Добірка наукової літератури з теми "Cocktail effects"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Cocktail effects".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Cocktail effects"
Jimoh, Abdulhameed, and Job Atteh. "Improving the metabolisable energy value of brewers’ dried grains with enzyme cocktails in poultry nutrition." Journal of Agricultural Sciences, Belgrade 63, no. 4 (2018): 409–19. http://dx.doi.org/10.2298/jas1804409j.
Повний текст джерелаJimoh, Abdulhameed, and Job Olutimehin Atteh. "The Apparent Metabolisable Energy Values of Palm Kernel Cake as Influenced by Enzymes and Cocktails." Malaysian Journal of Applied Sciences 6, no. 2 (October 31, 2021): 61–68. http://dx.doi.org/10.37231/myjas.2021.6.2.269.
Повний текст джерелаNyczepir, A. P., D. A. Kluepfel, V. Waldrop, and W. P. Wechter. "Soil Solarization and Biological Control for Managing Mesocriconema xenoplax and Short Life in a Newly Established Peach Orchard." Plant Disease 96, no. 9 (September 2012): 1309–14. http://dx.doi.org/10.1094/pdis-05-11-0373-re.
Повний текст джерелаKim, Byeori, Seung Yeup Lee, Jungkum Park, Sujin Song, Kwang-Pyo Kim, and Eunjung Roh. "Bacteriophage Cocktail Comprising Fifi044 and Fifi318 for Biocontrol of Erwinia amylovora." Plant Pathology Journal 40, no. 2 (April 1, 2024): 160–70. http://dx.doi.org/10.5423/ppj.oa.01.2024.0005.
Повний текст джерелаReynolds, Stewart, and Alan Hill. "'Cocktail' effects - stirred, not shaken....yet." Pesticide Outlook 13, no. 5 (October 28, 2002): 209–13. http://dx.doi.org/10.1039/b209411h.
Повний текст джерелаHosseindoust, AR, SH Lee, JS Kim, YH Choi, HS Noh, JH Lee, PK Jha, IK Kwon, and BJ Chae. "Dietary bacteriophages as an alternative for zinc oxide or organic acids to control diarrhoea and improve the performance of weanling piglets." Veterinární Medicína 62, No. 2 (February 13, 2017): 53–61. http://dx.doi.org/10.17221/7/2016-vetmed.
Повний текст джерелаCelander, Malin C. "Cocktail effects on biomarker responses in fish." Aquatic Toxicology 105, no. 3-4 (October 2011): 72–77. http://dx.doi.org/10.1016/j.aquatox.2011.06.002.
Повний текст джерелаSizikova, T. E., G. V. Borisevich, D. V. Shcheblyakov, D. A. Burmistrova, and V. N. Lebedev. "THE USE OF MONOCLONAL ANTIBODIES FOR THE TREATMENT OF EBOLA VIRUS DISEASE." Problems of Virology, Russian journal 63, no. 6 (December 20, 2018): 245–49. http://dx.doi.org/10.18821/0507-4088-2018-63-6-245-249.
Повний текст джерелаWESCHE, ALISSA M., BRADLEY P. MARKS, and ELLIOT T. RYSER. "Thermal Resistance of Heat-, Cold-, and Starvation-Injured Salmonella in Irradiated Comminuted Turkey." Journal of Food Protection 68, no. 5 (May 1, 2005): 942–48. http://dx.doi.org/10.4315/0362-028x-68.5.942.
Повний текст джерелаBarbacini, Pietro, Dieter Blottner, Daniele Capitanio, Gabor Trautmann, Katharina Block, Enrica Torretta, Manuela Moriggi, Michele Salanova, and Cecilia Gelfi. "Effects of Omega-3 and Antioxidant Cocktail Supplement on Prolonged Bed Rest: Results from Serum Proteome and Sphingolipids Analysis." Cells 11, no. 13 (July 5, 2022): 2120. http://dx.doi.org/10.3390/cells11132120.
Повний текст джерелаДисертації з теми "Cocktail effects"
Tao, Yuanyuan. "Effects of Cranberry Juice Cocktail on Surface Adhesion and Biofilm Formation of Uropathogenic Bacteria." Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/1137.
Повний текст джерелаStout, Breanna. "Short term effects of annual ryegrass, red clover and hairy vetch cover crops on various indicators of soil health." Thesis, Kansas State University, 2014. http://hdl.handle.net/2097/18716.
Повний текст джерелаDepartment of Biological and Agricultural Engineering
Philip L. Barnes
The world’s population has passed 7 billion and is expected grow to more alarming numbers by the year 2050. The increase in human life on the planet ushers the need to responsibly and sustainably grow more food. In order to meet the demand necessary, it is crucial that soil remains healthy and crop yields continue to increase in efficiency. Irresponsible or ill-informed practices can lead to depleted resources and degradation of fertile soils that may limit a producers’ ability to sustainably grow food. Cover crops are a tool that can be used to address issues the modern producer may face. Cover crops have been shown to increase cash crop productivity, improve soil health by improving soil physical and chemical properties as well as providing protection from soil erosion runoff or nutrient leaching. A study was conducted in 2014 to examine the short term effects associated with cover cropping systems. The effects of ryegrass, red clover and a cover crop cocktail (mixture of ryegrass, red clover and hairy vetch) compared to bare tilled and bare control plots were studied. The five treatments were replicated three times in a completely randomized study and analyzed. Soil physical health indicators such as bulk density and porosity were calculated. Soil and cover crop nutrient use, as well as, soil moisture content data was collected and analyzed using excel and ANOVA statistical procedures. In the short term, the study found that there was only statistically significant differences between cover cropping regimens, tilled and control plots in regards to biomass production and biomass nutrient concentrations (α=0.05). The cocktail mix provided more biomass, N and P than the ryegrass and clover plots alone. Observable differences in cover crop volumetric soil moisture and water used between plots demonstrated that cover crops utilize soil moisture in the short term, which must be considered in areas experiencing water stress. Although more long-term data is needed to truly quantify how cover crops effect various aspects of soil health, this study demonstrated how cover crops have the potential for providing numerous benefits such as increased erosion control, lower reliance on anthropogenically created nutrients and the reduction of weeds. Overall the benefits associated with cover crops are still being researched and while adoption of cover cropping systems has been slow, a push towards agricultural sustainability while increasing food production will increase the amount of producers utilizing cover crops in the coming years.
Borreca, Adrien. "Biodégradation des micropolluants à l’interface sédiment-eau, approche biomoléculaire et géochimique." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAH003.
Повний текст джерелаMicropollutants, including pesticides and pharmaceuticals, pose a growing threat to aquatic ecosystems. In aquatic ecosystems, micropollutants encounter the sediment-water interface (SWI), a crucial biogeochemical hotspot for their dissipation. This PhD thesis examines the effects of environmental factors on the degradation of emblematic micropollutants, such as (S)-metolachlor (agricultural herbicide), terbutryn (urban biocide) and metformin (antidiabetic drug) in laboratory microcosms mimicking the sediment-water interface. Additionally, it explores how prokaryotic communities respond to exposure to micropollutant mixtures, successive contamination events, and varying oxygen conditions. Dissipation of metformin and metolachlor occurred while terbutryn persisted. Metformin dissipation also occurred under anoxic conditions. Sequence analysis of 16S rRNA gene amplicons evidenced distinct responses of prokaryotic communities in experiments with individual micropollutant or mixtures thereof, and a combined effect of metformin exposure and alternances of oxygen conditions. A newly developed model highlighted non-additive antagonistic and synergistic effects of micropollutants on specific taxa across taxonomic levels. Finally, exploratory Stable Isotope Probing experiments with 13C-glucose and methyl-labelled 13C2-metformin were designed to identify potential metformin-dimethylamine assimilating prokaryotes. Altogether, this thesis provides a framework to investigate dynamics governing the behaviour of micropollutant mixtures and underscores the diversity of potential interactions between micropollutants, prokaryotic communities, and environmental factors in the study of multi-contaminated SWI
Almasri, Hanine. "Toxicologie des mélanges de pesticides chez des abeilles exposées à un agent pathogène : action combinée de l'agent pathogène Nosema ceranae, de l'insecticide imidaclopride, du fongicide difénoconazole et de l'herbicide glyphosate Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees Toxicity of the pesticides imidacloprid, difenoconazole and glyphosate alone and in binary and ternary mixtures to winter honey bees: effects on survival and antioxidative defenses Toxicological status changes the susceptibility of the honey bee Apis mellifera to a single fungicidal spray application Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera." Thesis, Avignon, 2020. http://www.theses.fr/2020AVIG0722.
Повний текст джерелаCurrent scientific findings suggest a decline in the diversity and abundance of insects, including the honey bee Apis mellifera. The latter are facing high colony losses in several regions of the world such as Western Europe and the United States. Numerous studies suggest that the origin of bee colony decline is multi-causal and identify pesticides and pathogens as the main contributors to this decline. Co-exposure of honey bees to multiple pesticides and infection by multiple pathogens are common phenomena. However, research on the effects of pesticide mixtures has not been extensively developed. Thus, the thesis work has focused on determining the toxicity of pesticide mixtures, applied at environmental exposure levels, in the presence of pathogens. The choice was made to study the interactions between a neonicotinoid insecticide, imidacloprid, an azole fungicide, difenoconazole, and a herbicide, glyphosate, in the presence of the pathogen Nosema ceranae. The results of the different studies, carried out during this thesis, reveal the complexity of the studies on pesticide mixtures. The work allowed us to notice that the effects of a pesticide mixture can vary according to the concentrations of the pesticides constituting the mixture. The increase of the number of substances and the level of exposure does not necessarily induce an increase of the toxicity of the mixture. Furthermore, the effects of the mixture may vary depending on the sequence of exposure to the different pesticides and the health status of the honey bees. Pesticide mixtures affect the physiological state of individuals as a result of a systemic response related to disturbances of general mechanisms such as oxidative stress. However, these three pesticides, alone and in mixtures, have no effect on the installation of the intestinal microbiota at environmental exposure levels
Gaffard, Agathe. "(Sur) Vivre en milieu agricole : approche systémique des effets sublétaux des pesticides sur l'état de santé de la perdrix grise (Perdix Perdix)." Electronic Thesis or Diss., La Rochelle, 2023. http://www.theses.fr/2023LAROS001.
Повний текст джерелаFor several decades, the farmland bird decline has been the subject of much scientific attention, with a large body of literature on the causes and consequences of this phenomenon. One of the major issue is whether pesticides are responsible for this trend, as studies conducted so far indicate cause and effect relationships without clearly identifying the underlying mechanisms. A major challenge is thus to provide biologically relevant evidences for a better assessment of pesticide-related risks to farmland birds. The aim of this thesis was to study the sublethal effects of pesticides on the life history traits of the grey partridge (Perdix perdix) using both experiments under controlled conditions and monitoring of free-living birds. In combination with survival and reproduction, the multi-trait approach carried out here allowed us to understand (1) the deleterious effects of pesticides on several life history traits of partridges, both in captivity and in natura, (2) the ubiquity of pesticide cocktails in the blood of birds and their links with sublethal effects, (3) the importance of considering evolutionary processes in the long-term effects of pesticides by considering parental effects and phenotypic plasticity of individuals and finally (4) the need to use biomonitoring of sentinel species for a better monitoring of the contamination of agroecosystems at the local scale but also as a tool for the development and implementation of refuge areas to pesticide exposure
Mullins, Atty Thomas. "AudioStreamer--leveraging the cocktail party effect for efficient listening." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/34328.
Повний текст джерелаCanagarajah, Cedric Nishanthan. "Digital signal processing techniques for speech enhancement in hearing aids." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260433.
Повний текст джерелаRoustan, Audrey. "Génotoxicité du glyphosate, de l'atrazine et de leurs produits de dégradation seuls et en mélanges : étude de l'effet protecteur d'un cocktail de plantes." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5066.
Повний текст джерелаGlyphosate, atrazine, and their main degradation products (desethyl-atrazine or DEA, and the amino methyl phosphoric acid or AMPA) are among the most widely used pesticides in the world and in France. They are found in large quantities in several environmental matrices but also in food and drinking water.The aim of our work was to evaluate the genotoxicity and mutagenicity in vitro and in vivo of these four pesticides, alone and in mixtures, and to study the protective effects of a mixture composed with extracts of anti-mutagenic plants (Berberis vulgaris, Arctium lappa and Taraxacum officinalis) (DIG) on the genotoxicity of the mixture of four pesticides.The results of our in vitro study showed that the genotoxic potential of pesticides depends on their physico-chemical environment, and that mixtures of pesticides can reveal genotoxic properties more important than those predictable during the exposure to individual molecules, with occurrence of a cocktail effect. The results of our in vivo study clearly established the powerful genotoxic and mutagenic activity of the mixture of four pesticides. They highlighted the cocktail effects that may occur in mixtures of pesticides, underlining the limits of conventional toxicological strategies based on an individual assessment of the molecules. We have shown that brain cells are the main target of pesticides, probably related to a significant sensitivity to oxidative stress. In the third part, we demonstrated the protective effects of DIG on the genotoxicity and mutagenicity of the mixture of four pesticides
Hägg, Karolina. "The Cocktaail effect : As soon as it ripens it rots." Thesis, Konstfack, Ädellab/Metallformgivning, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:konstfack:diva-4166.
Повний текст джерелаSmith, Rose-Michelle. "Transfert de polluants émergents issus du secteur de la santé entre les compartiments sol/sédiment et eau en présence de cuivre- Effet cocktail." Thesis, Reims, 2018. http://www.theses.fr/2018REIMS047.
Повний текст джерелаThis thesis aims at studying the behaviour of pharmaceuticals in the environment at sediment/soil-water interfaces in order to better understand the involved processes following their release, their fate and their impact. Thus, the retention of four pharmaceuticals was investigated on different solids (soil/sediment). The cation exchange capacity has been identified as the parameter governing the propranolol retention and the pH value governing sotalol adsorption. In the case of contaminant mixtures, a competition for the surface sites was evidenced with in particular a decrease of sotalol and furosemide adsorption.The influence of copper, a ubiquitous metal in the environment, on pharmaceutical retention was also studied. Although copper did not influence the retention of propranolol, sotalol and furosemide, its presence increased the mobility of sulfamethoxazole in the environment by decreasing its adsorption. Finally, it has been shown that the presence of these pollutants in the environment induced toxic effects on aquatic organisms
Книги з теми "Cocktail effects"
Kramer, S. J. 14C measurement: Effect of variations in sample preparation and storage on the counting efficiency for 14C using a carbo-sorb/permafluor E+ liquid scintillation cocktail. Chalk River, Ont: Environmental Research Branch, Chalk River Laboratories, 1995.
Знайти повний текст джерелаStuttaford, Thomas. To your good health!: The wise drinker's guide. London: Faber, 1997.
Знайти повний текст джерелаMass Effect: The Official Cocktail Book. Insight Editions, 2024.
Знайти повний текст джерелаToxic Cocktail: How Chemical Pollution Is Poisoning Our Brains. Oxford University Press, Incorporated, 2017.
Знайти повний текст джерелаHuq, Aziz Z. The Collapse of Constitutional Remedies. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197556818.001.0001.
Повний текст джерелаStuttaford, Thomas. To Your Good Health!: The Wise Drinker's Guide. Faber & Faber, 1998.
Знайти повний текст джерелаЧастини книг з теми "Cocktail effects"
Esbaugh, Andrew J., Alexis Khursigara, and Jacob Johansen. "Toxicity in Aquatic Environments: The Cocktail Effect." In Development and Environment, 203–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75935-7_9.
Повний текст джерелаDarrell, Trevor, John W. Fisher, and Paul Viola. "Audio-visual Segmentation and “The Cocktail Party Effect”." In Advances in Multimodal Interfaces — ICMI 2000, 32–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-40063-x_5.
Повний текст джерелаPezzuto, John M., and Ole Vang. "Perspective: A Positive Cocktail Effect of the Bioactive Components in the Diet." In Natural Products for Cancer Chemoprevention, 613–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39855-2_19.
Повний текст джерелаBanaee, Mahdi. "Toxicological Interaction Effects of Herbicides and the Environmental Pollutants on Aquatic Organisms." In New Insights in Herbicide Science [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.105843.
Повний текст джерелаDrumbl, Mark A., and Barbora Holá. "Informer File-Stories." In Informers Up Close, 101–50. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/oso/9780192855138.003.0004.
Повний текст джерелаZahra, Zahra, Zunaira Habib, and Brian Moon. "Risk Assessment of Emerging Water Pollutants." In Emerging Water Pollutants: Concerns and Remediation Technologies, 119–43. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97897815040739122010008.
Повний текст джерела"Chapter Four. The Blue Gardenia, Club Pigalle, and Daniel’s: Charting the Alienation Effect in Film Noir." In Jazz and Cocktails, 49–60. University of Texas Press, 2017. http://dx.doi.org/10.7560/312261-007.
Повний текст джерела"Virtual Schmoozing: The Ever Popular Cocktail Party Effect." In Digital Mythologies, 114–17. Rutgers University Press, 2021. http://dx.doi.org/10.36019/9780813568058-021.
Повний текст джерелаLieberman, Mira. "Assessing the impact of pesticides on natural capital and biodiversity." In Protecting natural capital and biodiversity in the agri-food sector, 111–32. Burleigh Dodds Science Publishing, 2024. http://dx.doi.org/10.19103/as.2023.0128.11.
Повний текст джерелаGreenwood, John C. "Vasopressor cocktails (we all have drug shortages)." In Critical Care Emergencies, edited by Lillian Liang Emlet, 149–56. Oxford University PressNew York, 2023. http://dx.doi.org/10.1093/med/9780190082581.003.0016.
Повний текст джерелаТези доповідей конференцій з теми "Cocktail effects"
Benitez, Janilee Y., Alexander Donoghue, Michael B. Johnson, Wang Lu, Brien Ninemire, Larry Phair, Damon S. Todd, and Daniel Xie. "Recent Cocktail Beam Developments at the 88-Inch Cyclotron for SEE Testing." In 2017 IEEE Nuclear & Space Radiation Effects Conference (NSREC): Radiation Effects Data Workshop (REDW). IEEE, 2017. http://dx.doi.org/10.1109/nsrec.2017.8115438.
Повний текст джерелаRodriguez, Briana, Jungmee Lee, and Robert Lutfi. "Synergy of spectral and spatial segregation cues in simulated cocktail party listening." In 5th International Conference on the Effects of Noise on Aquatic Life. ASA, 2019. http://dx.doi.org/10.1121/2.0001092.
Повний текст джерелаJavanainen, A., M. Sillanpaa, W. H. Trzaska, A. Virtanen, G. Berger, W. Hajdas, R. Harboe-Sorensen, et al. "Experimental Linear Energy Transfer of heavy ions in silicon for RADEF cocktail species." In 2008 European Conference on Radiation and Its Effects on Components and Systems (RADECS). IEEE, 2008. http://dx.doi.org/10.1109/radecs.2008.5782765.
Повний текст джерелаSpyropulos, B., J. Fareed, R. M. Emanuel, and D. Hoppensteadt. "COMPARATIVE PHARMACODYNAMICS OF SUBCUTANEOUSLY ADMINISTERED HEPARIN (HEP) AND A LOW MOLECULAR WEIGHT HEPARIN (LMWH) AS STUDIED BY AN EX VIVO FIBRINOPEPTIDE A (FPA) GENERATION TEST." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644173.
Повний текст джерелаElwood Madden, Megan, Janice Bishop, Janice Bishop, Andrew S. Elwood Madden, Andrew S. Elwood Madden, Charity M. Phillips-Lander, Charity M. Phillips-Lander, et al. "A SALTY COCKTAIL ON THE ROCKS. THE EFFECTS OF BRINES ON THE DISSOLUTION, FORMATION, AND PRESERVATION OF NEAR-SURFACE MINERALS ON MARS." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-369858.
Повний текст джерелаTan, Andrea R., Elena Alegre-Aguarón, Divya N. Dujari, Sonal R. Sampat, J. Chloë Bulinski, Gerard A. Ateshian, and Clark T. Hung. "Effects of Passaging on the Migration Response of Synovium-Derived Stem Cells to an Applied DC Electric Field." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53674.
Повний текст джерелаJohnson, Michael B., Margaret A. McMahan, Michelle Galloway, Daniela Leitner, James R. Morel, Thomas L. Gimpel, Brien F. Ninemire, Reba Siero, and Raymond K. Thatcher. ""Super" cocktails for heavy ion testing." In 2007 IEEE Radiation Effects Data Workshop. IEEE, 2007. http://dx.doi.org/10.1109/redw.2007.4342537.
Повний текст джерелаChikhradze, Nikoloz, Nikoloz Jalabadze, Mikheil Chikhradze, Davit Tsverava, and George Janikashvili. "SHOCK-WAVE SYNTHESES OF HIGH ENTROPY ALLOYS IN Fe-W-Al-Ti-Ni-B-C SYSTEM." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/6.1/s24.10.
Повний текст джерелаHeptner, W., J. R. Suárez, and V. Lütgendorf. "STUDIES ON PLATELET AGGREGATION BY IMPEDANCE AGGREGOMETRY AND ATP SECRETION IN NON-ANTICOAGULANT BLOOD." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644810.
Повний текст джерелаWehmeier, A., and W. Schneider. "FACTORS AFFECTING PLATELET VOLUME ANALYSIS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643538.
Повний текст джерелаЗвіти організацій з теми "Cocktail effects"
McMahan, M. A., D. A. Argento, T. Gimpel, A. Guy, J. Morel, K. Osborne, R. Siero, et al. High energy cocktail beams for radiation effects studies. Office of Scientific and Technical Information (OSTI), January 2001. http://dx.doi.org/10.2172/821747.
Повний текст джерелаMejía, Luis Fernando, Alejandro Izquierdo, and Guillermo A. Calvo. On the Empirics of Sudden Stops: The Relevance of Balance-Sheet Effects. Inter-American Development Bank, July 2004. http://dx.doi.org/10.18235/0010819.
Повний текст джерела