Статті в журналах з теми "Coding theor"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Coding theor.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Coding theor".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Fimmel, Elena, Christian J. Michel, and Lutz Strüngmann. "n -Nucleotide circular codes in graph theory." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2063 (March 13, 2016): 20150058. http://dx.doi.org/10.1098/rsta.2015.0058.

Повний текст джерела
Анотація:
The circular code theory proposes that genes are constituted of two trinucleotide codes: the classical genetic code with 61 trinucleotides for coding the 20 amino acids (except the three stop codons { TAA , TAG , TGA }) and a circular code based on 20 trinucleotides for retrieving, maintaining and synchronizing the reading frame. It relies on two main results: the identification of a maximal C 3 self-complementary trinucleotide circular code X in genes of bacteria, eukaryotes, plasmids and viruses (Michel 2015 J. Theor. Biol. 380, 156–177. ( doi:10.1016/j.jtbi.2015.04.009 ); Arquès & Michel 1996 J. Theor. Biol. 182, 45–58. ( doi:10.1006/jtbi.1996.0142 )) and the finding of X circular code motifs in tRNAs and rRNAs, in particular in the ribosome decoding centre (Michel 2012 Comput. Biol. Chem. 37, 24–37. ( doi:10.1016/j.compbiolchem.2011.10.002 ); El Soufi & Michel 2014 Comput. Biol. Chem. 52, 9–17. ( doi:10.1016/j.compbiolchem.2014.08.001 )). The univerally conserved nucleotides A1492 and A1493 and the conserved nucleotide G530 are included in X circular code motifs. Recently, dinucleotide circular codes were also investigated (Michel & Pirillo 2013 ISRN Biomath. 2013, 538631. ( doi:10.1155/2013/538631 ); Fimmel et al. 2015 J. Theor. Biol. 386, 159–165. ( doi:10.1016/j.jtbi.2015.08.034 )). As the genetic motifs of different lengths are ubiquitous in genes and genomes, we introduce a new approach based on graph theory to study in full generality n -nucleotide circular codes X , i.e. of length 2 (dinucleotide), 3 (trinucleotide), 4 (tetranucleotide), etc. Indeed, we prove that an n -nucleotide code X is circular if and only if the corresponding graph is acyclic. Moreover, the maximal length of a path in corresponds to the window of nucleotides in a sequence for detecting the correct reading frame. Finally, the graph theory of tournaments is applied to the study of dinucleotide circular codes. It has full equivalence between the combinatorics theory (Michel & Pirillo 2013 ISRN Biomath. 2013, 538631. ( doi:10.1155/2013/538631 )) and the group theory (Fimmel et al. 2015 J. Theor. Biol. 386, 159–165. ( doi:10.1016/j.jtbi.2015.08.034 )) of dinucleotide circular codes while its mathematical approach is simpler.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Stine, Robert A. "Coding theory." Wiley Interdisciplinary Reviews: Computational Statistics 1, no. 3 (November 2009): 261–70. http://dx.doi.org/10.1002/wics.42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Greferath, Marcus, Camilla Hollanti, and Joachim Rosenthal. "Contemporary Coding Theory." Oberwolfach Reports 16, no. 1 (February 26, 2020): 773–840. http://dx.doi.org/10.4171/owr/2019/13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

SAKATA, Shojiro. "Algebraic Coding Theory." IEICE ESS Fundamentals Review 1, no. 3 (2008): 3_44–3_57. http://dx.doi.org/10.1587/essfr.1.3_44.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

van Lint, J. H. "Coding theory introduction." IEEE Transactions on Information Theory 34, no. 5 (September 1988): 1274–75. http://dx.doi.org/10.1109/tit.1988.8862503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sokyska, Olha. "PROSODIC ORGANISATION OF REFUSAL UTTERANCES: THEIR CORRECT CODING, DECODING AND ACTUALISATION IN ENGLISH DIALOGUE SPEECH." Naukovì zapiski Nacìonalʹnogo unìversitetu «Ostrozʹka akademìâ». Serìâ «Fìlologìâ» 1, no. 10(78) (February 27, 2020): 198–202. http://dx.doi.org/10.25264/2519-2558-2020-10(78)-198-202.

