Добірка наукової літератури з теми "Coherent optical pulses"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Coherent optical pulses".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Coherent optical pulses"
SHARABY, Y. A., A. JOSHI, and S. S. HASSAN. "COHERENT POPULATION TRANSFER IN V-TYPE ATOMIC SYSTEM." Journal of Nonlinear Optical Physics & Materials 22, no. 04 (December 2013): 1350044. http://dx.doi.org/10.1142/s0218863513500446.
Повний текст джерелаXue, Yinghong, Yueping Niu, and Shangqing Gong. "External Modulation Optical Coherent Domain Reflectometry with Long Measurement Range." Sensors 21, no. 16 (August 16, 2021): 5510. http://dx.doi.org/10.3390/s21165510.
Повний текст джерелаGabitov, Ildar R., Bridget Kennedy, and Andrei I. Maimistov. "Coherent Amplification of Optical Pulses in Metamaterials." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 2 (2010): 401–9. http://dx.doi.org/10.1109/jstqe.2009.2032667.
Повний текст джерелаSemenov, A. L., and D. N. Bezbat’ko. "Coherent phonons excited by two optical pulses." Physics of the Solid State 58, no. 2 (February 2016): 333–35. http://dx.doi.org/10.1134/s106378341602027x.
Повний текст джерелаJeong, Heejeong, та Ulf Österberg. "Coherent transients: optical precursors and 0π pulses". Journal of the Optical Society of America B 25, № 7 (28 березня 2008): B1. http://dx.doi.org/10.1364/josab.25.0000b1.
Повний текст джерелаSinyavskii, A. V. "Coherent-difference detection of optical radiation pulses." Quantum Electronics 25, no. 6 (June 30, 1995): 605–6. http://dx.doi.org/10.1070/qe1995v025n06abeh000424.
Повний текст джерелаAquila, A., M. Drescher, T. Laarmann, M. Barthelmeß, H. N. Chapman, and S. Bajt. "Moving the Frontier of Quantum Control into the Soft X-Ray Spectrum." International Journal of Optics 2011 (2011): 1–4. http://dx.doi.org/10.1155/2011/417075.
Повний текст джерелаZaitsu, Shin-ichi, Takumi Tanabe, Kota Oshima, and Hiroyuki Hirata. "Theoretical Analysis of a Molecular Optical Modulator for a Continuous-Wave Laser Based on a Hollow-Core Photonic Crystal Fiber." Applied Sciences 8, no. 10 (October 12, 2018): 1895. http://dx.doi.org/10.3390/app8101895.
Повний текст джерелаNakano, Yuta, Anton D. Shutov, Totaro Imasaka, and Alexei V. Sokolov. "Generation of Ultrafast Optical Pulses via Molecular Modulation in Ambient Air." Applied Sciences 9, no. 12 (June 20, 2019): 2509. http://dx.doi.org/10.3390/app9122509.
Повний текст джерелаSato, Takahiro, James M. Glownia, Matthiew R. Ware, Matthieu Chollet, Silke Nelson, and Diling Zhu. "A simple instrument to find spatiotemporal overlap of optical/X-ray light at free-electron lasers." Journal of Synchrotron Radiation 26, no. 3 (April 5, 2019): 647–52. http://dx.doi.org/10.1107/s1600577519002248.
Повний текст джерелаДисертації з теми "Coherent optical pulses"
Hill, Karen Elizabeth. "Coherent effects of intense ultrashort optical pulses on diatomic molecules." Thesis, Imperial College London, 1990. http://hdl.handle.net/10044/1/46340.
Повний текст джерелаCurbis, Francesca. "Generation of VUV ultra-short coherent optical pulses using electron storage rings." Doctoral thesis, Università degli studi di Trieste, 2008. http://hdl.handle.net/10077/2562.
