Добірка наукової літератури з теми "CO2-based technology"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "CO2-based technology".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "CO2-based technology"
Gao, Shiwang, Dongfang Guo, Hongguang Jin, Sheng Li, Jinyi Wang, and Shiqing Wang. "Potassium Carbonate Slurry-Based CO2 Capture Technology." Energy & Fuels 29, no. 10 (September 29, 2015): 6656–63. http://dx.doi.org/10.1021/acs.energyfuels.5b01421.
Повний текст джерелаZhumagaliyeva, А., V. Gargiulo, F. Raganat, Ye Doszhanov, and M. Alfe. "Carbon based nanocomposite material for CO2 capture technology." Горение и Плазмохимия 17, no. 1 (June 5, 2019): 9–13. http://dx.doi.org/10.18321/cpc283.
Повний текст джерелаWang, Xiaolin, Shufan Yang, Hai Zhang, Xingguang Xu, Colin D. Wood, and Wojciech Lipiński. "Amine infused hydrogel-based CO2 gas storage technology for CO2 hydrate-based cold thermal energy storage." Journal of CO2 Utilization 53 (November 2021): 101705. http://dx.doi.org/10.1016/j.jcou.2021.101705.
Повний текст джерелаАрхипов, В. Н., А. А. Анкудинов, А. А. Мочалова, С. А. Ященко, and Г. В. Улыбышев. "CCUS technology from theory to practice." Нефтяная провинция 1, no. 4(36) (December 30, 2023): 166–76. http://dx.doi.org/10.25689/np.2023.4.166-176.
Повний текст джерелаEspatolero, Sergio, and Luis M. Romeo. "Optimization of Oxygen-based CFBC Technology with CO2 Capture." Energy Procedia 114 (July 2017): 581–88. http://dx.doi.org/10.1016/j.egypro.2017.03.1200.
Повний текст джерелаLiu, Xiaolei, Caifang Wu, and Kai Zhao. "Feasibility and Applicability Analysis of CO2-ECBM Technology Based on CO2–H2O–Coal Interactions." Energy & Fuels 31, no. 9 (August 30, 2017): 9268–74. http://dx.doi.org/10.1021/acs.energyfuels.7b01663.
Повний текст джерелаLiu, Yudong, Guizhou Ren, Honghong Shen, Gang Liu, and Fangqin Li. "Technology of CO2 capture and storage." E3S Web of Conferences 118 (2019): 01046. http://dx.doi.org/10.1051/e3sconf/201911801046.
Повний текст джерелаYang, Zhibin, Ze Lei, Ben Ge, Xingyu Xiong, Yiqian Jin, Kui Jiao, Fanglin Chen, and Suping Peng. "Development of catalytic combustion and CO2 capture and conversion technology." International Journal of Coal Science & Technology 8, no. 3 (June 2021): 377–82. http://dx.doi.org/10.1007/s40789-021-00444-2.
Повний текст джерелаIgnatusha, Pavlo, Haiqing Lin, Noe Kapuscinsky, Ludmila Scoles, Weiguo Ma, Bussaraporn Patarachao, and Naiying Du. "Membrane Separation Technology in Direct Air Capture." Membranes 14, no. 2 (January 24, 2024): 30. http://dx.doi.org/10.3390/membranes14020030.
Повний текст джерелаBardeau, Tiphaine, Raphaelle Savoire, Maud Cansell, and Pascale Subra-Paternault. "Recovery of oils from press cakes by CO2-based technology." OCL 22, no. 4 (May 1, 2015): D403. http://dx.doi.org/10.1051/ocl/2015004.
Повний текст джерелаДисертації з теми "CO2-based technology"
Ma, Chunyan. "Development of low-cost ionic liquids based technology for CO2 separation." Licentiate thesis, Luleå tekniska universitet, Energivetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-72567.
Повний текст джерелаHayagan, Neil. "Li-ion battery (LIB) direct recycling using pressurized CO2-based technology." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0239.
Повний текст джерелаLithium-ion batteries (LIBs) have revolutionized portable electronics and expanded into the mobility sector through advancements in electrode materials, electrolytes, and production processes. However, the growing LIB demand poses global waste management challenges. As critical resources, LIB materials require efficient recycling within the context of circular economy while meeting sustainability and carbon-neutrality goals. Conventional recycling methods, such as pyrometallurgy and hydrometallurgy, fall short in fully recovering LIB components, particularly as production scraps—a new, pristine waste stream—emerge. Direct recycling, a novel and efficient strategy, preserves material properties such as composition, structure, and properties, improving the recovery rates. This dissertation explores direct recycling of production scraps and evaluate spent 18650 cells their recycling potential across varying levels of degradation. A novel CO2-based process was developed for the direct recycling of LIB electrode production scrap. Using a solvent mixture of triethyl phosphate, acetone, and CO2, binder dissolution was enhanced and the delamination of positive electrode materials was accelerated, efficiently separating LiNi0.6Mn0.2Co0.2O2 (NMC622) from the current collector. The study also explores the degradation in 18650 cells with NMC622 cathode, graphite anode, and EC-based electrolyte under various ageing protocols, revealing significant material changes, including Li loss, electrolyte decomposition, and Mn migration. Liquid CO2 and acetonitrile were used to extract carbonates and liquid degradation products, while dimethyl carbonate as a cosolvent with liquid CO2 allowed high lithium recovery. These findings provide valuable insights into battery aging and highlight challenges for effective direct recycling, emphasizing the need for innovative strategies to address this complex degradation processes
Tang, Yunxin. "Investigation of multi-joule TEA CO2 laser based on magnetic-spiker sustainer discharge technology." Thesis, Heriot-Watt University, 1998. http://hdl.handle.net/10399/1995.
Повний текст джерелаAbdul, Manaf Norhuda. "MANAGEMENT DECISION SUPPORT SYSTEM OF SOLVENT-BASED POST-COMBUSTION CARBON CAPTURE." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16567.
Повний текст джерелаKotelnikova, Alena. "Analysis of a hydrogen-based transport system and the role of public policy in the transition to a decarbonised economy." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX057/document.
Повний текст джерелаWhat economic and policy framework would foster a transition in the European transport sector from fossil fuels to hydrogen in the long term (2030-50)? This research combines empirical and theoretical approaches and aims to answers the following questions:1. How to design appropriate policy instruments to solve inefficiencies in hydrogen mobility deployment?2. How to define abatement cost and an optimal launching date in the presence of learning-by-doing (LBD)?3. How to define an optimal deployment trajectory in presence of LBD and convexity in investment costs?The paper ‘Transition Towards a Hydrogen-Based Passenger Car Transport: Comparative Policy Analysis‘ draws a cross-country comparison between policy instruments that support the deployment of Fuel Cell Electric Vehicle (FCEV). The existing policy framework in favour of FCEV and hydrogen infrastructure deployment is analysed. A set of complementary ex-post policy efficiency indicators is developed and calculated to rank the most active countries, supporters of FCEV. Denmark and Japan emerge as the best providers of favourable conditions for the hydrogen mobility deployment: local authorities put in place price-based incentives (such as subsidies and tax exemptions) making FCEV more financially attractive than its gasoline substitute, and coordinate ramping-up of their hydrogen infrastructure nationally.The paper ’Defining the Abatement Cost in Presence of Learning-by-doing: Application to the Fuel Cell Electric Vehicle’ models the transition of the transport sector from a pollutant state to a clean one. A partial equilibrium model is developed for a car sector of a constant size. In this model the objective of the social planner is to minimize the cost of phasing out a stock of polluting cars from the market over time. The cost includes the private cost of green cars production, which are subject to LBD, and the social cost of carbon, which has an exogenous upward trend. During the transition, the equalization of marginal costs takes into account the fact that the current action has an impact on future costs through LBD. This paper also describes a suboptimal plan: if the deployment trajectory is exogenously given, what is the optimal starting date for the transition? The paper provides a quantitative assessment of the FCEV case for the substitution of the mature Internal Combustion Engine (ICE) vehicles. The analysis concludes that the CO2 price should reach 53€/t for the program to start and for FCEV to be a socially beneficial alternative for decarbonizing part of the projected German car park in the 2050 time frame.The impact of LBD on the timing and costs of emission abatement is, however, ambiguous. On the one hand, LBD supposes delaying abatement activities because of cost reduction of future abatement due to LBD. On the other hand, LBD supposes starting the transition earlier because of cost reduction due to added value to cumulative experience. The paper ‘The Role of Learning-by-Doing in the Adoption of a Green Technology: the Case of Linear LBD’ studies the optimal characteristics of a transition towards green vehicles in the transport sector when both LBD and convexity are present in the cost function. The partial equilibrium model of (Creti et al., 2015) is used as a starting point. For the case of linear LBD the deployment trajectory can be analytically obtained. This allows to conclude that a high learning induces an earlier switch towards green cars in the case of low convexity, and a later switch in the case of high convexity. This insight is used to revisit the hydrogen mobility project in Germany. A high learning lowers the corresponding deployment cost and reduces deepness and duration of the, investment ‘death valley’ (period of negative project’s cash flow). An acceleration of exogenously defined scenario for FCEV deployment, based on the industry forecast, would be beneficial to reduce the associated transition cost
Durand, Véronique. "Développement d’un nouveau procédé de synthèse de membranes inorganiques ou composites par voie CO2 supercritique pour la séparation de gaz." Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20175.
