Добірка наукової літератури з теми "Coalescence compacte de binaire"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Coalescence compacte de binaire".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Coalescence compacte de binaire"
Spera, Mario, Alessandro Alberto Trani, and Mattia Mencagli. "Compact Binary Coalescences: Astrophysical Processes and Lessons Learned." Galaxies 10, no. 4 (June 25, 2022): 76. http://dx.doi.org/10.3390/galaxies10040076.
Повний текст джерелаGraziani, Luca. "Hunting for Dwarf Galaxies Hosting the Formation and Coalescence of Compact Binaries." Physics 1, no. 3 (December 6, 2019): 412–29. http://dx.doi.org/10.3390/physics1030030.
Повний текст джерелаKalogera, V. "Close Binaries with Two Compact Objects." International Astronomical Union Colloquium 177 (2000): 579–84. http://dx.doi.org/10.1017/s0252921100060668.
Повний текст джерелаRasio, Frederic A., and Stuart L. Shapiro. "Hydrodynamic Evolution of Coalescing Compact Binaries." Symposium - International Astronomical Union 165 (1996): 17–28. http://dx.doi.org/10.1017/s0074180900055522.
Повний текст джерелаWEN, LINQING, and QI CHU. "EARLY DETECTION AND LOCALIZATION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCES." International Journal of Modern Physics D 22, no. 11 (September 2013): 1360011. http://dx.doi.org/10.1142/s0218271813600110.
Повний текст джерелаShapiro, Stuart L. "Gravitomagnetic Induction during the Coalescence of Compact Binaries." Physical Review Letters 77, no. 22 (November 25, 1996): 4487–90. http://dx.doi.org/10.1103/physrevlett.77.4487.
Повний текст джерелаChen, Bing-Guang, Tong Liu, Yan-Qing Qi, Bao-Quan Huang, Yun-Feng Wei, Tuan Yi, Wei-Min Gu, and Li Xue. "Effects of Vertical Advection on Multimessenger Signatures of Black Hole Neutrino-dominated Accretion Flows in Compact Binary Coalescences." Astrophysical Journal 941, no. 2 (December 1, 2022): 156. http://dx.doi.org/10.3847/1538-4357/aca406.
Повний текст джерелаYu, Shenghua, Youjun Lu, and C. Simon Jeffery. "Orbital evolution of neutron-star–white-dwarf binaries by Roche lobe overflow and gravitational wave radiation." Monthly Notices of the Royal Astronomical Society 503, no. 2 (March 5, 2021): 2776–90. http://dx.doi.org/10.1093/mnras/stab626.
Повний текст джерелаMacLeod, Morgan, Kishalay De, and Abraham Loeb. "Dusty, Self-obscured Transients from Stellar Coalescence." Astrophysical Journal 937, no. 2 (October 1, 2022): 96. http://dx.doi.org/10.3847/1538-4357/ac8c31.
Повний текст джерелаSpurzem, R., P. Berczik, I. Berentzen, D. Merritt, M. Preto, and P. Amaro-Seoane. "Formation and Evolution of Black Holes in Galactic Nuclei and Star Clusters." Proceedings of the International Astronomical Union 3, S246 (September 2007): 346–50. http://dx.doi.org/10.1017/s1743921308015901.
Повний текст джерелаДисертації з теми "Coalescence compacte de binaire"
Andres, Nicolas. "Optimisation de la chaîne d'analyse MBTA et développement d'une méthode d'étalonnage de la réponse fréquentielle du détecteur d'onde gravitationnelle Virgo." Electronic Thesis or Diss., Chambéry, 2023. http://www.theses.fr/2023CHAMA029.
Повний текст джерелаThe LIGO Virgo collaboration marked the beginnings of gravitational astronomy by providing direct evidence of their existence in September 2015. The detection of gravitationnal wave coming from a binary black holes merger led to the physic's Nobel price. This field has since experienced a great growth, each discovery of which allows an advance in disciplines such as astrophysics, cosmology and fundamental physics. At the end of each observation period, the detectors are stopped and many aspects are improved. This work is part of the preparation phase between period O3 and O4 beginning in May 2024 to configure interferometers in their advanced states in order to optimize their sensitivities. Calibration then becomes crucial in order to accurately reconstruct the signal containing gravitational wave information, allowing detection and the production of scientific results such as the measurement of the Hubble constant, etc. An instrumentation work has been carried out, allowing an accurate and regular measurement of the time stamp (timing) of the readout sensing chain of the interferometer signal, which must be mastered better than 0.01 ms for the purpose of a joint analysis of the detectors network data.Many devices for the calibration of the interferometer rely on the reading of control signals by photodetectors whose frequency response has been assumed to be flat. In order to avoid any bias introduced in the reconstruction of the signal, a measurement method must be developed for a frequency calibration of each photo detector involved. Two methods are compared for use in the O5 period.In addition, the increasing sensitivity of the detectors means more detections. Collaboration analysis chains need to follow instrumental improvements by developing new tools to optimize real-time and off-ligne signal search. The MBTA Low Latency Analysis Chain is one of 4 collaboration analysis pipelines focusing on the search for compact binary coalescences by combining independent data analysis from all 3 detectors. It has many powerful noise rejection tools, but does not take into account any astrophysical information a priori. Through the accumulation of data in previous observation periods, the collaboration was able to establish more accurate mass distribution models for compact binary coalescence populations. During my thesis, a new tool was developed by the MBTA team using this new information, aimed at estimating the probability of origin of events (astrophysics or not) and at classifying the nature of the astrophysical source. This tool finally made it possible to restructure the global analysis chain by using it as the main parameter for classifying events according to their level of significance. The collaboration produces low-latency public alerts for multi-messenger astronomy, providing information related to detected signals common to the different analytical pipelines. Not knowing in advance the preferences of the different experiences partners of the LIGO Virgo collaboration to define the optimal parameters allowing multi-messenger detections, it was decided to test another method to implement similar astrophysical information in the MBTA analysis chain. A technique for including astrophysical information directly in the parameter defining the ranking by significance level of candidate events is presented. This method makes it possible to improve research by providing better discrimination between astrophysical and background noise events. By considering the observation period O3 this method makes it possible to increase the number of detection by 10% with MBTA , detections that have been confirmed by the other chains of analysis
MacLeod, Duncan. "Improving the sensitivity of searches for gravitational waves from compact binary coalescences." Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/50885/.
Повний текст джерелаRenvoizé, Vincent. "Hydrodynamique et évolution d'objets compacts : binaires serrées et naines blanches." Lyon, École normale supérieure (sciences), 2002. http://www.theses.fr/2002ENSL0221.
Повний текст джерелаGrover, Katherine L. "Physics and astrophysics with gravitational waves from compact binary coalescence in ground based interferometers." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6410/.
Повний текст джерелаGermain, Vincent. "De l'étalonnage d'Advanced Virgo à la recherche d'ondes gravitationnelles émises par des coalescences de binaires compactes." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY101/document.
Повний текст джерелаThe era of gravitational astronomy began with the first detection of a gravitational wave on September 14, 2015, by the LIGO-Virgo collaboration. The first detections come from coalescences of black holes with masses of a few tens of solar masses. The European detector Advanced Virgo restarted in 2017 to participate in the next detections of gravitational waves and to locate the astrophysical sources.This thesis deals with the different stages of the gravitational waves detection process: from the calibration of the Advanced Virgo detector to low-latency analysis of the LIGO-Virgo interferometer network data. First, the objectives, method and results of the detector calibration are described. This step is crucial for understanding the sensitivity of the detector and for reconstructing the amplitude of the gravitational wave. A new algorithm, SilenteC, developed during the thesis is then detailed: its objective is to identify the sources of non-stationary noises that limit the sensitivity of the analysis. Some transient noises are non-linear and SilenteC tries to identify this type of contribution. Finally, low-latency MBTA analysis for the detection of gravitational wave signals from compact binary coalescences is described. In particular, emphasis is put on the study of vetos making it possible to distinguish the astrophysical signals to be selected and the transient noises to be rejected as efficiently as possible
Indik, Nathaniel [Verfasser]. "Optimal Template Placement for Searches of Gravitational Waves from Precessing Compact Binary Coalescences / Nathaniel Indik." Hannover : Gottfried Wilhelm Leibniz Universität, 2018. http://d-nb.info/1160378878/34.
Повний текст джерелаChan, Man Leong. "Optimization of electromagnetic follow up observations and localization of gravitational wave signals from compact binary coalescences." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/31007/.
Повний текст джерелаMcKechan, David J. A. "On the use of higher order wave forms in the search for gravitational waves emitted by compact binary coalescences." Thesis, Cardiff University, 2010. http://orca.cf.ac.uk/54982/.
Повний текст джерелаCabero, Müller Miriam Anabel [Verfasser]. "Gravitational-wave astronomy with compact binary coalescences : from blip glitches to the black hole area increase law / Miriam Anabel Cabero Müller." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1165251078/34.
Повний текст джерелаCabero, Müller Miriam [Verfasser]. "Gravitational-wave astronomy with compact binary coalescences : from blip glitches to the black hole area increase law / Miriam Anabel Cabero Müller." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1165251078/34.
Повний текст джерелаКниги з теми "Coalescence compacte de binaire"
Colpi, Monica, Piergiorgio Casella, Vittorio Gorini, Ugo Moschella, and Andrea Possenti, eds. Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0.
Повний текст джерелаPhysics of relativistic objects in compact binaries: From birth to coalescence. Dordrecht: Springer, 2009.
Знайти повний текст джерелаMaggiore, Michele. GWs from compact binaries. Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198570899.003.0005.
Повний текст джерелаCasella, Piergiorgio, Andrea Possenti, Monica Colpi, Vittorio Gorini, and Ugo Moschella. Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence. Springer Netherlands, 2014.
Знайти повний текст джерелаЧастини книг з теми "Coalescence compacte de binaire"
Pretorius, Frans. "Binary Black Hole Coalescence." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 305–69. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_9.
Повний текст джерелаBulik, Tomasz. "The Coalescence Rates of Compact Object Binaries." In Gravitational Wave Astrophysics, 23–33. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10488-1_2.
Повний текст джерелаHeuvel, E. P. J. van den. "The Formation and Evolution of Relativistic Binaries." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 125–98. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_4.
Повний текст джерелаIsrael, Gian Luca, and Simone Dall'Osso. "White Dwarfs in Ultrashort Binary Systems." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 281–304. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_8.
Повний текст джерелаDamour, Thibault. "Binary Systems as Test-Beds of Gravity Theories." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 1–41. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_1.
Повний текст джерелаKramer, Michael. "Exploiting Binary Pulsars as Laboratories of Gravity Theories." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 43–75. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_2.
Повний текст джерелаStella, L. "Strong Gravitational Field Diagnostics in Binary Systems Containing a Compact Object." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 265–80. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_7.
Повний текст джерелаColpi, Monica, and Bernadetta Devecchi. "Dynamical Formation and Evolution of Neutron Star and Black Hole Binaries in Globular Clusters." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 199–243. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_5.
Повний текст джерелаLazzati, Davide, and Rosalba Perna. "Short Gamma Ray Bursts: Marking the Birth of Black Holes from Coalescing Compact Binaries." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 245–63. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_6.
Повний текст джерелаD'Amico, Nichi, and Marta Burgay. "Perspective in the Search for Relativistic Pulsars." In Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence, 77–123. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9264-0_3.
Повний текст джерелаТези доповідей конференцій з теми "Coalescence compacte de binaire"
Buonanno, Alessandra, Ye-Fei Yuan, Xiang-Dong Li, and Dong Lai. "Binary Black Hole Coalescence." In ASTROPHYSICS OF COMPACT OBJECTS: International Conference on Astrophysics of Compact Objects. AIP, 2008. http://dx.doi.org/10.1063/1.2840417.
Повний текст джерелаCaudill, Sarah. "Techniques for gravitational-wave detection of compact binary coalescence." In 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018. http://dx.doi.org/10.23919/eusipco.2018.8553549.
Повний текст джерелаDEN BROECK, CHRIS VAN. "COMPACT BINARY COALESCENCE AND THE SCIENCE CASE FOR EINSTEIN TELESCOPE." In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0302.
Повний текст джерелаTakeda, Hiroki, Yuta Michimura, Kentaro Komori, Masaki Ando, Atsushi Nishizawa, Koji Nagano, and Kazuhiro Hayama. "Polarization test of gravitational waves from compact binary coalescences." In Proceedings of the MG15 Meeting on General Relativity. WORLD SCIENTIFIC, 2022. http://dx.doi.org/10.1142/9789811258251_0247.
Повний текст джерелаMarion, F., Vicky Kologera, and Marc van der Sluys. "Searches for Gravitational Waves from Compact Binary Coalescences with the LIGO and Virgo Detectors." In INTERNATIONAL CONFERENCE ON BINARIES: In celebration of Ron Webbink’s 65th Birthday. AIP, 2010. http://dx.doi.org/10.1063/1.3536398.
Повний текст джерелаVerma, Chetan, Amit Reza, Dilip Krishnaswamy, Sarah Caudill, and Gurudatt Gaur. "Employing deep learning for detection of gravitational waves from compact binary coalescences." In INNOVATIONS IN COMPUTATIONAL AND COMPUTER TECHNIQUES: ICACCT-2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0108682.
Повний текст джерелаSasaoka, Seiya, Yilun Hou, Diego Sebastian Dominguez, Suyog Garg, Naoki Koyama, Yuto Omae, Kentaro Somiya, and Hirotaka Takahashi. "Deep Learning for Detecting Gravitational Waves from Compact Binary Coalescences and Its Visualization by Grad-CAM." In 38th International Cosmic Ray Conference. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.444.1498.
Повний текст джерела