Добірка наукової літератури з теми "Codes de calcul chaînés"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Codes de calcul chaînés".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Codes de calcul chaînés"
Hassnaoui, Yonas. "Les codes de calcul de haute précision : quand le nucléaire met au pot commun." Revue Générale Nucléaire, no. 6 (November 2020): 38–41. http://dx.doi.org/10.1051/rgn/20206038.
Повний текст джерелаGandrille, P., J. P. Van Dorsselaere, and J. S. Lamy. "Simulation des accidents graves : scénarios et codes de calcul." Revue Générale Nucléaire, no. 1 (January 2010): 79–87. http://dx.doi.org/10.1051/rgn/20101079.
Повний текст джерелаRobinet, Jean-Claude, Axel Ducoulombier, and Frédéric Plas. "Etude qualitative de codes de calcul THM européens par intercomparaisons." Revue Française de Génie Civil 3, no. 7-8 (January 1999): 673–91. http://dx.doi.org/10.1080/12795119.1999.9692673.
Повний текст джерелаCome, B. "Le projet communautaire COSA : un exemple d’intercomparaison de codes de calcul géomécaniques pour le sel." Revue Française de Géotechnique, no. 40 (1987): 23–31. http://dx.doi.org/10.1051/geotech/1987040023.
Повний текст джерелаCôme, B. "La deuxième phase du projet communautaire COSA (intercomparaison de codes de calcul géomécaniques pour le sel)." Revue Française de Géotechnique, no. 51 (1990): 31–40. http://dx.doi.org/10.1051/geotech/1990051031.
Повний текст джерелаBlaise, P., and D. Bernard. "L’apport des maquettes critiques pour la physique des réacteurs de puissance : données nucléaires et codes de calcul." Revue Générale Nucléaire, no. 6 (November 2011): 23–28. http://dx.doi.org/10.1051/rgn/20116023.
Повний текст джерелаLahlou, K., and M. Lachemi. "Prédiction de la charge ultime de colonnes mixtes constituées de tubes remplis de béton à haute résistance : étude comparative des codes de calcul." Canadian Journal of Civil Engineering 26, no. 4 (August 1, 1999): 476–88. http://dx.doi.org/10.1139/l99-010.
Повний текст джерелаde Carlan, L., J. M. Bordy, and J. Gouriou. "Intercomparaison européenne d’utilisateurs de codes Monte Carlo pour le calcul d’incertitudes sur le kerma dans l’air déterminé dans un faisceau de césium-137." Radioprotection 46, no. 3 (July 2011): 305–15. http://dx.doi.org/10.1051/radiopro/2011106.
Повний текст джерелаBARBIER, F. "VALIDATION SUR MODÈLE RÉDUIT AU 1/100 DES CODES DE CALCUL DE PROPAGATION AU VOISINAGE D'UN SOL, AVEC ET SANS ÉCRAN, EN ACOUSTIQUE EXTÉRIEURE." Le Journal de Physique Colloques 51, no. C2 (February 1990): C2–1161—C2–1164. http://dx.doi.org/10.1051/jphyscol:19902272.
Повний текст джерелаSamb, Ndongo, Georges El-Saikaly, and Omar Chaallal. "Effet de la rigidité, du taux du polymère renforcé de fibres (PRF) et de l’armature transversale interne sur la contribution à la résistance à l’effort tranchant d’un renfort en PRF collé en surface : état de l’art et besoins en recherche." Canadian Journal of Civil Engineering 47, no. 11 (November 2020): 1276–96. http://dx.doi.org/10.1139/cjce-2019-0409.
Повний текст джерелаДисертації з теми "Codes de calcul chaînés"
Balde, Oumar. "Calage bayésien sous incertitudes des outils de calcul scientifique couplés : application en simulation numérique du combustible." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES035.
Повний текст джерелаNowadays, numerical models have become essential tools for modeling, understanding, analyzing and predicting the physical phenomena involved in complex physical systems such as nuclear power plants. Such numerical models often take a large number of uncertain input parameters, thus leading to uncertain outputs as well. Before any industrial use of those numerical models, an important step is therefore to reduce and quantify these uncertainties as much as possible. In this context, the goal of model calibration is to reduce and quantify the uncertainties of the input parameters based on available experimental and simulated data. There are two types of model calibration: deterministic calibration and Bayesian calibration. The latter quantifies parameter uncertainties by probability distributions. This thesis deals with the conditional Bayesian calibration of two chained numerical models. The objective is to calibrate the uncertain parameters of the second model while taking into account the uncertain parameters of the first model. To achieve this, a new Bayesian inference methodology called GP-LinCC (Gaussian Process and Linearization-based Conditional Calibration) was proposed. In practice, the deployment of this new approach has required a preliminary step of global sensitivity analysis to identify the most significant input parameters to calibrate in the second model, while considering the uncertainty of the parameters of the first model. To do this, an integrated version of the HSIC (Hilbert-Schmidt Independence Criterion) was used to define well-suited sensitivity measures and the theoretical properties of their nested Monte Carlo estimators were investigated. Finally, these two methodological contributions have been applied to the multi-physics application called ALCYONE, to quantify the uncertain parameters of the CARACAS code (second model) simulating the behavior of fission gases in the pressurized water reactor conditionally on the uncertainty of the parameter conductivity of the thermal model (first model)
Skersys, Gintaras. "Calcul du groupe d'automorphismes des codes : détermination de l'équivalence des codes." Limoges, 1999. http://www.theses.fr/1999LIMO0021.
Повний текст джерелаMontan, Séthy. "Sur la validation numérique des codes de calcul industriels." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00913570.
Повний текст джерелаMontan, Séthy Akpémado. "Sur la validation numérique des codes de calcul industriels." Paris 6, 2013. http://www.theses.fr/2013PA066751.
Повний текст джерелаNumerical verification of industrial codes, such as those developed atEDF R&D, is required to estimate the precision and the quality ofcomputed results, even more for code running in HPC environments wheremillions of instructions are performed each second. These programsusually use external libraries (MPI, BLACS, BLAS, LAPACK). Inthis context, it is required to have a tool as nonintrusive aspossible to avoid rewriting the original code. In this regard, theCADNA library, which implement the Discrete Stochastic Arithmetic,appears to be one of a promising approach for industrial applications. In the first part of this work, we are interested in an efficientimplementation of the BLAS routine DGEMM (General Matrix Multiply)implementing Discrete Stochastic Arithmetic. The implementation of abasic algorithm for matrix product using stochastic types leads to anoverhead greater than 1000 for a matrix of 1024*1024 comparedto the standard version and commercial versions of xGEMM. Here, wedetail different solutions to reduce this overhead and the results wehave obtained. A new routine DgemmCADNA have been designed. This routine has allowed to reduce the overhead from 1100 to 35compare to optimized BLAS implementations (GotoBLAS). Then, we focus on the numerical verification of Telemac-2D computedresults. Performing a numerical validation with the CADNA libraryshows that more than 30% of the numerical instabilities occurringduring an execution come from the dot product function. A moreaccurate implementation of the dot product with compensated algorithmsis presented in this work. We show that implementing these kind ofalgorithms, in order to improve the accuracy of computed results doesnot alter the code performance
Baladron, Pezoa Javier. "Exploring the neural codes using parallel hardware." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00847333.
Повний текст джерелаPicot, Romain. "Amélioration de la fiabilité numérique de codes de calcul industriels." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS242.
Повний текст джерелаMany studies are devoted to performance of numerical simulations. However it is also important to take into account the impact of rounding errors on the results produced. These rounding errors can be estimated with Discrete Stochastic Arithmetic (DSA), implemented in the CADNA library. Compensated algorithms improve the accuracy of results, without changing the numerical types used. They have been designed to be generally executed with rounding to nearest. We have established error bounds for these algorithms with directed rounding and shown that they can be used successfully with the random rounding mode of DSA. We have also studied the impact of a target precision of the results on the numerical types of the different variables. We have developed the PROMISE tool which automatically performs these type changes while validating the results thanks to DSA. The PROMISE tool has thus provided new configurations of types combining single and double precision in various programs and in particular in the MICADO code developed at EDF. We have shown how to estimate with DSA rounding errors generated in quadruple precision. We have proposed a version of CADNA that integrates quadruple precision and that allowed us in particular to validate the computation of multiple roots of polynomials. Finally we have used this new version of CADNA in the PROMISE tool so that it can provide configurations with three types (single, double and quadruple precision)
Duclos-Cianci, Guillaume. "Outils de calcul quantique tolérant aux fautes." Thèse, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/6770.
Повний текст джерелаSchmitt, Maxime. "Génération automatique de codes adaptatifs." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAD029.
Повний текст джерелаIn this thesis we introduce a new application programming interface to help developers to optimize an application with approximate computing techniques. This interface is provided as a language extension to advise the compiler about the parts of the program that may be optimized with approximate computing and what can be done about them. The code transformations of the targeted regions are entirely handled by the compiler to produce an adaptive software. The produced adaptive application allocates more computing power to the locations where more precision is required, and may use approximations where the precision is secondary. We automate the discovery of the optimization parameters for the special class of stencil programs which are common in signal/image processing and numerical simulations. Finally, we explore the possibility of compressing the application data using the wavelet transform and we use information found in this basis to locate the areas where more precision may be needed
Damblin, Guillaume. "Contributions statistiques au calage et à la validation des codes de calcul." Thesis, Paris, AgroParisTech, 2015. http://www.theses.fr/2015AGPT0083.
Повний текст джерелаCode validation aims at assessing the uncertainty affecting the predictions of a physical system by using both the outputs of a computer code which attempt to reproduce it and the available field measurements. In the one hand, the codemay be not a perfect representation of the reality. In the other hand, some code parameters can be uncertain and need to be estimated: this issue is referred to as code calibration. After having provided a unified view of the main procedures of code validation, we propose several contributions for solving some issues arising in computer codes which are both costly and considered as black-box functions. First, we develop a Bayesian testing procedure to detect whether or not a discrepancy function, called code discrepancy, has to be taken into account between the code outputs and the physical system. Second, we present new algorithms for building sequential designs of experiments in order to reduce the error occurring in the calibration process based on a Gaussian process emulator. Lastly, a validation procedure of a thermal code is conducted as the preliminary step of a decision problem where an energy supplier has to commit for an overall energy consumption forecast to customers. Based on the Bayesian decision theory, some optimal plug-in estimators are computed
Régnier, Gilles. "Aide à l'utilisation des codes de calcul des structures : une programmation déclarative." Paris 6, 1990. http://www.theses.fr/1990PA066664.
Повний текст джерелаКниги з теми "Codes de calcul chaînés"
M, Blann, and OECD Nuclear Energy Agency, eds. International code comparison for intermediate energy nuclear data = Comparaison internationale de codes pour le calcul de données nucléaires aux énergies intermédiaires. Paris: Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 1994.
Знайти повний текст джерела(Editor), R. L. Roche, and James R. Farr (Editor), eds. Design Codes and Structural Mechanics. Elsevier Applied Science, 1989.
Знайти повний текст джерелаЧастини книг з теми "Codes de calcul chaînés"
"18 Les codes de calcul du facteur de multiplication." In Fission nucléaire, réaction en chaîne et criticité, 199–214. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2000-9-021.
Повний текст джерела"18 Les codes de calcul du facteur de multiplication." In Fission nucléaire, réaction en chaîne et criticité, 199–214. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-2000-9.c021.
Повний текст джерелаDiop, Cheikh M’Backé, Aimé Tsilanizara, and Tan Dat Huynh. "Chapitre 11 : Évolution isotopique : méthodes et codes de calcul." In Radioprotection et ingénierie nucléaire, 345–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0163-3-013.
Повний текст джерелаDiop, Cheikh M’Backé, Aimé Tsilanizara, and Tan Dat Huynh. "Chapitre 11 : Évolution isotopique : méthodes et codes de calcul." In Radioprotection et ingénierie nucléaire, 345–54. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0163-3.c013.
Повний текст джерелаBLOT, Jean-Pierre. "Équations fondamentales pour le calcul des antennes." In Ondes électromagnétiques 2, 37–88. ISTE Group, 2020. http://dx.doi.org/10.51926/iste.9007.ch2.
Повний текст джерелаDiop, Cheikh M’Backé, Maurice Chiron, and Michel Boyard. "Chapitre 10 : Propagation des rayonnements : méthodes et codes de calcul." In Radioprotection et ingénierie nucléaire, 263–344. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0163-3-012.
Повний текст джерелаDiop, Cheikh M’Backé, Maurice Chiron, and Michel Boyard. "Chapitre 10 : Propagation des rayonnements : méthodes et codes de calcul." In Radioprotection et ingénierie nucléaire, 263–344. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0163-3.c012.
Повний текст джерелаBESSON, Jacques. "Méthodes numériques pour la rupture ductile." In Modélisation numérique en mécanique fortement non linéaire, 149–88. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9081.ch4.
Повний текст джерела"Index des réalisations (installations, projets, sites nucléaires, organismes, sociétés, associations, enseignements, livres [italiques] et codes de calcul [petites capitales])." In Du noyau atomique au réacteur nucléaire, 233–40. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1038-3-030.
Повний текст джерела"Index des réalisations (installations, projets, sites nucléaires, organismes, sociétés, associations, enseignements, livres [italiques] et codes de calcul [petites capitales])." In Du noyau atomique au réacteur nucléaire, 233–40. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-1038-3.c030.
Повний текст джерелаТези доповідей конференцій з теми "Codes de calcul chaînés"
Chapoutier, Nicolas, and Davide Mancusi. "Les codes Monte-Carlo : focus TRIPOLI." In Radioprotection : méthodes et outils de calcul en propagation des rayonnements. Les Ulis, France: EDP Sciences, 2019. http://dx.doi.org/10.1051/jtsfen/2019rad02.
Повний текст джерела