Повний текст джерелаUsing membranes for the separation/purification of gas mixtures makes possible the implementation of continuous processes with low energy consumption. Membrane performance being directly related to their synthesis/modification method, a new membrane generation is expected from the original "dynamic" deposition method which has been designed and developed in this work, in supercritical CO2 (scCO2) media. Indeed, the properties of supercritical fluids are intermediate between those of liquids and gases (high density and diffusivity, low viscosity), original membrane microstructures are expected to be derived from this process. The selected precursors are solubilized in compressed CO2 and then transported to the membrane support. This method has been explored for both: i) the synthesis of silica-based membranes on macroporous supports and ii) the modification of MFI zeolite membranes by either alkoxides (MDES, TEOS) or fluorinated oligomers. In the first case, an investigation of the deposition parameters demonstates that the sol-gel chemistry (controlled mainly by temperature) masters the final material microstructure, through the degree of condensation/crosslinking of the deposited clusters. Modification of MFI zeolite membranes with alkoxides can double their initial He/SF6 permselectivity without lowering too much their permeance (Π(He)~10-6 mol.Pa-1.s-1.m-2). In this case, the alkoxide fixation is monitored by the strength, nature and availability of acid sites in the MFI network. MFI membranes modified with fluorinated oligomers are SF6-tight and their He/N2 permselectivity can reach 136 at 25°C (Π(He)~10-8 mol.Pa-1.s-1.m-2). This new dynamic deposition/modification method developed in this work appears as a versatile approach in which the final material structure can be controlled by adjusting the process parameters
Rao, Ananya S. "Trends and Variability in Terrestrial Carbon Fluxes and Stocks over India in the 20th and 21st centuries: A Multi-model Based Assessment." Thesis, 2019. https://etd.iisc.ac.in/handle/2005/4826.
Повний текст джерелаSamanta, Arup. "Nano-Crystalline Silicon and Quantum Dots in SiOx Matrix: Synthesis by RF Plasma CVD and Characterization for Device Applications." Thesis, 2019. http://hdl.handle.net/10821/8327.
Повний текст джерелаThe research was conducted under the supervision of Prof. Debojyoti Das of the Energy Research Unit [ERU] under SPS [School of Physical Sciences]
The research was carried out under IACS fellowship and DST research grant
Книги з теми "CO2-based technology"
Liu, Helei. Post-combustion CO2 Capture Technology: By Using the Amine Based Solvents. Springer, 2018.
Знайти повний текст джерелаThompson, William R., and Leila Zakhirova. Energy, Technology, and (Possibly) the Nature of the Next World Economy Upswing. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190699680.003.0010.
Повний текст джерелаCook, Peter, ed. Geologically Storing Carbon. CSIRO Publishing, 2014. http://dx.doi.org/10.1071/9781486302314.
Повний текст джерелаЧастини книг з теми "CO2-based technology"
Bogaerts, Annemie, Xin Tu, and Tomohiro Nozaki. "Plasma-Based CO2 Conversion." In Green Chemistry and Sustainable Technology, 209–43. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8822-8_10.
Повний текст джерелаZhang, Guoliang, and Zehai Xu. "CO2 Conversion via MOF-Based Catalysts." In Green Chemistry and Sustainable Technology, 1–36. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8822-8_1.
Повний текст джерелаOsazuwa, Osarieme Uyi, and Sumaiya Zainal Abidin. "Catalysis for CO2 Conversion; Perovskite Based Catalysts." In Advances in Science, Technology & Innovation, 297–310. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72877-9_15.
Повний текст джерелаBeér, János. "CO2 Reduction and Coal-Based Electricity Generation electricity generation." In Encyclopedia of Sustainability Science and Technology, 2163–73. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_74.
Повний текст джерелаLi, Hui, Xinchuang Li, Weijian Tian, Zhe Chen, and Hao Bai. "CO2 Emission Calculation Model of Integrated Steel Works Based on Process Analysis." In Energy Technology 2021, 29–38. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65257-9_4.
Повний текст джерелаAshraf, Wasim, M. Ramgopal, and V. M. Reddy. "Performance Analysis of an s-CO2 Based Solar Flat Plate Collector." In Green Energy and Technology, 385–95. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2279-6_33.
Повний текст джерелаArora, Isha, Harshita Chawla, Amrish Chandra, Suresh Sagadevan, and Seema Garg. "Bismuth-Based Photocatalytic Material for Clean Energy Production and CO2 Reduction." In Green Chemistry and Sustainable Technology, 363–94. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27707-8_15.
Повний текст джерелаKokogawa, Tomohiro. "Trial of Building a Resilient Face-To-Face Classroom Based on CO2-Based Risk Awareness." In IFIP Advances in Information and Communication Technology, 95–106. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04170-9_7.
Повний текст джерелаArastoopour, Hamid, and Javad Abbasian. "Chemical Looping of Low-Cost MgO-Based Sorbents for CO2 Capture in IGCC." In Handbook of Chemical Looping Technology, 435–59. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527809332.ch14.
Повний текст джерелаSenthilkumaran, Marimuthu, Venkatesan Sethuraman, and Paulpandian Muthu Mareeswaran. "Efficient Photoactive Materials for CO2 Conversion into Valuable Products Using Organic and Inorganic-Based Composites." In Green Chemistry and Sustainable Technology, 395–415. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-27707-8_16.
Повний текст джерелаТези доповідей конференцій з теми "CO2-based technology"
zhang, fengrui, jun ma, and lei wang. "SVMD-based denoising methods for differential absorption lidar retrieval of CO2 concentration profiles." In Fourth International Conference on Optics and Communication Technology (ICOCT 2024), edited by Yang Zhao and Yongjun Xu, 29. SPIE, 2024. http://dx.doi.org/10.1117/12.3049764.
Повний текст джерелаZhao, Yunhe, Shiqi Chen, Chengbo Mou, Yunqi Liu, and Zuyuan He. "Directional Bending Sensor based on LP11 Mode from Few-Mode Ring-Core Fiber with Long-Period Grating." In CLEO: Applications and Technology, JW2A.75. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.75.
Повний текст джерелаWang, Eve (Wen), Stephen So, Feng Xie, Catherine Caneau, Chung-en Zah, and Gerard Wysocki. "Compact Quantum Cascade Laser Based Atmospheric CO2 Sensor." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cleo_at.2011.jmc5.
Повний текст джерелаTelipan, G., L. Pislaru-Danescu, and C. Racles. "CO2 detector based on organo-siloxane supramolecular polymer." In 2008 2nd Electronics Systemintegration Technology Conference. IEEE, 2008. http://dx.doi.org/10.1109/estc.2008.4684529.
Повний текст джерелаJacobson, Phillip L., George E. Busch, David C. Thompson, Dennis K. Remelius, and F. David Wells. "Improved CO2 lidar receiver based on ultralow-noise FPA technology." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by Arthur J. Sedlacek III and Kenneth W. Fischer. SPIE, 1999. http://dx.doi.org/10.1117/12.366428.
Повний текст джерелаTorres, Jose A., Lu Jin, Nicholas W. Bosshart, Lawrence J. Pekot, James A. Sorensen, Kyle Peterson, Parker W. Anderson, and Steven B. Hawthorne. "Multiscale Modeling to Evaluate the Mechanisms Controlling CO2-Based Enhanced Oil Recovery and CO2 Storage in the Bakken Formation." In Unconventional Resources Technology Conference. Tulsa, OK, USA: American Association of Petroleum Geologists, 2018. http://dx.doi.org/10.15530/urtec-2018-2902837.
Повний текст джерелаSæle, Aleksandra M., Arne Graue, and Zachary Paul Alcorn. "The Effect of Rock Type on CO2 Foam for CO2 EOR and CO2 Storage." In International Petroleum Technology Conference. IPTC, 2023. http://dx.doi.org/10.2523/iptc-22918-ms.
Повний текст джерелаChen, Zhexin, Chunping Niu, Hantian Zhang, Hao Sun, Yi Wu, Fei Yang, Mingzhe Rong, and Zhenghong Xu. "Investigation on the reduced critical breakdown field of hot CO2 gas and CO2-based mixtures." In 2015 3rd International Conference on Electric Power Equipment - Switching Technology (ICEPE-ST). IEEE, 2015. http://dx.doi.org/10.1109/icepe-st.2015.7368390.
Повний текст джерелаYeasmin, Samira, Sonia Noor Jahan Syed, Leena Abu Shmais, and Raghad Al Dubayyan. "Artificial Intelligence-based CO2 Emission Predictive Analysis System." In 2020 International Conference on Artificial Intelligence & Modern Assistive Technology (ICAIMAT). IEEE, 2020. http://dx.doi.org/10.1109/icaimat51101.2020.9307995.
Повний текст джерелаSun, Kaiwen, Shujie Zhou, Rose Amal, and Xiaojing Hao. "Kesterite-based photocathode for photoelectrochemical CO2 reduction and NH3 production." In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.310.
Повний текст джерелаЗвіти організацій з теми "CO2-based technology"
Jayaweera, Palitha. Mixed-Salt Based Transformational Solvent Technology for CO2 Capture. Office of Scientific and Technical Information (OSTI), March 2024. http://dx.doi.org/10.2172/2337752.
Повний текст джерелаTanthana, Jak, Paul Mobley, Dennis Gilmore, Gary Howe, Jonathan Thornburg, Ryan Chartier, Lucas Cody, Jacob Lee, Vijay Gupta, and Marty Lail. EMISSIONS MITIGATION TECHNOLOGY FOR ADVANCED WATER-LEAN SOLVENT-BASED CO2 CAPTURE PROCESSES. Office of Scientific and Technical Information (OSTI), March 2022. http://dx.doi.org/10.2172/1875691.
Повний текст джерелаLail, Marty. Engineering Scale Testing of Transformational Non-Aqueous Solvent-Based CO2 Capture Process at Technology Center Mongstad. Office of Scientific and Technical Information (OSTI), February 2024. http://dx.doi.org/10.2172/2316060.
Повний текст джерелаNelson, Thomas, Luke Coleman, Matthew Anderson, Raghubir Gupta, Joshua Herr, Ranjeeth Kalluri, and Maruthi Pavani. Development of a Dry Sorbent-based Post-Combustion CO2 Capture Technology for Retrofit in Existing Power Plants. Office of Scientific and Technical Information (OSTI), December 2009. http://dx.doi.org/10.2172/1030644.
Повний текст джерелаRubin, Edward S., and Anand B. Rao. A TECHNICAL, ECONOMIC AND ENVIRONMENTAL ASSESSMENT OF AMINE-BASED CO2 CAPTURE TECHNOLOGY FOR POWER PLANT GREENHOUSE GAS CONTROL. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/804932.
Повний текст джерелаHeldebrant, David. CO2-Binding Organic Liquids Gas Capture with Polarity-Swing-Assisted Regeneration Full Technology Feasibility Study B1 - Solvent-based Systems. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1151840.
Повний текст джерелаLu, Yongqi. Engineering-Scale Testing of the Biphasic Solvent Based CO2 Absorption Capture Technology at a Covanta Waste-to-Energy Facility. Office of Scientific and Technical Information (OSTI), May 2024. http://dx.doi.org/10.2172/2350965.
Повний текст джерелаAlmutairi, Hossa, and Axel Pierru. Assessing Climate Mitigation Benefits of Public Support to CCS-EOR: An Economic Analysis. King Abdullah Petroleum Studies and Research Center, June 2023. http://dx.doi.org/10.30573/ks--2023-dp12.
Повний текст джерелаPfeil, Benjamin. SOCAT Quality Control (QC) procedures. EuroSea, 2022. http://dx.doi.org/10.3289/eurosea_d4.7.
Повний текст джерелаDudareva, Natalia, Alexander Vainstein, Eran Pichersky, and David Weiss. Integrating biochemical and genomic approaches to elucidate C6-C2 volatile production: improvement of floral scent and fruit aroma. United States Department of Agriculture, September 2007. http://dx.doi.org/10.32747/2007.7696514.bard.
Повний текст джерела