Добірка наукової літератури з теми "Cohérence Raman"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cohérence Raman".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cohérence Raman"
Rigneault, Hervé, and Sandro Heuke. "Comprendre les processus raman cohérents." Photoniques, no. 121 (2023): 52–56. http://dx.doi.org/10.1051/photon/202312152.
Повний текст джерелаHERLIN, N., M. LEFEBVRE, M. PÉALAT, and M. PARLIER. "SPECTROSCOPIE RAMAN COHÉRENTE DANS UN RÉACTEUR CVD." Le Journal de Physique Colloques 50, no. C5 (May 1989): C5–13—C5–13. http://dx.doi.org/10.1051/jphyscol:1989503.
Повний текст джерелаScherman, Michael, Joanna Barros, Rosa Santagata, Alexandre Bresson, and Brigitte Attal-Tretout. "Thermométrie Raman cohérente pour l'étude de la combustion." Photoniques, no. 96 (May 2019): 23–29. http://dx.doi.org/10.1051/photon/20199623.
Повний текст джерелаRigneault, Hervé, and Romain Appay. "L’histologie Raman stimulée." Photoniques, no. 123 (2023): 40–44. http://dx.doi.org/10.1051/photon/202312340.
Повний текст джерелаChaussard, F., N. Le Cong, B. Lavorel, V. Renard, O. Faucher, H. Tran, P. Joubert, and L. Bonamy. "Spectroscopie Raman Anti-Stokes Cohérente femtoseconde (DRASC – fs) : expériences et modélisation dans le cas du mélange H2 – N2 à basse pression." Journal de Physique IV (Proceedings) 135, no. 1 (October 2006): 155–56. http://dx.doi.org/10.1051/jp4:2006135038.
Повний текст джерелаOuazzany, Y., та J. P. Boquillon. "Spectre a Haute Résolution de la Branche Q de la Bande ν 1 de CO 2 par Diffusion Raman Anti-Stokes Cohérente (CARS)". Europhysics Letters (EPL) 4, № 4 (15 серпня 1987): 421–25. http://dx.doi.org/10.1209/0295-5075/4/4/007.
Повний текст джерелаДисертації з теми "Cohérence Raman"
Ignacchiti, Jim. "Contrôle et caractérisation de la cohérence Raman induite par bruit quantique dans des fibres creuses remplies de gaz". Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0056.
Повний текст джерелаThis thesis addresses the design, implementation, and use of an experimental and numerical simulation platform aimed at exciting and amplifying Raman coherence in a controlled manner from quantum noise. The long term objective is to explore stimulated Raman scattering in hollow-core fiber as a means to generate coherent optical frequency combs with a multi-octave spectral width, thus creating a tool for generating arbitrary optical wave functions, such as attosecond pulses, or mode-locked lasers. The principle is based on the excitation of a gas contained in a hollow-core photonic crystal fiber (HCPCF) by ultrashort laser pulses, in such a way that only one of the coherent and independent spatiotemporal modes of the spontaneous Stokes radiation is excited and amplified. This innovative approach ensures phase modulation of the excitation laser field at very high frequencies without phase noise. It differs from existing techniques, such as molecular modulation, by eliminating the need for a second laser. However, this method requires a single-mode optical guide and exceptionally high Raman gain. In this context, this work focuses then on the generation and measurement of the intra and inter-pulse coherence of the Raman comb to evaluate its potential for the aforementioned applications. To this end, a theoretical model of stimulated Raman scattering in the impulsive regime was developed, highlighting the interest of the transient regime, which amplifies the Stokes field in a single temporal mode. Numerical simulations then detailed the dynamics of the Stokes field through the Raman medium, taking into account factors such as laser depletion. Furthermore, a specific hybrid hollow-core optical fiber was developed, offering low linear losses (a few dB/km at 1030 nm) and exceptional single-mode guidance (MPI up to −47 dB), thus ensuring the spatial coherence of the Raman comb. Two experimental setups were then realized to examine the comb’s coherence, starting with the intra-pulse aspect. An infrared laser adjustable in pulse duration, energy, and repetition rate was coupled into the hydrogen-filled fiber to generate the comb, then analyzed at the output with a Mach-Zehnder interferometer with high temporal resolution (∼ fs) and wide dynamic range (approximately 50 ps). The results showed that working in the range of 3 − 10 ps and 1 − 10 µJ minimizes parasitic effects such as the Kerr effect, and the mutual coherence is close to unity for all first-order Stokes and anti-Stokes lines, as confirmed by numerical calculations. The study of inter-pulse coherence revealed a complex behavior for pulses spaced less than 1 ns apart and a decrease in coherence corresponding to the coherence relaxation time (∼ 2 ns) for longer delays between pulses. These results highlight the importance of controlling the energy and delay of pulses to maintain high coherence and suggest that excitation lasers with repetition rates around 400 MHz or more can generate mode-locked lasers based on our approach. In conclusion, the advances made during this thesis on the coherence properties of frequency combs demonstrate the potential of stimulated Raman scattering in HCPCFs for optical wave synthesis and pave the way for other applications such as frequency conversion for quantum optics, optical trapping, and molecular cooling
Saoudi, Saada. "Étude de la cohérence Raman entre les niveaux métastables (1s₅[³P₂] et (1S₃[³P0] ) du néon : effets des collisions atomiques." Paris 11, 1986. http://www.theses.fr/1986PA112168.
Повний текст джерелаLouchet, Anne. "Manipulation optique d'une cohérence de spin nucléaire dans l'ion thulium en matrice cristalline." Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00345345.
Повний текст джерелаDavis, Arthur. "Tomographie par cohérence optique confocale en ligne multimodale pour le diagnostic non invasif des cancers cutanés." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLO004/document.
Повний текст джерелаSkin cancer is a major public health issue. Among all types of cancer, skin cancer has the highest prevalence rate and the number of cases seems to be steadily increasing. Currently, the gold standard of skin cancer diagnosis requires a sample of suspicious tissue, called a biopsy, removed after a simple visual inspection of the patient's skin. Consequently, almost 60 % of biopsies result in benign diagnoses, and approximately 20 % of all skin cancers are missed.The research presented in this thesis revolves around the development of a line-field confocal optical coherence tomography (LC-OCT) device capable of producing non-invasive in vivo images similar in quality to histological cuts. The designed prototype operates at a center wavelength around 800 nm with a spectral width of approximately 150 nm. It has been applied to in vivo skin imaging with an almost isotropic spatial resolution of about 1 µm and a depth penetration reaching 400 µm. This device could thus be used to improve the efficiency of skin cancer diagnosis by limiting the number of undiagnosed cases and the number of unnecessary biopsies.We then present a LC-OCT device system operating in two spectral bands centered around 770 nm and 1250 nm. The first band produces high resolution images (1.3 µm x 1.2 µm, lateral x axial) while the second provides enhanced penetration depth (700 µm). By merging the images acquired in the two bands it has been possible to produce images with both high resolution and high penetration. Moreover, acquiring images of a sample in two different spectral bands can give, to a certain extent, information on the spectral properties of the sample.Lastly, we present a proof-of-concept LC-OCT prototype coupled together with a Raman microscope, as well as some application examples. Raman microscopy is a spectroscopic method capable of identifying molecules present in a sample and thus measuring the "fingerprint" of a sample. This modality could then provide complementary information to the morphological images provided by LC-OCT about the biomolecular composition of the sample
Perrot, Jean-Luc. "Explorations optiques multimodales et multiéchelles non invasives appliquées au revêtement cutanéomuqueux , étendues à l'appareil oculaire antérieur." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSES010/document.
Повний текст джерелаAfter a brief introduction to the history of non-invasive dermatological imaging, this work is divided into 3 parts. 1) Presentation of a project for the development of a low-cost miniaturized optical coherence tomograph to allow dissemination of this technique to dermatologists practicing outside hospitals. This is an ANR project: DOCT-VCSEL Portable Optical Coherence Tomography with MEMS-VCSEL swept-sources for skin analysis ANR 2015 / Societal Challenge "Life, Health and Welfare" Axis 13 “Technologies for Health" 2) Presentation of a project whose goal is the identification of cancer skin lesions by means of a new high definition OCT developed by the company DAMAE, resulting from the Higher Institute of Optics of Palaiseau. It is a device that will initially be reserved for centers of excellence in dermatological imaging. 3) Presentation of 52 publications related to skin imaging, in which I participated, and referenced in the international databases as of December 31, 2016. This work covers all modern dermatological non-invasive imaging and addresses Subjects that had never been studied in this way. Notably the mucous membranes and the anterior ocular apparatus but also the identification by confocal microscopy of the surgical margins or the association confocal microscopy Raman spectrometry
Louot, Christophe. "Sources de supercontinuum pour la microspectroscopie Raman cohérente large-bande." Thesis, Limoges, 2018. http://www.theses.fr/2018LIMO0015/document.
Повний текст джерелаCoherent Raman microspectroscopy (CARS) is an optical method used to identify molecular bonds in a sample in order to analyze and determine its complete composition. It requires the simultaneous excitation of the sample by two waves (the pump wave and the Stokes wave) in order to induce resonant vibration of the bond to be detected. For multiple bonds analysis (broadband coherent Raman microspectroscopy our Multiplex-CARS), the monochromatic Stokes wave must be replaced by a broadband beam (supercontinuum). The aim of this thesis was to design supercontinuum sources optimized for Multiplex-CARS application, in particular in terms of spectral bandwidth and spectral power density. Supercontinuum generation was investigated in three different optical fibers: (i) a microstructured single mode fiber with a large Yb doped core in which the input beam was re-amplified all along its propagation; (ii) a conventional singlemode fiber pumped in the normal dispersion regime in which spectral broadening was achieved by means of Raman gain saturation; (iii) a conventional graded-index multimode fiber in which the beam spectrally broadened by Raman gain saturation at very high power also experienced spatial self-cleaning by Kerr effect, resulting in a high brillance output beam with an,intensity profile close to that of the fundamental mode. A complete spectrotemporal study is achieved for each of these three sources
Capitaine, Erwan. "Nouveaux procédés de microspectroscopie Raman cohérent à bande ultralarge." Thesis, Limoges, 2017. http://www.theses.fr/2017LIMO0114/document.
Повний текст джерелаThe spectroscopy technique based on spontanée Raman Stokes scattering is a standard process used in many fields spanning from thermodynamic and medicine, to materials sciences. An inelastic energy exchange permits to determinate the frequency of the molecular vibrations in an object. One can identify the molecules and thus, can characterize the object of study in a label-free way. Nevertheless, this method is afflicted with faults. Beside the presence of fluorecence that can drown the Raman answer, the main drawback is the long exposition time required. In the case of biological sample, this can prohibit the use of spontaneous Raman scattering for microspectroscopy measures: the spectral mapping of microscopic objects. To avoid this problem, new techniques have been developed. It is the case of Coherent anti-Stokes Raman scattering (CARS) spectroscopy. Due to its coherence and its directivity, the anti-Stokes signal has an intensity 105 to 106 times greater than the spontaneous Raman scattering one. The exposition time is then reduced to a tolerable level for biological objects during microspectroscopy measures. Moreover, the anti-Stokes characteristic of the signal prevents the fluorescence contribution. However, a major fault still limits the use of this technique: the nonresonant background. This phenomenon can diminish, even overwhelm the resonant contribution carrying the information. This thesis permitted the development of CARS approaches that allow the reduction of the nonresonant background. To do so, a multiplex CARS (M-CARS) spectroscopy apparatus in a forward configuration has been built. Its abilities are illustrated with spectral measures of mineral, vegetal and biological samples. Based on this system, it has been established an innovative method that can discriminate the resonant signal from the nonresonant one thanks to a static electric field. It has been also been demonstrated the development of a process that has allowed the first M-CARS microspectroscopy measure of a biological sample in a contrapropagative configuration. This setup limits the collect of the signal to the object of study, avoiding the acquisition of the resonant and resonant signals coming from the solvent, responsible for the major part of non resonant background during a CARS measure in a forward configuration
Djaker-Oudjhara, Nadia. "Microscopie par diffusion cohérente Raman CARS : application à l'imagerie des milieux biologiques." Aix-Marseille 3, 2006. http://www.theses.fr/2006AIX30038.
Повний текст джерелаCoherent anti-Stokes Raman scattering microscopy (CARS) is a new approach for chemical imaging of molecular systems, with high sensitivity, high spatial resolution, and three dimensional sectioning capability, without using fluorophores that are prone to photobleaching. This technique permits to map selectively molecular species, by using vibrational properties of their chemical bounds. CARS is described by a four wave-mixing process, where the signal intensity depends nonlinearly on the incident intensities, and generated in a direction determined by the phase-matching condition. The approach of this work was to realize a CARS microscope, allowing biological systems imaging without any labelling or staining. Studies were undertaken showing the potentialities of this tool, as well as its characterization in the spatial and spectral domain
El, bassri Farid. "Sources lasers déclenchées nanosecondes : Applications à la spectroscopie Raman cohérente sous champ électrique." Thesis, Limoges, 2014. http://www.theses.fr/2014LIMO0060/document.
Повний текст джерелаThanks to their compactness, robustness and low cost, pulsed nanosecond microlasers are particularly attractive sources for different detection and analysis systems, particularly flow cytometers or devices for CARS (Coherent Anti Raman Stokes Scattering) spectroscopy. However, these applications require reduced time jitter and increased repetition rate. The first part of this thesis proposes novel solutions to achieve the required performance from passively Q-switched microlasers, which are based on an hybrid coupled-cavity and intensitymodulated pump wave. A repetition rate greater than 30 kHz with jitter remaining lower than 200 ns is reached. Pulsed fiber microlasers operating by gain switching are also studied, showing that pulses with low timing jitter, at a repetition rate of more than 2 MHz can be obtained. The last part is devoted to the development and the implementation of a new system of CARS spectroscopy assisted by a high-voltage electrical stimulation. This device, based on an amplified microlaser, allows to substract the non-resonant background noise in the measurements. Thus, a fine spectroscopic analysis of the response of different environments of interest in continuous or pulsed field can be achieved. It may lead to a new method for field microdosimetry. Various applications, including granulometry at the micro or nanometric scale and the identification of markers for biology, are shown
Canonge, Rafael. "Imagerie moléculaire 3D quantitative des tissus en utilisant la microscopie Raman cohérente sans marquage." Thesis, Ecole centrale de Marseille, 2017. http://www.theses.fr/2017ECDM0010/document.
Повний текст джерелаThis thesis focuses on multiphotonic microscopy techniques development and use in order to image human biological samples. A multiphotonic imaging setup using label-free nonlinear contrasts mechanisms such as two-photons fluorescence, second harmonic generation, or stimulated Raman effect (CARS or SRS) has been designed and developped during this PhD, and I present the experimental work in two main research topics.In a first part, we compare label-free 3D imaging with classic histological imaging using colorimetric labels in human digestive system. We show that multiphotonic technics allow to reconstruct the organization and discern the molecular compounds inside the tissues, in order to get a caratérization of the cancerous tumors developpement.The second part is related to the application of our multimodal setup to the quantitative study of real active molecular compounds real time penetration into in vivo human skin. We show that multiphotonic microscopy make possible to mesure active molecules in depth 3D concentration in the skin in order to understand transcutaneous diffusion mechanisms in cosmetic and pharmacological applications
Частини книг з теми "Cohérence Raman"
RIGNEAULT, Hervé, and Julien DUBOISSET. "Imagerie Raman cohérente." In Spectroscopies vibrationnelles, 273–88. Editions des archives contemporaines, 2020. http://dx.doi.org/10.17184/eac.4204.
Повний текст джерела