Повний текст джерелаThe need of coherent and intense pulsed radiation is spread among many research disciplines, such as biology, nanotechnology, physics, chemistry and medicine. The synchrotron light from traditional sources only partially meets these characteristics. A new kind of light source has been conceived and developed in the last decades: the Free-Electron Laser (FEL). The FEL process relies on the interaction between a relativistic electron beam and an electromagnetic wave in presence of a static and periodic magnetic field, produced by a device called undulator. This interaction generates coherent radiation at a fundamental frequency and its higher harmonics. In the standard configuration, the electron beam is generated by a linear accelerator and the interaction occurs in a single passage through one or several undulators. An alternative configuration can be obtained if the electrons are supplied by a storage ring. This work has been carried out at the Elettra laboratory within the ``new light sources'' group. My thesis focuses on both numerical and experimental issues about the generation of coherent harmonics on storage-ring FELs. The Elettra SRFEL has been originally designed to operate in ``oscillator configuration'' where the radiation is stored in an optical cavity (made of two mirrors). This process also drives the emission of radiation in the harmonics. In this work, different experimental methods have been implemented at Elettra to concentrate the power in giant pulses, both for the fundamental wavelength and its harmonics. Using this technique, it has been possible to generate fundamental radiation at 660 nm and 450 nm with (intra-cavity) power of few mJ and third harmonic radiation at 220 nm and 150 nm with few nJ of power. This process has been studied numerically by using a tri-dimensional simulation which also accounts for the re-circulation of the beam. The results of simulations are in good agreement with experimental measurements and allow to investigate the inner structure of the light below the picoseconds scale, where the instrumentation resolution reaches its limit. Structures of hundreds of femtoseconds inside the laser pulse have been found and this implies a higher peak power. Moreover, the numerical results have been confirmed by spectral measurements. By removing the optical cavity and focusing an external laser in the first undulator, a ``seeded single-pass'' configuration has been implemented. In the first undulator, the interaction with the external laser (``seed'') modulates the electron energy which is converted to spatial modulation (``bunching''). A Fourier analysis of the bunched electron-beam shows the presence of components at all harmonics (even and odd) and this explains why electrons in the second undulator can emit at any harmonic. To implement this configuration a design and layout plus tri-dimensional simulations were performed. Followed by the installation of the seed laser (Ti:Sapphire, lambda = 796 nm), the timing and the diagnostics. The commissioning focused on optimizing the spatial overlap and the synchronization between the electrons and the seed laser. Coherent harmonic radiation has been obtained at 265 nm, the third harmonic of the seed laser. After the characterization of this light, the seed frequency has been doubled by means of a nonlinear crystal. With this setup, radiation down to 99.5 nm (the fourth harmonic of the seed) has been generated. The shot-to-shot stability is comparable to the stability of the synchrotron radiation (fluctuations of few %) but the number of photons per pulse (~10^9) is about two-three orders of magnitude bigger than the synchrotron one. Thus this coherent radiation can be used for experiments similar to those suggested for the next generation FELs. Summarizing, the light source developed during my thesis is a unique facility able to generate coherent radiation with variable polarization, variable duration (between 100 fs and 1 ps), with peak power of the order of mega-Watts in a wide spectral VUV range. In the latest implementation, this radiation source has been used for two different kind of experiments, one in gas-phase, the other of solid state. The obtained results demonstrate the appealing of this source for user experiments. In perspective, there is a plan to extend the wavelength range below 100 nm and to improve the tunability of the source.
Vari ambiti della ricerca scientifica, dalla biologia alle nanotecnologie, passando per la fisica, la chimica e la medicina, richiedono per le loro indagini una radiazione spazialmente coerente con un elevato numero di fotoni per impulso. Poiché la radiazione di sincrotrone non possiede queste caratteristiche, negli ultimi anni gli sforzi si sono concentrati nello sviluppo delle cosiddette sorgenti di quarta generazione: i laser a elettroni liberi (LEL). Il processo LEL avviene per l'interazione di un'onda elettromagnetica con un fascio di elettroni relativistici in presenza di un campo magnetico. Tale campo, statico e periodico, viene generato da un dispositivo detto ondulatore. L'interazione produce emissione di luce coerente ad una frequenza fondamentale e alle sue armoniche superiori. La configurazione standard prevede che gli elettroni siano prodotti da un acceleratore lineare e l'interazione si risolve tipicamente in un singolo passaggio attraverso uno o più ondulatori. Una configurazione alternativa si ottiene quando gli elettroni sono forniti da un anello di accumulazione. La tesi si è svolta presso il laboratorio Elettra, nel gruppo che si occupa dello sviluppo di nuove sorgenti di luce. La mia attività di ricerca comprende sia aspetti teorico-numerici che sperimentali relativi alla generazione di armoniche coerenti su LEL installati su anelli di accumulazione. Storicamente il laser a elettroni liberi ad Elettra è nato in ``configurazione oscillatore'' (la radiazione è immagazzinata in una cavità ottica formata da due specchi). Ad ogni passaggio successivo gli elettroni interagiscono con l'onda electtromagnetica amplificandola fino all'instaurarsi dell'effetto laser. Questo processo guida anche l'emissione alle armoniche superiori. Diversi metodi sperimentali possono essere usati per concentrare la potenza in impulsi giganti, sia per la fondamentale che per le armoniche. Questa tecnica, che ho affinato durante il mio lavoro di tesi, ci ha permesso di generare potenze dell'ordine di alcuni mJ per la fondamentale (nella cavità) e di alcuni nJ alla terza armonica di 660 nm e di 450 nm, cioè 220 nm e 150 nm rispettivamente. Dal punto di vista numerico, per studiare questo processo abbiamo modificato un codice per simulare tridimensionalmente la nostra configurazione ed abbiamo aggiunto una parte che propaga gli elettroni lungo l'anello. Le simulazioni sono in ottimo accordo con i dati sperimentali e ci permettono di investigare più nel dettaglio l'impulso, nella scala temporale dei femtosecondi dove si arresta la risoluzione strumentale. Dalle simulazioni risulta che all'interno degli impulsi laser sono presenti delle substrutture della durata di alcune centinaia di femtosecondi. La presenza di tali strutture implica una potenza di picco maggiore. Abbiamo inoltre una conferma indiretta dei risultati numerici tramite le misure spettrali. Rimuovendo la cavità ottica e focalizzando un laser esterno nel primo ondulatore si può passare alla cosiddetta configurazione in ``singolo passaggio''. Nel primo ondulatore, l'interazione con il laser esterno (``seed'') produce una modulazione nell'energia degli elettroni, la quale viene trasformata in separazione spaziale (``bunching''). Un'analisi di Fourier del fascio di elettroni mostra componenti a tutte le armoniche (pari e dispari), per cui gli elettroni sono in grado di emettere a qualsiasi armonica nel secondo ondulatore. In questa configurazione la prima parte del lavoro di tesi è stata il design della linea e lo studio numerico dei risultati attesi. A questo studio preliminare è seguita l'installazione dell'esperimento, a partire dall'alloggiamento e la messa in funzione del laser esterno (Ti:Sapphire, lambda = 796 nm) fino alla realizzazione del sistema di sincronizzazione del seed con gli elettroni. Prima di ottenere la radiazione armonica coerente e poter confrontare le aspettative con i risultati sperimentali abbiamo dovuto dedicare molti turni di fisica di macchina al perfezionamento della sovrapposizione spaziale e temporale tra elettroni e laser esterno. La prima radiazione armonica coerente è stata ottenuta alla terza armonica (265 nm) del laser esterno. Dopo una prima caratterizzazione della sorgente, abbiamo introdotto un cristallo nonlineare per generare la seconda armonica del laser esterno e usare questa come seed. Attualmente il LEL di Elettra è in grado di produrre radiazione fino a 99.5 nm (la quarta armonica del seed) con la stessa stabilità della radiazione di sincrotrone (flutuazioni dell'ordine del %). Queste caratteristiche, insieme al numero di fotoni per impulso (~10^9) che supera di almeno due ordini di grandezza l'emissione di sincrotrone, permettono l'utilizzo della luce prodotta per esperimenti simili a quelli proposti per le sorgenti di quarta generazione. Riassumendo, la sorgente sviluppata durante la mia tesi è attualmente l'unica in grado di fornire luce coerente di durata variabile tra 100 fs e 1 ps con potenze dell'ordine del mega-Watt e polarizzazione variabile (lineare-circolare) in un ampia gamma spettrale nell'ultravioletto. Negli ultimi turni, questa radiazione è stata usata su due diversi tipi di esperimenti, uno in fase gassosa l'altro di stato solido. I risultati ottenuti dimostrano che la radiazione emessa può essere appetibile per gli utenti. Le prospettive sono estendere il range di lunghezze d'onda sotto i 100 nm e migliorare la tunabilità della sorgente.
XX Ciclo
1979
Boleat, Elizabeth Durrell. "Coherent control of electronic and vibrational wave packets using phase-locked optical pulses." Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1445323/.
Повний текст джерелаPawłowska, Monika [Verfasser]. "Shaped femtosecond pulses for coherent control transported via an optical fiber in the nonlinear regime / Monika Pawłowska." Berlin : Freie Universität Berlin, 2012. http://d-nb.info/1027815545/34.
Повний текст джерелаHarper, Matthew R. "Control and measurement of ultrafast pulses for pump/probe-based metrology." Thesis, St Andrews, 2007. http://hdl.handle.net/10023/430.
Повний текст джерелаShokeen, Vishal. "Ultrafast magnetization dynamics in ferromagnetic transition metals : a study of spins thermalization induced by femtosecond optical pulses and of coupled oscillators excited by picosecond acoustic pulses." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE035.
Повний текст джерелаIn this thesis, we have investigated the magnetization dynamics at picosecond and femtosecond time scale using time resolved magneto-optical pump probe technique. At picosecond time scale, the magnetization precession is induced by ultrafast acoustic pulses in a three layered structure with two ferromagnetic layers separated by varying thickness of metallic spacer layer (Ni/Au/Py). The magnetization precession dynamics of the Ni layer is modified due to the interlayer exchange interaction with the Py layer and the synchronized precession of the coupied ferromagnetic layers has been observed. At the timescale of 50fs, coherent magneto-optical, non-thermal, thermal and relaxation dynamics of charges and spins in ferromagnetic transition metals (Ni, Co and Fe) is studied by using 11fs optical pulses in a very low perturbation regime. The spin orbit interaction and exchange interaction play a significant role in the demagnetization of the ferromagnetic metals induced by femtosecond pulses
Le, Dortz Jérémy. "Mise en phase active de fibres laser en régime femtoseconde par méthode interférométrique." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX071/document.
Повний текст джерелаFemtosecond fiber sources are used in a large number of applications (industrial, medical, fundamental physics) with a growing need in high energy pulses at high repetion rate. Although Ti: Saphirre technology provides energies up to PetaWatt, its repetion rate is low (up to 1 Hz). An alternative is to use an amplified fiber. However, the extractable energy of a single fiber is intrinsically limited.A solution is then to combine several fibers (up to 10 000 fibers for particle acceleration). Coherent beam combining of fibers with an interferometric method (with a record of 64 fibers combined in the cw regime) has proven to be an excellent candidate to combine a large number of fibers.The XCAN project, a collaboration between l'Ecole polytechnique and Thales, aims to realize a demonstrator of 61 fibers coherently combined in the femtosecond regime.The works presented in this thesis are part of this project.In order to study the hard points inherent to the femtosecond regime and to free from the amplification issues, the interferometric method has been implemented on a passive demonstrator, meaning without amplification, of 19 fibers. Once the interferometric method validated, it has been succesfully tested on the amplified XCAN demonstrator.We present also the works done to increase a key parameter of beam combining systems : the combining efficiency. To do this, we have realized a beam shaping of the fiber array output beams. This beam shaping, gaussian to super-gaussian, is done with two arrays of phase plates. The aspherical profiles calculation is described. In order to validate our simulations we have tested the phase plates on the passive demonstrator by getting an increase of 14 %.The works presented in this manuscript are the first steps towards a new massively parallel laser architecture, able to provide both high peak power and high average power
Voratovic, Dayen Chad. "Generation and Detection of Coherent Pulse Trains in Periodically Poled Lithium Niobate Through Optical Parametric Amplification." University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1324406162.
Повний текст джерелаMcCracken, Richard A. "Femtosecond optical parametric oscillator frequency combs for coherent pulse synthesis." Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2702.
Повний текст джерелаDunning, Alexander. "Coherent atomic manipulation and cooling using composite optical pulse sequences." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/364735/.
Повний текст джерелаКниги з теми "Coherent optical pulses"
S, Chesnokov Sergei, Kandidov V. P, Koroteev N. I, Scientific Council for Coherent and Nonlinear Optics (Rossiĭskai͡a︡ akademii͡a︡ nauk), and Russia (Federation). Ministerstvo nauki i tekhnologiĭ., eds. ICONO '98: Nonlinear optical phenomena and coherent optics in information technologies : 29 June-3 July 1998, Moscow, Russia. Bellingham, Wash., USA: SPIE, 1999.
Знайти повний текст джерелаICONO, 2005 (2005 Saint Petersburg Russia). ICONO 2005: Ultrafast phenomena and physics of superintense laser fields, quantum and atom optics, engineering of quantum information : 11-15 May 2005, St. Petersburg, Russia. Bellingham, Wash: SPIE, 2006.
Знайти повний текст джерелаManipulating quantum structures using laser pulses. Cambridge, UK: Cambridge University Press, 2011.
Знайти повний текст джерелаN, Drabovich Konstantin, Akadėmii͡a︡ navuk Belarusi, and Society of Photo-optical Instrumentation Engineers., eds. ICONO 2001: Nonlinear optical phenomena and Nonlinear dynamics of optical systems : 26 June-1 July 2001, Minsk, Belarus. Bellingham, Washington: SPIE, 2002.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Analysis of technology for solid state coherent lidar: Contract no. NAS8-38609 ... contract period: September 20, 1996 - June 30, 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Analysis of technology for solid state coherent lidar: Contract no. NAS8-38609 ... contract period: September 20, 1996 - June 30, 1997. [Washington, DC: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаYu, Chikishev Andrey, Natsyi͡a︡nalʹnai͡a︡ akadėmii͡a︡ navuk Belarusi, Belaruski rėspublikanski fond fundamentalʹnykh dasledavanni͡a︡ŭ., and Society of Photo-optical Instrumentation Engineers., eds. ICONO 2001: Novel trends in nonlinear laser spectroscopy and optical diagnostics and Lasers in chemistry, biophysics, and biomedicine : 26 June-1 July, 2001, Minsk, Belarus. Bellingham, Wash., USA: SPIE, 2002.
Знайти повний текст джерелаN, Bagayev S., Natsyi͡a︡nalʹnai͡a︡ akadėmii͡a︡ navuk Belarusi, and Belarusian Republic Foundation for Fundamental Research., eds. ICONO 2001: Quantum and atomic optics, high precision measurements in optics, and optical information processing, transmission, and storage : 26 June-1 July 2001, Minsk, Belarus. Bellingham, Wash: SPIE, 2002.
Знайти повний текст джерелаM, Gordienko Vyatcheslav, Afanasʹev Anatoly A, Shuvalov Vladimir V, Natsyi͡a︡nalʹnai͡a︡ akadėmii͡a︡ navuk Belarusi, Belaruski rėspublikanski fond fundamentalʹnykh dasledavanni͡a︡ŭ., and Society of Photo-optical Instrumentation Engineers., eds. ICONO 2001: Ultrafast phenomena and strong laser fields : 26 June-1 July 2001, Minsk, Belarus. Bellingham, Wash., USA: SPIE, 2002.
Знайти повний текст джерелаV, Andreev A., Natsyi͡a︡nalʹnai͡a︡ akadėmii͡a︡ navuk Belarusi, Belaruski rėspublikanski fond fundamentalʹnykh dasledavanni͡a︡ŭ., and Society of Photo-optical Instrumentation Engineers., eds. ICONO 2001: Fundamental aspects of laser-matter interaction and Physics of nanostructures : 26 June-1 July 2001, Minsk, Belarus. Bellingham, Wash., USA: SPIE, 2002.
Знайти повний текст джерелаЧастини книг з теми "Coherent optical pulses"
Kobayashi, Yohei, Dai Yoshitomi, Masayuki Kakehata, Hideyuki Takada, and Kenji Torizuka. "Coherent Synthesis of Multicolor Femtosecond Pulses." In Springer Series in Optical Sciences, 95–101. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49119-6_12.
Повний текст джерелаFernández-Rossier, J., D. Porras, C. Tejedor, and R. Merlin. "Coherent Response to Optical Pulses in Quantum Wells." In Optical Properties of Semiconductor Nanostructures, 143–57. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4158-1_15.
Повний текст джерелаSokolov, A. V. "Single-Cycle Optical Pulses Produced by Coherent Molecular Oscillations." In Springer Series in OPTICAL SCIENCES, 37–48. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-34756-1_3.
Повний текст джерелаSekikawa, Taro. "Gratings for Ultrashort Coherent Pulses in the Extreme Ultraviolet." In Springer Series in Optical Sciences, 175–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47443-3_9.
Повний текст джерелаIshikawa, Kenichi L., and Kiyoshi Ueda. "Temporal Coherent Control of Two-Photon Ionization by a Sequence of Ultrashort Laser Pulses." In Springer Series in Optical Sciences, 377–85. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-49119-6_50.
Повний текст джерелаJedrkiewicz, Ottavia, Matteo Clerici, Daniele Faccio, and Paolo Di Trapani. "Generation and control of coherent conical pulses in seeded optical parametric amplification." In Springer Series in Chemical Physics, 825–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_268.
Повний текст джерелаHaner, M., and W. S. Warren. "Synthesis and Applications of Arbitrarily Shaped Optical Pulses in Coherent Spectroscopy and Nonlinear Pulse Propagation." In Ultrafast Phenomena VI, 139–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83644-2_40.
Повний текст джерелаMaimistov, A. I., and A. M. Basharov. "Coherent Pulse Propagation." In Nonlinear Optical Waves, 255–302. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2448-7_5.
Повний текст джерелаMatsubara, Eiichi, Taro Sekikawa, and Mikio Yamashita. "Generation of Ultrashort Optical Pulses Using Multiple Coherent Anti-Stokes Raman Scattering Signals in a Crystal and Observation of the Raman Phase." In Springer Series in Chemical Physics, 828–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95946-5_269.
Повний текст джерелаHache, F., and G. M. Gale. "Generation of Highly Coherent Tunable Femtosecond Pulses at 82 MHz in the Visible and Mid-Infrared Using a Blue-Pumped Optical Parametric Oscillator." In Ultrafast Processes in Spectroscopy, 369–72. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-5897-2_83.
Повний текст джерелаТези доповідей конференцій з теми "Coherent optical pulses"
Wilson, William L., Amy E. Frost, John T. Fourkas, G. Wäckerle, and M. D. Fayer. "Picosecond phase-coherent optical pulses." In AIP Conference Proceedings Volume 172. AIP, 1988. http://dx.doi.org/10.1063/1.37470.
Повний текст джерелаBelenov, Edward M., and Peter P. Vasil’ev. "Coherent Effects in Ultrashort Pulse Generation by a Semiconductor Injection Laser." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.tdsls57.
Повний текст джерелаBahrdt, J., U. Flechsig, W. Grizzoli, and F. Siewert. "Propagation of coherent light pulses with PHASE." In SPIE Optical Engineering + Applications, edited by Manuel Sanchez del Rio and Oleg Chubar. SPIE, 2014. http://dx.doi.org/10.1117/12.2065228.
Повний текст джерелаLotshaw, William T., Dale McMorrow, and Geraldine A. Kenney-Wallace. "Role of coherent coupling in the femtosecond time-resolved optical Kerr effect in simple liquids." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.thr4.
Повний текст джерелаJin, Y., S. M. Cristescu, F. J. M. Harren, and J. Mandon. "Tunable High Repetition Rates Femtosecond Pulses from an Optical Parametric Oscillator." In Mid-Infrared Coherent Sources. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/mics.2016.ms3c.7.
Повний текст джерелаSweetser, John, Thomas J. Dunn, and Ian A. Walmsley. "Coherent amplification without inversion of femtosecond optical pulses." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.tha.3.
Повний текст джерелаLynch, Stephen A., P. Thornton Greenland, Alexander F. G. van der Meer, Benedict N. Murdin, Carl R. Pidgeon, Britta Redlich, Nguyen Q. Vinh, and Gabriel Aeppli. "Quantum control in silicon using coherent THz pulses." In SPIE Optical Engineering + Applications, edited by Manijeh Razeghi, Alexei N. Baranov, Henry O. Everitt, John M. Zavada, and Tariq Manzur. SPIE, 2012. http://dx.doi.org/10.1117/12.928571.
Повний текст джерелаSaastamoinen, Toni, and Hanna Lajunen. "Non-uniformly correlated partially coherent beams and pulses." In SPIE Optical Engineering + Applications, edited by Andrew Forbes and Todd E. Lizotte. SPIE, 2014. http://dx.doi.org/10.1117/12.2061965.
Повний текст джерелаNuss, M. C., and D. H. Auston. "Propagation of Coherent Phonon Polaritons in LiTaO3 Measured By Fir-Cerenkov Pulses." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/up.1986.tub4.
Повний текст джерелаFischer, Kevin A., Rahul Trivedi, Vinay Ramasesh, Irfan Siddiqi, and Jelena Vučković. "Scattering of Coherent Pulses from Quantum-Optical Systems." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_qels.2018.fm3h.4.
Повний текст джерелаЗвіти організацій з теми "Coherent optical pulses"
Bharadwaj, V. Ultrashort Optical Pulses in the Linac Coherent Light Source. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/839696.
Повний текст джерелаTatchyn, R. Short-Pulse Limits in Optical Instrumentation Design for the SLAC Linac Coherent Light Source (LCLS). Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/839699.
Повний текст джерелаBabbitt, W. R., Mingzhen Tian, and Kelvin Wagner. Applications of Optical Coherent Transient Technology to Pulse Shaping, Spectral Filtering, Arbitrary Waveform Generation and RF Beamforming. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada452139.
Повний текст джерелаPerdigão, Rui A. P. New Horizons of Predictability in Complex Dynamical Systems: From Fundamental Physics to Climate and Society. Meteoceanics, October 2021. http://dx.doi.org/10.46337/211021.
Повний текст джерела