Книги з теми "Cold atom physics"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Cold atom physics.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-21 книг для дослідження на тему "Cold atom physics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Collaborative Computational Project on Molecular Quantum Dynamics and Daresbury Laboratory, eds. Interactions of cold atoms and molecules. Daresbury, Warrington [England]: Collaborative Computational Project on Molecular Quantum Dynamics, Daresbury Laboratory, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

service), SpringerLink (Online, ed. Quantum Phase Transitions in Cold Atoms and Low Temperature Solids. New York, NY: Springer Science+Business Media, LLC, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

service), SpringerLink (Online, ed. Collisional Narrowing and Dynamical Decoupling in a Dense Ensemble of Cold Atoms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Jingbiao, Xuzong Chen, Fang Fang, Hong Guo, Zhiwen Liu, Yanhui Wang, and Xiaoji Zhou, eds. Quantum Precision Measurement and Cold Atom Physics. Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-8325-0229-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

KAJITA. Cold Atoms and Molecules Hb. Institute of Physics Publishing, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ghosh, Pradip Narayan. Physics With Cold Atoms ; Proceedings of the National Seminar on Physics With Cold Atoms Held at Calcutta on February 25-26, 2000. Allied Publishers Pvt. Ltd., 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hazzard, Kaden Richard Alan. Quantum Phase Transitions in Cold Atoms and Low Temperature Solids. Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hazzard, Kaden Richard Alan. Quantum Phase Transitions in Cold Atoms and Low Temperature Solids. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Collisional Narrowing And Dynamical Decoupling In A Dense Ensemble Of Cold Atoms. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cold Atoms And Molecules A Testground For Fundamental Many Particle Physics. Wiley-VCH Verlag GmbH, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Friedrich, Bretislav, William C. Stwalley, and Roman V. Krems. Cold Molecules. Taylor & Francis Group, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Sagi, Yoav. Collisional Narrowing and Dynamical Decoupling in a Dense Ensemble of Cold Atoms. Springer Berlin / Heidelberg, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Roman, Krems, Friedrich Bretislav, and Stwalley William C. 1942-, eds. Cold molecules: Theory, experiment, applications. Boca Raton: Taylor & Francis, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Krems, Roman, Bretislav Friedrich, and William C. Stwalley. Cold Molecules: Theory, Experiment, Applications. Taylor & Francis Group, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Krems, Roman, Bretislav Friedrich, and William C. Stwalley. Cold Molecules: Theory, Experiment, Applications. Taylor & Francis Group, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Raymer, Michael. Quantum Physics. Oxford University Press, 2017. http://dx.doi.org/10.1093/wentk/9780190250720.001.0001.

Повний текст джерела
Анотація:
Around 1900, physicists started to discover particles like electrons, protons, and neutrons, and with these discoveries they believed they could predict the internal behavior of the atom. However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how radios transmit sound, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application led to the recent discovery of the Higgs Boson, and continues to be fundamental in the investigation of the broadest and most expansive questions related to our world and the universe. However, while the field and principles of quantum physics are known to have nearly limitless applications, the reasons why this is the case are far less understood. In “Quantum Physics: What Everyone Needs to Know,” Michael Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today’s scientific climate and beyond. The book tackles questions as broad as the definition of a quantum state and as specific and timely as why the British government plans to spend 270 million GBP on quantum technology research in the next five years. Raymer’s list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and micro-circuitry to principles and concepts like Absolute Zero and Heisenberg’s Uncertainty principle, “Quantum Physics: What Everyone Needs to Know” is wide-reaching introduction to a nearly ubiquitous scientific topic.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Darrigol, Olivier. Atoms, Mechanics, and Probability. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198816171.001.0001.

Повний текст джерела
Анотація:
One of the pillars of modern science, statistical mechanics, owes much to one man, the Austrian physicist Ludwig Boltzmann (1844–1906). As a result of his unusual working and writing styles, his enormous contribution remains little read and poorly understood. The purpose of this book is to make the Boltzmann corpus more accessible to physicists, philosophers, and historians, and so give it new life. The means are introductory biographical and historical materials, detailed and lucid summaries of every relevant publication, and a final chapter of critical synthesis. Special attention is given to Boltzmann’s theoretical tool-box and to his patient construction of lofty formal systems, even before their full conceptual import could be known. This constructive tendency largely accounts for his lengthy style, for the abundance of new constructions, for the relative vagueness of their object, and for the puzzlement of commentators. This book will help the reader cross the stylistic barrier and see how ingeniously Boltzmann combined atoms, mechanics, and probability to invent new bridges between the micro- and macro-worlds.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Fitzpatrick, Antonia. Aristotelian Tradition (II). Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198790853.003.0003.

Повний текст джерела
Анотація:
This chapter examines the problems Aristotle’s discussions of bodily identity posed for Aquinas, who wanted to maintain that individual bodies would necessarily be reconstituted from their own matter at the resurrection. Aristotle appeared to suggest (in De generatione et corruptione) that a human body could remain the same despite the exchange—by wastage and nourishment—of all of its matter over a lifetime. So was the soul the only carrier of identity? Aristotle had little to say about the continuity of a body’s material after its death, and furthermore his Physics dispensed with atoms. Aquinas would rely heavily on Averroes in solving these problems. Central to the solution would be a concept of ‘body’ as a kind of ‘quantity’, or physical structure. In particular, Averroes endowed matter with a quasi-corpuscular structure of its own (‘indeterminate dimensions’), which fixed matter’s identity across change.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Levin, Frank S. The Quantum Hypothesis. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198808275.003.0005.

Повний текст джерела
Анотація:
Although 1900 ended with the classical physics of Newton and Maxwell reigning supreme, that reign did not last long, and Chapter 4 shows why. The first crack in this edifice was the failure to detect the presence of the ether, the medium that supposedly carried electromagnetic waves. Next was Thomson’s discovery of the electron, proving that atoms, believed to have been indestructible, were not: they had a structure. Yet another new development, the discovery of radioactivity, also could not be explained by classical physics. Nor could it explain the experimental data from blackbody radiation measurements, yet Planck’s peculiar formula involving his quantum hypothesis, did so perfectly. It introduced a new fundamental constant, named for him. And while his quantum hypothesis did not gain any traction for five years, in 1905 Einstein used it to explain the photoelectric effect, which classical electrodynamics had been unable to do.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Levin, Frank S. Creating Quantum Mechanics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198808275.003.0007.

Повний текст джерела
Анотація:
In addition to recounting some contemporary scientific history, Chapter 6 describes the hypothesis that matter, like light, can display wavelike properties, and the creation of the various formulations of quantum mechanics. That matter could have a wavelength was proposed in 1924 by Louis de Broglie, who presented a specific formula for calculating it, one that was verified experimentally in 1927. However, de Broglie’s hypothesis was overshadowed by the creation of three versions of quantum mechanics in 1925/26. The first, denoted matrix mechanics, was proposed by Werner Heisenberg. It was quickly and successfully applied by Wolfgang Pauli to the hydrogen atom. Paul Dirac introduced the next version, which was followed by that of Erwin Schrödinger via a wave equation whose solutions, denoted wave functions, were soon interpreted byMax Born to be related to the probability that certain outcomes or events will occur: classical-physics determinism was thereby removed from quantum mechanics.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Morawetz, Klaus. Interacting Systems far from Equilibrium. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.001.0001.

Повний текст джерела
Анотація:
In quantum statistics based on many-body Green’s functions, the effective medium is represented by the selfenergy. This book aims to discuss the selfenergy from this point of view. The knowledge of the exact selfenergy is equivalent to the knowledge of the exact correlation function from which one can evaluate any single-particle observable. Complete interpretations of the selfenergy are as rich as the properties of the many-body systems. It will be shown that classical features are helpful to understand the selfenergy, but in many cases we have to include additional aspects describing the internal dynamics of the interaction. The inductive presentation introduces the concept of Ludwig Boltzmann to describe correlations by the scattering of many particles from elementary principles up to refined approximations of many-body quantum systems. The ultimate goal is to contribute to the understanding of the time-dependent formation of correlations. Within this book an up-to-date most simple formalism of nonequilibrium Green’s functions is presented to cover different applications ranging from solid state physics (impurity scattering, semiconductor, superconductivity, Bose–Einstein condensation, spin-orbit coupled systems), plasma physics (screening, transport in magnetic fields), cold atoms in optical lattices up to nuclear reactions (heavy-ion collisions). Both possibilities are provided, to learn the quantum kinetic theory in terms of Green’s functions from the basics using experiences with phenomena, and experienced researchers can find a framework to develop and to apply the quantum many-body theory straight to versatile phenomena.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії