chamber pacer may be utilized to manage SA nodal disease, with a lead in the right ventricle. Dual-chamber pacers are often used for AV nodal disease, and have leads in the right atrium and right ventricle. Biventricular pacing may be used to improve synchronized right and left ventricular function, with the additional lead positioned in the coronary sinus to stimulate the left ventricle. The presence of a thick “shock coil” confirms the defibrillator capability of the device (ICD). Radiographic evaluation following CCD placement should ensure proper lead placement, and exclude pneumothorax, hemothorax, and/or hemopericardium. Subsequent imaging should exclude Twiddler’s syndrome (change in generator position) and lead fracture. Temporary pacing devices may also be used in emergent and postoperative settings, and typically consist of epicardial leads that can be easily removed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Iwane, M. "Common Cold and Other Acute Viral Respiratory Diseases." In Control of Communicable Diseases Manual. American Public Health Association, 2015. http://dx.doi.org/10.2105/ccdm.2745.048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Coli CcdB"

1

Leshchynsky, V., O. Bielousova, N. Ryashin, I. Yadroitsava, and I. Smurov. "Interface Reactions in Composite Coatings Deposited by Cold Spray and Detonation Spraying." In ITSC2011, edited by B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and A. McDonald. DVS Media GmbH, 2011. http://dx.doi.org/10.31399/asm.cp.itsc2011p1145.

Повний текст джерела
Анотація:
Abstract Deposition of Metal Matrix Composites (MMC) has been the subject of extensive research in the recent years. The desired functional properties of a composite coating can be achieved by analyzing and controlling the major structural processes taking place during deposition. The latter are reactions at the particle-particle and particle-substrate interfaces which can be controlled by applying advanced spraying technologies. Cold Spray (CS) and Computer Controlled Detonation Spraying (CCDS) are well-proven reliable methods for deposition of composite coating. The energy (thermal and kinetic) imparted to the particles-in-flight by CS and CCDS allows initiating interface reactions that will define distinct properties of the deposited composite layers. The applied spraying technologies are characterized by different ratio of thermal-to-kinetic energy that results in different conditions of the compounds interaction. The objective of the present study is to define the effect of CS and CCDS technologies on structure and properties of Al-Ti-based composite coatings by analyzing intermetallic reactions occurring during the process. It is shown that both CS and CCDS composites present differently sized zones of interfacial reactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hong, Yue, and Xianpeng Wang. "Robust operation optimization in cold rolling production process." In 2014 26th Chinese Control And Decision Conference (CCDC). IEEE, 2014. http://dx.doi.org/10.1109/ccdc.2014.6852379.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Smurov, I., D. Pervushin, V. Ulianitsky, S. Zlobin, and A. Sova. "Comparison of Cold Spray and Detonation Coatings Properties." In ITSC2010, edited by B. R. Marple, A. Agarwal, M. M. Hyland, Y. C. Lau, C. J. Li, R. S. Lima, and G. Montavon. DVS Media GmbH, 2010. http://dx.doi.org/10.31399/asm.cp.itsc2010p0487.

Повний текст джерела
Анотація:
Abstract Cold and detonation spraying methods are based on the interaction of high-velocity particles with substrate. High quality coatings from various powder materials can be deposited. In both processes, the substrate experiences insignificant thermal effect. Thermally sensitive powder can be sprayed with no oxidation and decomposition. The initial powder microstructure and even nanostructure can be preserved under properly selected spraying conditions. This study is based on a comparative analysis of the mechanical, electrical, and heat transfer properties of a series of coatings deposited by cold and detonation spraying technologies. The coatings are produced from copper and aluminum powders using a commercial Cold Spray equipment CGT-4000 and an original computer-controlled detonation spraying (CCDS) installation developed by the authors. The coating microhardness, density, electrical and heat conductivity, adhesion, cohesion, etc. are measured and compared. Particular advantages and drawbacks of both spraying methods are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zheng, Gang, Zewen Wang, Haowen Li, and Siyu Liu. "Automatic Coil Delivery for Uncoiling Machine Based on Image Processing." In 2020 Chinese Control And Decision Conference (CCDC). IEEE, 2020. http://dx.doi.org/10.1109/ccdc49329.2020.9164509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Guo, Jun, and Jinwei Fan. "Study on automatic diagnostic of elevator brake coil wearing." In 2014 26th Chinese Control And Decision Conference (CCDC). IEEE, 2014. http://dx.doi.org/10.1109/ccdc.2014.6852383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Zhi, Jie Sun, Xing Lu, Yunjian Hu, and Dianhua Zhang. "SAE-CCA-based Fault Detection of Tandem Cold Rolling." In 2021 33rd Chinese Control and Decision Conference (CCDC). IEEE, 2021. http://dx.doi.org/10.1109/ccdc52312.2021.9601870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Xin, Qihe Shan, Tieshan Li, and Fei Teng. "Smart Port Energy Management Strategy Considering Cold Chain System." In 2021 33rd Chinese Control and Decision Conference (CCDC). IEEE, 2021. http://dx.doi.org/10.1109/ccdc52312.2021.9601510.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Raletz, F., G. Ezo’o, M. Vardelle, and M. Ducos. "Characterization of Cold-Sprayed Nickel-Base Coatings." In ITSC2004, edited by Basil R. Marple and Christian Moreau. ASM International, 2004. http://dx.doi.org/10.31399/asm.cp.itsc2004p0323.

Повний текст джерела
Анотація:
Abstract The Cold Gas Dynamic Spray Method (CGDS) requires high-kinetic energy particles to obtain dense coatings. The aim of this study is to characterize some properties of CGDS coatings and compare them to the bulk materials. Pure nickel and nickel-base alloys (NiCrAlY, CoNiCrAlY, and Hastelloy C) are sprayed on 316L steel substrates. Coating thickness is about 700 µm. The particle velocity at impact is measured using an imaging technique based on a fast-shutter CCD camera and a high-power diode laser. The original powder characterization involves particle size, density, chemical composition and hardness, and coating analysis includes micro hardness, nano hardness (performed in the first 60 µm of the coating), Young’s modulus determination and porosity level. The hardness test results make it possible to determine effects of this specific property on the sprayability with this process.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Verhoeve, Peter, Sander Blommaert, Dennis Breeveld, Joerg ter Haar, Kate Isaak, Frederic Lemmel, Cornelis van der Luijt, et al. "Proton induced damage after laboratory cold irradiation in CCD47-20 CCDs for CHEOPS." In X-Ray, Optical, and Infrared Detectors for Astronomy X, edited by Andrew D. Holland and James Beletic. SPIE, 2022. http://dx.doi.org/10.1117/12.2629353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhou, Ying, Jia-fi Tang, Ming Cao, De-feng Shu, and Bin Gao. "Conference comprehensive evaluation of cold-roller products quality with case study." In 2008 Chinese Control and Decision Conference (CCDC). IEEE, 2008. http://dx.doi.org/10.1109/ccdc.2008.4597288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії