Добірка наукової літератури з теми "CO2 reduction catalysis"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "CO2 reduction catalysis".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "CO2 reduction catalysis"
Dagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis." Synthesis 50, no. 18 (June 28, 2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Повний текст джерелаTian, Jindan, Ru Han, Qiangsheng Guo, Zhe Zhao, and Na Sha. "Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis." Catalysts 12, no. 6 (June 2, 2022): 612. http://dx.doi.org/10.3390/catal12060612.
Повний текст джерелаSrivastava, Sumit, Manvender S. Dagur, Afsar Ali, and Rajeev Gupta. "Trinuclear {Co2+–M3+–Co2+} complexes catalyze reduction of nitro compounds." Dalton Transactions 44, no. 40 (2015): 17453–61. http://dx.doi.org/10.1039/c5dt03442f.
Повний текст джерелаLisovski, Oleg, Sergei Piskunov, Dmitry Bocharov, Yuri Zhukovskii, Janis Kleperis, Ainars Knoks, and Peteris Lesnicenoks. "CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations." Crystals 12, no. 2 (January 28, 2022): 194. http://dx.doi.org/10.3390/cryst12020194.
Повний текст джерелаPetersen, Haley A., Tessa H. T. Myren, and Oana R. Luca. "Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction." Inorganics 8, no. 11 (November 11, 2020): 62. http://dx.doi.org/10.3390/inorganics8110062.
Повний текст джерелаHahn, Christopher. "(Invited) Steering Electrocatalytic CO2 Reduction Reactivity Using Microenvironments." ECS Meeting Abstracts MA2022-02, no. 49 (October 9, 2022): 1879. http://dx.doi.org/10.1149/ma2022-02491879mtgabs.
Повний текст джерелаCao, Yanwei, Qiongyao Chen, Chaoren Shen, and Lin He. "Polyoxometalate-Based Catalysts for CO2 Conversion." Molecules 24, no. 11 (May 30, 2019): 2069. http://dx.doi.org/10.3390/molecules24112069.
Повний текст джерелаZhou, Yiying, Junxi Cai, Yuming Sun, Shuhan Jia, Zhonghuan Liu, Xu Tang, Bo Hu, Yue Zhang, Yan Yan, and Zhi Zhu. "Research on Cu-Site Modification of g-C3N4/CeO2-like Z-Scheme Heterojunction for Enhancing CO2 Reduction and Mechanism Insight." Catalysts 14, no. 8 (August 20, 2024): 546. http://dx.doi.org/10.3390/catal14080546.
Повний текст джерелаXue, Sensen, Xingyou Liang, Qing Zhang, Xuefeng Ren, Liguo Gao, Tingli Ma, and Anmin Liu. "Density Functional Theory Study of CuAg Bimetal Electrocatalyst for CO2RR to Produce CH3OH." Catalysts 14, no. 1 (December 20, 2023): 7. http://dx.doi.org/10.3390/catal14010007.
Повний текст джерелаHall, Anthony Shoji, Youngmin Yoon, Anna Wuttig, and Yogesh Surendranath. "Mesostructure-Induced Selectivity in CO2 Reduction Catalysis." Journal of the American Chemical Society 137, no. 47 (November 18, 2015): 14834–37. http://dx.doi.org/10.1021/jacs.5b08259.
Повний текст джерелаДисертації з теми "CO2 reduction catalysis"
Smith, Adrien. "Activation and reduction of CO2 by metalloporphyrin-based molecular catalysts." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF039.
Повний текст джерелаTransforming CO₂ into valuable reduced forms of carbon is an interesting approach towards the recycling of this greenhouse gas, by introducing non-fossil fuel based C1 building blocks back into the carbon cycle. Tetraphenyl iron porphyrins and derivatives have been shown to be efficient and selective molecular catalysts for CO₂ reduction to CO. The introduction of various functions in the second coordination sphere of porphyrins showed great improvements of both the overpotential and the catalytic rates.Inspired by the distal pocket of enzymatic active centers, an iron porphyrin with a carboxylate strap is investigated. Electrochemical, kinetic and computational chemistry studies show that this catalyst operates at a low overpotential, while maintaining high catalytic rates. It is proposed that the carboxylate function, initially acting as an axial ligand of the metal, plays an important role in the insertion and transformation of CO₂, in synergy with a water molecule trapped in the superstructure.Furthermore, two iron porphyrins were synthetized bearing an imidazolium group at various positions with respect to the metal center. The original goal of this study was to establish a correlation between the distance of the cationic group from the metal center and the catalytic performances of the catalyst, which can guide the design of new catalysts for CO₂ reduction.The electrochemical study of these catalysts revealed that these imidazolium functions can be electroactive. Electron paramagnetic resonance was used to describe their various reduced forms. These studies revealed and describe the potential electroactive behavior of the imidazolium groups on these novel iron porphyrins catalysts
Afonso, Joana da Costa Franco. "Catalytic hydrogenation of carbon dioxide to form methanol and methane." Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10854.
Повний текст джерелаWoolerton, Thomas William. "Development of enzymatic H2 production and CO2 reduction systems." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:393741ac-94b1-4d56-b680-d9a434db77e2.
Повний текст джерелаPršlja, Paulina. "Theoretical Studies of Single-Site Catalysts for Efficient Electrochemical CO2 Reduction." Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/671468.
Повний текст джерелаEl desarrollo de la electroquímica tiene el potencial de utilizar el CO2 como materia prima para la producción sostenible de compuestos y materiales y tiene un gran impacto en la industria química. El catalizador “de sitio único” (single site catalyst) es un material prometedor para lograr una elevada actividad y selectividad hacia CO e hidrocarburos C1. La estructura única de este catalizador derivado de carbono reduce la competencia de estos procesos con otros procesos catalíticos como la reacción hydrogen evolution reaction (HER) porque el single site catalyst requiere la unión de hidrógeno en la parte superior. En esta tesis, métodos DFT y conceptos electroquímicos computacionales han sido aplicados para entender los procesos de reducción de CO2. En el capítulo 3 se describe la importancia de las características estructurales del single site catalyst, además de los conceptos relacionados con la química de coordinación que se aplican para comprender la actividad del catalizador en la reacción electroquímica de reducción de CO2 (eCO2RR). El objetivo del capítulo 4 es establecer correlaciones experimentales y teóricas entre las propiedades fisicoquímicas y catalíticas para la eCO2RR hacia CO para el catalizador del MNC. El proceso de reconstrucción de las nanopartículas de Ni mediante la desintegración de Ni(CO)2 en materiales de carbono dopados con N se describe en el capítulo 5. Por último, en el capítulo 6 se describe la selectividad de los productos de reducción de CO2 teniendo en cuenta cómo afecta el potencial y la temperatura sobre el catalizador modelado de CoTPP/MWCNT.
The development of electrochemistry has the potential to use CO2 as a feedstock for the sustainable production of chemicals and materials and it has an important impact on the chemical industry. Single site catalyst is a promising new material for achieving high activity and selectivity towards CO and C1 hydrocarbons. The unique structure of carbon-based catalyst makes it a good compressor of competing Hydrogen evolution reaction (HER) because the single site requires an ontop binding of hydrogen. In this thesis, I applied DFT methods and computational electrochemical concepts for understanding the processes of CO2 reduction (eCO2RR). In chapter 3 I described the importance of single-site structural features catalyst, besides the basic concept of the coordination chemistry that is applied to understand eCO2RR activity of the catalyst. The aim of chapter 4 was to establish experimental and theoretical correlations between physicochemical and catalytic properties for the eCO2RR towards CO for MNC catalyst. The process of reconstruction of Ni nanoparticles by the disintegration of Ni(CO)2 on N-doped carbon materials is described in chapter 5. Finally, in chapter 6 I unraveled the selectivity of CO2 reduction products that were influenced by potential and the temperature over modeled CoTPP/MWCNT catalyst.
Dattila, Federico. "Modelling and mapping pathways of electrochemical CO2 reduction on modified catalytic surfaces." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/670954.
Повний текст джерелаLa reducción de CO2 es el único proceso para generar combustibles verdes con un impacto negativo neto en las emisiones de CO2. Por lo tanto, el desarrollo futuro de nuestra sociedad necesita una aplicación industrial de esta tecnología para producir productos químicos de uso intensivo como el etileno. El cobre es un material único para catalizar estos productos, sin embargo, avances significativos en este proceso requieren una comprensión teórica profunda de su complejidad. En esta tesis me propuse desarrollar métodos teóricos para abordar los principales factores involucrados en la reducción de CO2 con cobre: (i) reconstrucción superficial debido a potencial negativo; (ii) efectos químicos sobre la selectividad; y (iii) el efecto del electrolito. Los capítulos I y II se dedicaron a las motivaciones y métodos y el Capítulo 3 a comprobar resultados experimentales bien establecidos. En el capítulo 4 investigué la reconstrucción del cobre policristalino a potenciales negativos. Este proceso está impulsado por la polarización de la superficie, que promueve dominios (100) y defectos. Siguiendo las previsiones teóricas, sinteticé un catalizador a base de cobre eficaz para producir etileno con alto rendimiento. En el Capítulo V, estudié el óxido de cobre para investigar el estado de oxidación del cobre, su coordinación y los sitios superficiales activos hacia la producción de químicos C2+. Entre los resultados, demostré que la polarización impulsa la reducción de CO2, mientras un nuevo intermedio, el glioxilato desprotonado, mejora la selectividad hasta los C2+. En el capítulo VI me dediqué a efectos químicos que influencian la reactividad del cobre. Adatomos de azufre, que actúan como centros de anclaje, permiten la generación de formiato. Finalmente, en el Apéndice A introduje el efecto de los cationes sobre la reducción de CO2, que aún no se comprende completamente, pero tiene una clara relevancia en la distribución del producto.
CO2 reduction is the only process which can generate green fuels with a net negative impact in CO2 emissions. Therefore, the future development of our society needs an industrial scale up of this technology, involving the production of heavily used chemicals such as ethylene. Copper is a unique material for catalyzing these C2+ products, however significant advances need a deep theoretical understanding of the complexity of this material under CO2 reduction conditions. In this thesis I aimed at developing theoretical methods to address the main factors involved in this process: (i) surface reconstruction at negative potential; (ii) chemical effects on copper selectivity; and (iii) the effect of the electrolyte. Chapters I and II were dedicated to the motivations and methods. After having benchmarked in Chapter 3 well-established experimental results, such as the morphology dependence of CO2 product distribution on copper local morphology, I investigated the reconstruction of polycrystalline copper at negative potentials. This process is driven by local surface polarization, which destabilizes close-packed domains and promotes (100) facets and defects. Following theoretical guidelines, I synthesized an effective copper-based catalyst with produced ethylene at high yield and high current density. In Chapter V I studied a complex oxide-derived copper material to provide insights about copper oxidation state, its coordination and surface ensembles active toward C2+ chemicals. Among the outcomes, I demonstrated that polarization drives CO2 reduction activity, whilst a newly reported intermediate, a deprotonated glyoxylate, triggers C2+ selectivity. In chapter VI I dedicated to chemical effects on copper reactivity. Sulfur adatoms, acting as strong tethering centers enable the generation of formate, a chemical employed as preservative for animal food stock. Finally, in Appendix A I introduced cation effect on CO2 reduction, not yet fully understood but having a clear relevance on product distribution.
Fugate, Elizabeth Anne. "Investigation of Electronic Structure Effects of Transition Metal Oxides toward Water Oxidation and CO2 Reduction Catalysis." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462868623.
Повний текст джерелаChakraborty, Sumit. "Homogeneous Catalysis of Nickel Hydride Complexes Bearing a Bis(phosphinite) Pincer Ligand." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1342716471.
Повний текст джерелаFrogneux, Xavier. "Transformations réductrices du CO2 pour la formation de liaisons C-N et C-C." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112136/document.
Повний текст джерелаIn the current world, carbon dioxide (CO2) is the major waste of the massive utilization of fossil resources but only few applications have been developed using this compound. In order to take advantage of its abundancy, the development of novel chemical transformation of CO2 to produce fine chemicals is of high interest in the scientific community. In particular, the formation of C-N bond(s) from CO2 and amine compounds unlocks a new way to access high energy and value-added. A second type of highly desirable transformation is the formation of C-C bonds with CO2 so as to synthesize carboxylic acid derivatives. The utilization of hydrosilanes as mild reductants allows the reactions to proceed under 1 bar of CO2 with abundant and cheap metal-based catalysts (iron, zinc) or with organocatalysts. The synthesis of formamides, methylamines and aminals from CO2 are described herein. Ultimately, the catalytic carboxylation of carbosilanes has been achieved for the first time using copper-based complexes. In the specific case of 2-pyridylsilanes, the use of pentavalent fluoride salts allowed us to perform the reaction without catalyst
Giang, Hannah. "Rational Fabrication of Molybdenum Disulfide and Metal-doped Molybdenum Disulfide Thin Films via Electrodeposition Method for Energy Storage, Catalysis, and Biosensor Applications." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1861.
Повний текст джерелаKour, Gurpreet. "First principles investigations on transition metal based electrocatalysts for efficient clean energy conversion." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/232798/1/Gurpreet_Kour_Thesis.pdf.
Повний текст джерелаКниги з теми "CO2 reduction catalysis"
Weichselbaumer, Melanie. Pyridine-functionalized Polymeric Catalysts for CO2-Reduction. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-10358-3.
Повний текст джерелаWeichselbaumer, Melanie. Pyridine-functionalized Polymeric Catalysts for CO2-Reduction. Springer Spektrum, 2015.
Знайти повний текст джерелаWeichselbaumer, Melanie. Pyridine-Functionalized Polymeric Catalysts for CO2-Reduction. Spektrum Akademischer Verlag GmbH, 2015.
Знайти повний текст джерелаIshida, Hitoshi, Charles Machan, Marc Robert, and Nobuharu Iwasawa, eds. Molecular Catalysts for CO2 Fixation/Reduction. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-622-8.
Повний текст джерелаMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Incorporated, John, 2022.
Знайти повний текст джерелаMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Incorporated, John, 2022.
Знайти повний текст джерелаMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Incorporated, John, 2022.
Знайти повний текст джерелаMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Limited, John, 2021.
Знайти повний текст джерелаPayne, Emma Kate. The synthesis and characterization of novel platinum and palladium diimene compounds for use as anticancer drugs and CO2 reduction catalyst. 2003.
Знайти повний текст джерелаЧастини книг з теми "CO2 reduction catalysis"
Wilcox, Jennifer. "The Role of CO2 Reduction Catalysis in Carbon Capture." In Carbon Capture, 245–55. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2215-0_8.
Повний текст джерелаRisbridger, Thomas, and Ross Anderson. "Chapter 2. Bio-inspired and Bio-electrochemical Approaches in CO2 Reduction Catalysis." In Electrochemical Reduction of Carbon Dioxide, 17–62. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781782623809-00017.
Повний текст джерелаGan, Lu, David Jennings, Joseph Laureanti, and Anne Katherine Jones. "Biomimetic Complexes for Production of Dihydrogen and Reduction of CO2." In Homo- and Heterobimetallic Complexes in Catalysis, 233–72. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_146.
Повний текст джерелаHaider, Mohd Belal, Mata Mani Tripathi, Zakir Hussain, and Rakesh Kumar. "Potential Application of Ionic Liquids and Deep Eutectic Solvents in Reduction of Industrial CO2 Emissions." In Catalysis for Clean Energy and Environmental Sustainability, 643–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65021-6_20.
Повний текст джерелаSreejith, S. S., Nithya Mohan, and M. R. P. Kurup. "Emergent Catalytic Materials Towards CO2 Reduction." In Emerging Materials, 315–60. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1312-9_9.
Повний текст джерелаLi, Yuehui, Kathrin Junge, and Matthias Beller. "Zinc-Catalyzed Reductions of Unsaturated Compounds." In Zinc Catalysis, 5–32. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675944.ch2.
Повний текст джерелаBonincontro, Danilo, and Elsje Alessandra Quadrelli. "CO2 Reduction Reactions by Rhodium-Based Catalysts." In Topics in Organometallic Chemistry, 263–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/3418_2016_172.
Повний текст джерелаSubramaniam, Jeevithra Dewi, and Pei Meng Woi. "Recent Advancement of Electrocatalyst System in CO2 Reduction." In Nano-catalysts for Energy Applications, 114–36. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003082729-7.
Повний текст джерелаMa, Ming, and Wilson A. Smith. "Nanostructured Catalysts for the Electrochemical Reduction of CO2." In Nanostructure Science and Technology, 337–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59662-4_11.
Повний текст джерелаBoddu, Sanyasinaidu, S. T. Nishanthi, and Kamalakannan Kailasam. "Visible-Light Heterogeneous Catalysts for Photocatalytic CO2 Reduction." In Visible Light-Active Photocatalysis, 421–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527808175.ch15.
Повний текст джерелаТези доповідей конференцій з теми "CO2 reduction catalysis"
Ly, Khoa Hoang. "Operando Vibrational Spectroelectrochemistry for Studying CO2 Reduction Catalysis Promoted by Molecularly-defined Electrocatalysts." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.223.
Повний текст джерелаLy, Khoa Hoang. "Operando Vibrational Spectroelectrochemistry for Studying CO2 Reduction Catalysis Promoted by Molecularly-defined Electrocatalysts." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.223.
Повний текст джерелаChai, Rukaun, Yuetian Liu, Qianjun Liu, Xuan He, and Pingtian Fan. "Effect and Mechanism of CO2 Electrochemical Reduction for CCUS-EOR." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206135-ms.
Повний текст джерелаMorita, Daiki, Yuya Kotani, Qiuyue Zu, Fuka Yoshida, Ratnak Sok, and Jin Kusaka. "Acceleration of Fast-SCR Reaction by Eliminating “The Ammonia Blocking Effect”." In CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-37-0001.
Повний текст джерелаDomingo Tafalla, Beatriu, Tamal Chatterjee, Federico Franco, and Emilio Palomares Gil. "Electro- and Photo-induced Interfacial Charge Transfers in Nanocrystalline Mesoporous TiO2 and TiO2/Iron Porphyrin Sensitized Films Under CO2 Reduction Catalysis." In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.109.
Повний текст джерелаTomin, Sebastian, Uwe Wagner, and Thomas Koch. "Effect of Dithering on Post-Catalyst Exhaust Gas Composition and on Short Time Regeneration of Deactivated PdO/Al <sub>2</sub> O <sub>3</sub> Catalysts under Real Engine Conditions." In CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-37-0002.
Повний текст джерелаBerahim, Nor Hafizah, and Akbar Abu Seman. "CO2 Utilization: Converting Waste into Valuable Products." In SPE Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210729-ms.
Повний текст джерелаFerreri, Paolo, Giuseppe Cerrelli, Yong Miao, Stefano Pellegrino, and Lorenzo Bianchi. "Conventional and Electrically Heated Diesel Oxidation Catalyst Physical Based Modeling." In CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-37-0010.
Повний текст джерелаPolaert, Isabelle, Bachar Alrafei, Jose Delgado-Liriano, and Alain Ledoux. "Synergetic effect of microwave plasma and catalysts in CO2 methanation." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9806.
Повний текст джерелаHofstetter, Johannes, Paul Boucharel, Frank Atzler, and Georg Wachtmeister. "Fuel Consumption and Emission Reduction for Hybrid Electric Vehicles with Electrically Heated Catalyst." In CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-37-0017.
Повний текст джерелаЗвіти організацій з теми "CO2 reduction catalysis"
Badrinarayanan and Olsen. PR-179-11201-R01 Performance Evaluation of Multiple Oxidation Catalysts on a Lean Burn Natural Gas Engine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2012. http://dx.doi.org/10.55274/r0010772.
Повний текст джерелаBetley, Theodore, M. Lalonde, G. T. Sazama, and A. B. Scharf. Bifunctional Catalysts for CO2 Reduction. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada610432.
Повний текст джерелаSariciftci, Niyazi Serdar. CO2 Recycling: The Conversion of Renewable Energy into Chemical Fuels. AsiaChem Magazine, November 2020. http://dx.doi.org/10.51167/acm00011.
Повний текст джерелаSimmons. L51814 Survey Of Dry Low NOx Combustor Experience. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 1999. http://dx.doi.org/10.55274/r0010207.
Повний текст джерела