Повний текст джерела
Анотація:
The article focuses on the specificity of correct coding and decoding of refusal utterances in English dialogue speech and their intonation patterns taking full account of the importance of a communicative context in which the utterances occur. The author states that the communicative context to be considered while perceiving the refusal intonation patterns includes the following complex of factors: the communicative situation (formal, informal), the relation of speaker’s social status to the recipient’s status (higher, equal, and lower), the explicit or implicit form of the refusal, the speaker’s socio-cultural level (high. mid, low), emotional-and-pragmatic potential of the utterance (high, mid, low) as well as the class of reasons for the refusal utterances generation “I do not want to”, “I cannot”, “I can but I do not want to”, “I want but I cannot”). In this paper the author studies the suprasegmental level means contributing to correct coding and decoding of the utterance information and the speaker’s emotional state and his/her pragmatic intention. 70 students of Igor Sikorsky Kyiv Polytechnic Institute aged 18-21 took part in the experiment. The author reports the results of the study of difficulties experienced by learners while mastering intonation patterns of English refusal utterances. The results of the research prove that intonation plays the leading role in correct encoding and decoding of refusal utterances’ meaning.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

CHEN, CHEN, YING MA, LEI LEI, MOHAMMAD GAREEB, and KAN JIANG. "RESONANCE BETWEEN SELF-SIMILAR SETS AND THEIR UNIVOQUE SETS." Fractals 29, no. 05 (June 18, 2021): 2150111. http://dx.doi.org/10.1142/s0218348x21501115.

Повний текст джерела
Анотація:
Let [Formula: see text] be a self-similar set in [Formula: see text]. Generally, if the iterated function system (IFS) of [Formula: see text] has some overlaps, then some points in [Formula: see text] may have multiple codings. If an [Formula: see text] has a unique coding, then we call [Formula: see text] a univoque point. We denote by [Formula: see text] (univoque set) the set of points in [Formula: see text] having unique codings. In this paper, we shall consider the following natural question: if two self-similar sets are bi-Lipschitz equivalent, then are their associated univoque sets also bi-Lipschitz equivalent. We give a class of self-similar sets with overlaps, and answer the above question affirmatively.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bracken, Carl. "Pseudo quasi-3 designs and their applications to coding theory." Journal of Combinatorial Designs 17, no. 5 (September 2009): 411–18. http://dx.doi.org/10.1002/jcd.20208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chinen, Koji, and Toyokazu Hiramatsu. "Hyper-Kloosterman Sums and their Applications to the Coding Theory." Applicable Algebra in Engineering, Communication and Computing 12, no. 5 (October 1, 2001): 381–90. http://dx.doi.org/10.1007/s002000100080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sasaki, M. "Toward implementation of coding for quantum sources and channels." Quantum Information and Computation 4, no. 6&7 (December 2004): 526–36. http://dx.doi.org/10.26421/qic4.6-7-11.

Повний текст джерела
Анотація:
We review our experiment on quantum source and channel codings, the most fundamental operations in quantum info-communications. For both codings, entangling letter states is essential. Our model is based on the polarization-location coding, and a quasi-single photon linear optics implementation to entangle the polarization and location degrees of freedom. Using single-photon events in a subset of possible cases, we simulate quantum coding-decoding operations for nonorthogonal states under the quasi-pure state condition. In the quantum channel coding, we double the spatial bandwidth (number of optical paths), and demonstrate the information more than double can be transmitted. In the quantum source coding, we halve the spatial bandwidth to compress the data and decompress the original data with the high fidelity approaching the theoretical limit.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ohashi, Masayoshi, and Toshio Mizuno. "Introduction to Coding Theory(15); Application of Coding Theory Satellite Communication." Journal of the Institute of Television Engineers of Japan 45, no. 10 (1991): 1291–96. http://dx.doi.org/10.3169/itej1978.45.1291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Li, Zhaoping. "A Theory of the Visual Motion Coding in the Primary Visual Cortex." Neural Computation 8, no. 4 (May 1996): 705–30. http://dx.doi.org/10.1162/neco.1996.8.4.705.

Повний текст джерела
Анотація:
This paper demonstrates that much of visual motion coding in the primary visual cortex can be understood from a theory of efficient motion coding in a multiscale representation. The theory predicts that cortical cells can have a spectrum of directional indices, be tuned to different directions of motion, and have spatiotemporally separable or inseparable receptive fields (RF). The predictions also include the following correlations between motion coding and spatial, chromatic, and stereo codings: the preferred speed is greater when the cell receptive field size is larger, the color channel prefers lower speed than the luminance channel, and both the optimal speeds and the preferred directions of motion can be different for inputs from different eyes to the same neuron. These predictions agree with experimental observations. In addition, this theory makes predictions that have not been experimentally investigated systematically and provides a testing ground for an efficient multiscale coding framework. These predictions are as follows: (1) if nearby cortical cells of a given preferred orientation and scale prefer opposite directions of motion and have a quadrature RF phase relationship with each other, then they will have the same directional index, (2) a single neuron can have different optimal motion speeds for opposite motion directions of monocular stimuli, and (3) a neuron's ocular dominance may change with motion direction if the neuron prefers opposite directions for inputs from different eyes.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Puchinger, Sven, and Antonia Wachter-Zeh. "Fast operations on linearized polynomials and their applications in coding theory." Journal of Symbolic Computation 89 (November 2018): 194–215. http://dx.doi.org/10.1016/j.jsc.2017.11.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

SURER, PAUL. "Coding of substitution dynamical systems as shifts of finite type." Ergodic Theory and Dynamical Systems 36, no. 3 (November 6, 2014): 944–72. http://dx.doi.org/10.1017/etds.2014.80.

Повний текст джерела
Анотація:
We develop a theory that allows us to code dynamical systems induced by primitive substitutions continuously as shifts of finite type in many different ways. The well-known prefix–suffix coding turns out to correspond to one special case. We precisely analyse the basic properties of these codings (injectivity, coding of the periodic points, properties of the presentation graph, interaction with the shift map). A lot of examples illustrate the theory and show that, depending on the particular coding, several amazing effects may occur. The results give new insights into the theory of substitution dynamical systems and might serve as a powerful tool for further researches.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Baylis, John, D. G. Hoffman, D. A. Leonard, C. C. Lindner, K. T. Phelps, C. A. Rodger, and J. R. Wall. "Coding Theory: The Essentials." Mathematical Gazette 77, no. 480 (November 1993): 381. http://dx.doi.org/10.2307/3619794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Anderson, Ian, and J. H. van Lint. "Introduction to Coding Theory." Mathematical Gazette 77, no. 480 (November 1993): 383. http://dx.doi.org/10.2307/3619795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Baylis, John, Gareth A. Jones, and J. Mary Jones. "Information and Coding Theory." Mathematical Gazette 85, no. 503 (July 2001): 377. http://dx.doi.org/10.2307/3622076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Dawy, Zaher, Pavol Hanus, Johanna Weindl, Janis Dingel, and Faruck Morcos. "On genomic coding theory." European Transactions on Telecommunications 18, no. 8 (2007): 873–79. http://dx.doi.org/10.1002/ett.1201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Saito, Minoru. "Introduction to Coding Theory: (14) Application of Coding Theory to Computer Technology." Journal of the Institute of Television Engineers of Japan 45, no. 9 (1991): 1089–94. http://dx.doi.org/10.3169/itej1978.45.1089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Tanaka, Kunimaro. "Introduction to Coding Theory (14);Application of Coding Theory to Digital Audio." Journal of the Institute of Television Engineers of Japan 45, no. 7 (1991): 837–44. http://dx.doi.org/10.3169/itej1978.45.837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Yamada, Osamu. "Introduction to Coding Theory; (13) Applications of Coding Theory to Broadcasting Technology." Journal of the Institute of Television Engineers of Japan 45, no. 8 (1991): 970–80. http://dx.doi.org/10.3169/itej1978.45.970.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Xu, Jiuping, Rui Qiu, and Zhimiao Tao. "Rough Approximation Operators in Group Mapping and Their Applications to Coding Theory." Fundamenta Informaticae 145, no. 1 (May 3, 2016): 93–109. http://dx.doi.org/10.3233/fi-2016-1348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Raigorodskii, A. M. "Combinatorial Geometry and Coding Theory*." Fundamenta Informaticae 145, no. 3 (August 19, 2016): 359–69. http://dx.doi.org/10.3233/fi-2016-1365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

MATSUI, Hajime. "Algebraic Methods in Coding Theory." IEICE ESS Fundamentals Review 8, no. 3 (2015): 151–61. http://dx.doi.org/10.1587/essfr.8.151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Yeung, Raymond W., Shuo-Yen Robert Li, Ning Cai, and Zhen Zhang. "Network Coding Theory: Single Sources." Foundations and Trends® in Communications and Information Theory 2, no. 4 (2005): 241–329. http://dx.doi.org/10.1561/0100000007i.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Maruta, Tatsuya, Isao Kikumasa, and Hitoshi Kaneta. "Singleton arrays in coding theory." Bulletin of the Australian Mathematical Society 37, no. 3 (June 1988): 333–35. http://dx.doi.org/10.1017/s0004972700026940.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Savari, S. A. "Renewal theory and source coding." Proceedings of the IEEE 88, no. 11 (November 2000): 1692–702. http://dx.doi.org/10.1109/5.892705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Borst, Alexander, and Frédéric E. Theunissen. "Information theory and neural coding." Nature Neuroscience 2, no. 11 (November 1999): 947–57. http://dx.doi.org/10.1038/14731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Delsarte, P., and V. I. Levenshtein. "Association schemes and coding theory." IEEE Transactions on Information Theory 44, no. 6 (1998): 2477–504. http://dx.doi.org/10.1109/18.720545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ning Cai and T. Chan. "Theory of Secure Network Coding." Proceedings of the IEEE 99, no. 3 (March 2011): 421–37. http://dx.doi.org/10.1109/jproc.2010.2094592.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Dougherty, R., C. Freiling, and K. Zeger. "Network Coding and Matroid Theory." Proceedings of the IEEE 99, no. 3 (March 2011): 388–405. http://dx.doi.org/10.1109/jproc.2010.2095490.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Bassoli, Riccardo, Hugo Marques, Jonathan Rodriguez, Kenneth W. Shum, and Rahim Tafazolli. "Network Coding Theory: A Survey." IEEE Communications Surveys & Tutorials 15, no. 4 (2013): 1950–78. http://dx.doi.org/10.1109/surv.2013.013013.00104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ginosar, Yuval, and Aviram Rochas Moreno. "Crossed Products and Coding Theory." IEEE Transactions on Information Theory 65, no. 10 (October 2019): 6224–33. http://dx.doi.org/10.1109/tit.2019.2923652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Aarts, Emile H. L., and Peter J. M. van Laarhoven. "Local search in coding theory." Discrete Mathematics 106-107 (September 1992): 11–18. http://dx.doi.org/10.1016/0012-365x(92)90524-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Blake, Ian F. "A perspective on coding theory." Information Sciences 57-58 (September 1991): 111–18. http://dx.doi.org/10.1016/0020-0255(91)90070-b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Yeung, Raymond W. "Network coding theory: An introduction." Frontiers of Electrical and Electronic Engineering in China 5, no. 3 (August 5, 2010): 363–90. http://dx.doi.org/10.1007/s11460-010-0103-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Etzion, T., and L. Storme. "Galois geometries and coding theory." Designs, Codes and Cryptography 78, no. 1 (December 11, 2015): 311–50. http://dx.doi.org/10.1007/s10623-015-0156-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Clark, James M., and Allan Paivio. "Dual coding theory and education." Educational Psychology Review 3, no. 3 (September 1991): 149–210. http://dx.doi.org/10.1007/bf01320076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Guerreiro, Marinês. "Group algebras and coding theory." São Paulo Journal of Mathematical Sciences 10, no. 2 (May 9, 2016): 346–71. http://dx.doi.org/10.1007/s40863-016-0040-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Alon, Noga, and Andy Liu. "An Application of Set Theory to Coding Theory." Mathematics Magazine 62, no. 4 (October 1, 1989): 233. http://dx.doi.org/10.2307/2689761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Alon, Noca, and Andy Liu. "An Application of Set Theory to Coding Theory." Mathematics Magazine 62, no. 4 (October 1989): 233–37. http://dx.doi.org/10.1080/0025570x.1989.11977444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Konopka, Andrzej K. "Theory of degenerate coding and informational parameters of protein coding genes." Biochimie 67, no. 5 (May 1985): 455–68. http://dx.doi.org/10.1016/s0300-9084(85)80264-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Rebelatto, João Luiz, Bartolomeu F. Uchoa-Filho, Yonghui Li, and Branka Vucetic. "Multiuser Cooperative Diversity Through Network Coding Based on Classical Coding Theory." IEEE Transactions on Signal Processing 60, no. 2 (February 2012): 916–26. http://dx.doi.org/10.1109/tsp.2011.2174787.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Imai, Hideki. "Technical Guide. Introduction to Coding Theory (End); Future Trend of Coding." Journal of the Institute of Television Engineers of Japan 45, no. 11 (1991): 1423–31. http://dx.doi.org/10.3169/itej1978.45.1423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Massing, Natascha, Martina Wasmer, Christof Wolf, and Cornelia Zuell. "How Standardized is Occupational Coding? A Comparison of Results from Different Coding Agencies in Germany." Journal of Official Statistics 35, no. 1 (March 1, 2019): 167–87. http://dx.doi.org/10.2478/jos-2019-0008.

Повний текст джерела
Анотація:
Abstract As occupational data play a crucial part in many social and economic analyses, information on the reliability of these data and, in particular on the role of coding agencies, is important. Based on our review of previous research, we develop four hypotheses, which we test using occupation-coded data from the German General Social Survey and the field test data from the German Programme for the International Assessment of Adult Competencies. Because the same data were coded by several agencies, their coding results could be directly compared. As the surveys used different instruments, and interviewer training differed, the effects of these factors could also be evaluated. Our main findings are: the percentage of uncodeable responses is low (1.8–4.9%) but what is classified as “uncodeable” varies between coding agencies. Inter-agency coding reliability is relatively low κ ca. 0.5 at four-digit level, and codings sometimes differ systematically between agencies. The reliability of derived status scores is satisfactory (0.82–0.90). The previously reported negative relationship between answer length and coding reliability could be replicated and effects of interviewer training demonstrated. Finally, we discuss the importance of establishing common coding rules and present recommendations to overcome some of the problems in occupation coding.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

., Ayten Ozkan, and E. Mehmet Ozkan . "A Different Approach to Coding Theory." Journal of Applied Sciences 2, no. 11 (October 15, 2002): 1032–33. http://dx.doi.org/10.3923/jas.2002.1032.1033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Kashyap, Anil Kumar. "Planar Near-Rings And Coding Theory." IOSR Journal of Mathematics 4, no. 6 (2013): 77–80. http://dx.doi.org/10.9790/5728-0467780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Yan, Shan Jun. "Study on Shannon Source-Coding Theory." Applied Mechanics and Materials 687-691 (November 2014): 4158–62. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.4158.

Повний текст джерела
Анотація:
This pape analyzed the essence of Shannon source coding theory, and put forward the concept of utilization rate of source symbols, then by using this concept a new description for lossless source coding theory of Shannon was gave, from a new perspective the essence of Shannon source coding theory was identified.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Baylis, John, D. R. Hankerson, D. G. Hoffman, D. A. Leonard, C. C. Lindner, K. T. Phelps, C. A. Rodger, and J. R. Wall. "Coding Theory and Cryptography: The Essentials." Mathematical Gazette 85, no. 504 (November 2001): 561. http://dx.doi.org/10.2307/3621814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Bach, Eric, and Marcos Kiwi. "Threshold data structures and coding theory." Theoretical Computer Science 235, no. 1 (March 2000): 3–23. http://dx.doi.org/10.1016/s0304-3975(99)00180-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії