Добірка наукової літератури з теми "Co-Evolving data"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Co-Evolving data".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Co-Evolving data"
Wang, Yi, and Tao Li. "Improving semi-supervised co-forest algorithm in evolving data streams." Applied Intelligence 48, no. 10 (February 20, 2018): 3248–62. http://dx.doi.org/10.1007/s10489-018-1149-7.
Повний текст джерелаPraczyk, Tomasz. "Evolving Co-Adapted Subcomponents in Assembler Encoding." International Journal of Applied Mathematics and Computer Science 17, no. 4 (December 1, 2007): 549–63. http://dx.doi.org/10.2478/v10006-007-0045-9.
Повний текст джерелаDeng, Jinliang, Xiusi Chen, Zipei Fan, Renhe Jiang, Xuan Song, and Ivor W. Tsang. "The Pulse of Urban Transport: Exploring the Co-evolving Pattern for Spatio-temporal Forecasting." ACM Transactions on Knowledge Discovery from Data 15, no. 6 (May 19, 2021): 1–25. http://dx.doi.org/10.1145/3450528.
Повний текст джерелаHengpraprohm, Supoj, Kairung Hengpraprohm, Dech Thammasiri, and Suvimol Mukviboonchai. "Co-Evolving Ensemble of Genetic Algorithm Classifier for Cancer Microarray Data Classification." Advanced Science Letters 24, no. 2 (February 1, 2018): 1330–33. http://dx.doi.org/10.1166/asl.2018.10743.
Повний текст джерелаYuan, Yinyin. "Abstract IA006: Co-evolving artificial intelligence and pathology." Cancer Prevention Research 15, no. 12_Supplement_1 (December 1, 2022): IA006. http://dx.doi.org/10.1158/1940-6215.dcis22-ia006.
Повний текст джерелаKhouri, Selma, and Ladjel Bellatreche. "LOD for Data Warehouses: Managing the Ecosystem Co-Evolution." Information 9, no. 7 (July 17, 2018): 174. http://dx.doi.org/10.3390/info9070174.
Повний текст джерелаClayson, Amanda, Lucy Webb, and Nigel Cox. "When two worlds collide: critical reflection on co-production." Drugs and Alcohol Today 18, no. 1 (March 5, 2018): 51–60. http://dx.doi.org/10.1108/dat-08-2017-0040.
Повний текст джерелаMohd Amran Mohd Daril, Fozia Fatima, Samar Raza Talpur, and Alhamzah F. Abbas. "Unveiling the Landscape of Big Data Analytics in Healthcare: A Comprehensive Bibliometric Analysis." International Journal of Online and Biomedical Engineering (iJOE) 20, no. 06 (April 12, 2024): 4–24. http://dx.doi.org/10.3991/ijoe.v20i06.48085.
Повний текст джерелаJudijanto, Loso, Adi Suroso, and Andriya Risdwiyanto. "Bibliometric Assessment of Data-Driven Marketing Research Trends in the Last Two Decades." West Science Business and Management 2, no. 03 (September 30, 2024): 987–1001. http://dx.doi.org/10.58812/wsbm.v2i03.1278.
Повний текст джерелаYasaka, Noriaki. "Data mining in anti-money laundering field." Journal of Money Laundering Control 20, no. 3 (July 3, 2017): 301–10. http://dx.doi.org/10.1108/jmlc-09-2015-0041.
Повний текст джерелаДисертації з теми "Co-Evolving data"
Li, Lei. "Fast Algorithms for Mining Co-evolving Time Series." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/112.
Повний текст джерелаOwusu, Patrick Asante. "Modélisation de dépendances dans des séries temporelles co-évolutives." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0104.
Повний текст джерелаCurrent research in time series analysis shows that there are insufficient formal approaches for modelling the dependencies of multiple or co-evolving time series as they change over time. In this dissertation, we develop a formal approach for analysing the temporality and evolution of dependencies via the definitions of sub-time series, where a sub-time series is a segment of the original time series data. In general, we design an approach based on the principle of sliding windows to analyse the temporal nature and dependency changes between evolving time series. More precisely, each sub-time series is analysed independently to understand the local dependencies and how these dependencies shift as the window moves forward in time. This, therefore, allows us to model the temporal evolution of dependencies with finer granularity. Our contributions relating to the modelling of dependencies highlight the significance of understanding the dynamic interconnections between multiple time series that evolve together over time. The primary objective is to develop robust techniques to effectively capture these evolving dependencies, thereby improving the analysis and prediction of complex systems such as financial markets, climate systems, and other domains generating voluminous time series data. The dissertation explores the use of autoregressive models and proposes novel methods for identifying and modelling these dependencies, addressing the limitations of traditional methods that often overlook the temporal dynamics and scalability required for handling large datasets. A core aspect of the research is the development of a two-step approach to detect and model evolving effects in multiple time series. The first step involves identifying patterns to recreate series variations over various time intervals using finite linear models. This step is crucial for capturing the temporal dependencies within the data. By leveraging a sequence of bipartite graphs, the study models change across multiple time series, linking repetitive and new dependencies at varying time durations in sub-series. This approach not only simplifies the process of identifying dependencies but also provides a scalable solution for analysing large datasets, as demonstrated through experiments with, for example, real-world financial market data. The dissertation further emphasises the importance of interpretability in modelling co-evolving time series. By integrating large language models (LLMs) and context-aware techniques, the research enhances the understanding of the underlying factors driving changes in time series data. This interpretability is achieved through the construction of temporal graphs and the serialisation of these graphs into natural language, providing clear and comprehensive insights into the dependencies and interactions within the data. The combination of autoregressive models and LLMs enables the generation of plausible and interpretable predictions, making the approach suitable for real-world applications where trust and clarity in model outputs are paramount
"Studies on agent-based co-evolving networks." 2012. http://library.cuhk.edu.hk/record=b5549195.
Повний текст джерела在第二章及第四章,我們將Gräser等人的DASG及Vazquez等人的共同演化選民模型從一個控制參數推廣到二個獨立的控制參數。在他們的工作中,根據網絡的結構定義了一些相,而且發展了平均場理論。而在廣泛化的情況下,在已伸延的相空間上,我們也定義了一些相及發展了一些廣泛化的平均場理論。在廣泛化DASG中,我們以考慮在相邊界附近的最終生存形態(last surviving patterns)以解釋相邊界的電算模擬結果。
在第三章,我們提出及研究一個以誘惑驅動的雪堆博奕。該更新機制被稱為自省機制(self-questioning mechanism)。我們給出模擬及理論結果,也討論了該些結果的物理意義。
在第五章,我們推廣我們的研究至有三個策略的遊戲。我們提出及研究了一個ARPS模型,其中每個個體採用三個互相克制的策略的其中之一。每個個體以概率 p來重連不理想的連結或以概率 (1 - p)改變自身的策略以適應其周遭環境。我們研究了網絡於不同的 p值在穩定態的行為及定義 了一些相。我們研究兩個選取重連對象的方法,分別對應於隨機選取及刻意選取重連對象,也解釋了得出的結果。我們在有關穩定勝利、平手及失敗概率的研究中及哪種個體可以有更高的勝利概率的研究中得出了有趣的結果。我們也研究了結果如何取決於初始條件。
在不同的模型中,理論方程均建立於相似的想法上。理論結果得出模擬結果的主要特性,包括出現了不同的相。該分析方法被證明了在本論文中對不同的模型也有效,而該方法也可被應用於很多其他共同演化網絡上。
This thesis consists of four parts. In each part, we present results of an agent-based model of co-evolving network. Chapter 2 deals with a generalization of the Dissatisfied Adaptive Snowdrift Game (DASG) and Chapter 3 covers the self-questioning adaptive snowdrift game. Chapter 4 discusses a generalization of a co-evolving voter model. Chapter 5 gives the results on a cyclic three-character Adaptive Rock-Paper-Scissor (ARPS) game. The adaptive actions give rise to co-evolving processes in these models. These models are studied both numerically and analytically. An objective here is to establish a general analytic framework that is applicable to different models of co-evolving networks.
In Chapters 2 and 4, we generalize two existing models -the DASG of Gräser et al. and the co-evolving voter model of Vazquez et al. -from a single control parameter to two independent parameters. Different phases were identified according to the network structure and mean-field theories were developed in the previous work. With the expanded phase space in our generalized models, we identified different phases and provided a generalized mean-field approach. The phase boundaries in the generalized DASG can be explained by considering the last surviving patterns in the vicinity of the transition between two phases.
In Chapter 3, we propose and study a co-evolving snowdrift game in which the adaptive actions are driven by the desire to enhance winning. The updating scheme is called the self-questioning mechanism. We present simulation and theoretical results, and provide physical meaning to the results.
In Chapter 5, we extend our study to three-strategy games. An ARPS model in which each agent uses one of three strategies that dominate each other cyclically is proposed and studied. Each agent adapts his local environment by rewiring an un-favourable link with a probability p or switching his strategy with a probability 1-p. As p varies, the behaviour of the network in the steady state is studied and dierent phases are identified. Two dierent schemes corresponding to selecting the rewiring target randomly and intentionally are studied and the results are explained. Interesting results are also found in the probabilities of winning, losing and drawing in the steady state; and the type of agents that have a higher winning probability. The dependence on the initial distribution of the three strategies among the agents is also studied.
The analytic equations presented for each model in the thesis are established on similar ideas. The analytic results capture the main features in the simulation results, including the emergence of dierent phases. The analytic approach, proven to be useful through different models in this thesis, can be applied to a wide class of other co-evolving network models.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Choi, Chi Wun / 個體為本共同演化網絡的研究 / 蔡至桓.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2012.
Includes bibliographical references (leaves 114-116).
Abstracts also in Chinese.
Choi, Chi Wun / Ge ti wei ben gong tong yan hua wang luo de yan jiu / Cai Zhihuan.
Abstract --- p.i
摘要 --- p.iii
Acknowledgements --- p.v
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Introduction --- p.1
Chapter 1.2 --- Review --- p.5
Chapter 1.2.1 --- Network and basic graph properties --- p.5
Chapter 1.2.2 --- Two-person games --- p.6
Chapter 2 --- Generalization of Dissatisfied-Adaptive Snowdrift Game (DASG) --- p.8
Chapter 2.1 --- Introduction --- p.8
Chapter 2.2 --- Dissatisfied-Adaptive model --- p.12
Chapter 2.3 --- Previous work --- p.14
Chapter 2.4 --- Generalized Dissatisfied-Adaptive model --- p.16
Chapter 2.5 --- Simulation results --- p.17
Chapter 2.6 --- Theoretical analysis --- p.19
Chapter 2.6.1 --- Mean-Field approach --- p.19
Chapter 2.6.2 --- Theoretical results --- p.22
Chapter 2.7 --- Last surviving patterns --- p.25
Chapter 2.7.1 --- Observing the last surviving patterns --- p.25
Chapter 2.7.2 --- Applying the theory using extracted information from simulations --- p.26
Chapter 2.7.3 --- Further development of the theory --- p.28
Chapter 2.7.4 --- Results of the theory --- p.30
Chapter 2.8 --- Dependence on initial conditions and mean degree --- p.32
Chapter 2.9 --- Conclusion --- p.34
Chapter 3 --- Self-questioning Adaptive SG --- p.36
Chapter 3.1 --- Introduction --- p.36
Chapter 3.2 --- Self-questioning adaptive SG with control parameter r --- p.39
Chapter 3.2.1 --- Model --- p.39
Chapter 3.2.2 --- Results --- p.40
Chapter 3.3 --- Self-questioning adaptive SG with control parameters r and h --- p.42
Chapter 3.3.1 --- Model --- p.42
Chapter 3.3.2 --- Results --- p.43
Chapter 3.4 --- Conclusion --- p.45
Chapter 4 --- Generalization of co-evolving voter model --- p.46
Chapter 4.1 --- Introduction --- p.46
Chapter 4.2 --- Co-evolving voter model --- p.49
Chapter 4.3 --- Previous work --- p.50
Chapter 4.4 --- Simulation results --- p.52
Chapter 4.4.1 --- Results of macroscopic quantities --- p.52
Chapter 4.4.2 --- Results of trajectories by simulations --- p.54
Chapter 4.4.3 --- The largest component --- p.55
Chapter 4.4.4 --- Short Summary --- p.56
Chapter 4.5 --- Theoretical analysis --- p.57
Chapter 4.5.1 --- Mean-Field approach --- p.57
Chapter 4.5.2 --- Theoretical results --- p.59
Chapter 4.6 --- Dependence on initial conditions and mean degree --- p.60
Chapter 4.6.1 --- Results for different mean degrees --- p.60
Chapter 4.6.2 --- Results for different initial conditions --- p.61
Chapter 4.7 --- Conclusion --- p.63
Chapter 5 --- Adaptive Rock-Paper-Scissors games --- p.64
Chapter 5.1 --- Introduction --- p.64
Chapter 5.2 --- Adaptive Rock-Paper-Scissors Model --- p.67
Chapter 5.3 --- Simulation results --- p.70
Chapter 5.4 --- Theoretical analysis --- p.73
Chapter 5.4.1 --- Simplifications by threefold-symmetry --- p.73
Chapter 5.4.2 --- Changes in local quantities --- p.74
Chapter 5.4.3 --- Mean-Field approach --- p.75
Chapter 5.4.4 --- Theoretical results --- p.80
Chapter 5.5 --- Dependence on mean degree --- p.82
Chapter 5.6 --- Oriented rewiring method --- p.83
Chapter 5.7 --- Probabilities of winning, drawing and losing --- p.85
Chapter 5.7.1 --- Average probabilities of winning, drawing and losing in the steady state --- p.85
Chapter 5.7.2 --- Degree distribution and the distributions of the probabilities --- p.86
Chapter 5.7.3 --- Brief explanation --- p.88
Chapter 5.7.4 --- Results for a larger μ --- p.89
Chapter 5.7.5 --- Short summary --- p.90
Chapter 5.8 --- Results for general initial conditions --- p.92
Chapter 5.8.1 --- Coupled dynamical equations --- p.92
Chapter 5.8.2 --- Trajectories of the macroscopic quantities --- p.94
Chapter 5.8.3 --- Phases and theoretical ternary phase diagrams --- p.96
Chapter 5.9 --- Conclusion --- p.98
Chapter 6 --- Summary --- p.100
Chapter A --- Coupled dynamical equations for Self-questioning adaptive SG --- p.104
Chapter B --- Theoretical results for Self-questioning adaptive SG with control parameters r and h --- p.106
Chapter C --- Derivations of Mean-Field equations in ARPS model --- p.108
Chapter D --- Derivations of Mean-Field equations for the oriented rewiring method in ARPS model --- p.111
Bibliography --- p.114
Книги з теми "Co-Evolving data"
Matsumi, Hideyuki, Dara Hallinan, Diana Dimitrova, Eleni Kosta, and Paul De Hert, eds. Data Protection and Privacy, Volume 16. Hart Publishing, 2024. http://dx.doi.org/10.5040/9781509975976.
Повний текст джерелаCarvalho, André F., and Eduard Vieta, eds. The Treatment of Bipolar Disorder. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198748625.001.0001.
Повний текст джерелаЧастини книг з теми "Co-Evolving data"
Xiao, Hongmei, Xiuli Ma, Shiwei Tang, and Chunhua Tian. "Continuous Summarization of Co-evolving Data in Large Water Distribution Network." In Web-Age Information Management, 62–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14246-8_9.
Повний текст джерелаCheng, Yun, Xiucheng Li, and Yan Li. "Finding Dynamic Co-evolving Zones in Spatial-Temporal Time Series Data." In Machine Learning and Knowledge Discovery in Databases, 129–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46131-1_20.
Повний текст джерелаShapiro, J. L. "Does data-model co-evolution improve generalization performance of evolving learners?" In Lecture Notes in Computer Science, 540–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0056896.
Повний текст джерелаDetterer, Dion, and Paul Kwan. "COW: A Co-evolving Memetic Wrapper for Herb-Herb Interaction Analysis in TCM Informatics." In New Frontiers in Applied Data Mining, 361–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28320-8_31.
Повний текст джерелаBates, Jo, Alessandro Checco, and Elli Gerakopoulou. "Worker Perspectives on Designs for a Crowdwork Co-operative." In Transforming Communications – Studies in Cross-Media Research, 415–43. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96180-0_18.
Повний текст джерелаPhan, Thomas, Kavitha Ranganathan, and Radu Sion. "Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments and Data Replication in Wide-Area Systems Using a Genetic Algorithm." In Job Scheduling Strategies for Parallel Processing, 173–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11605300_9.
Повний текст джерелаJintrawet, Attachai, and Kono Yasuyuki. "Current Situation and Future of Precision Agriculture in Thailand." In Countries and Regions, 183–94. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2835-0_7.
Повний текст джерелаTan, Bowen, Shibo Hao, Eric Xing, and Zhiting Hu. "Chapter 7. Neural-Symbolic Interaction and Co-Evolving." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230139.
Повний текст джерелаMarks, R., D. Midgley, and L. Cooper. "Co-Evolving Better Strategies in Oligopolistic Price Wars." In Handbook of Research on Nature-Inspired Computing for Economics and Management, 806–21. IGI Global, 2007. http://dx.doi.org/10.4018/978-1-59140-984-7.ch052.
Повний текст джерелаAli, Mohammed. "Taxonomy of Industry 4.0 Technologies in Digital Entrepreneurship and Co-Creating Value." In Digital Entrepreneurship and Co-Creating Value Through Digital Encounters, 24–55. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-7416-7.ch002.
Повний текст джерелаТези доповідей конференцій з теми "Co-Evolving data"
Yoo, Jin Soung, Shashi Shekhar, Sangho Kim, and Mete Celik. "Discovery of Co-evolving Spatial Event Sets." In Proceedings of the 2006 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2006. http://dx.doi.org/10.1137/1.9781611972764.27.
Повний текст джерелаMatsubara, Yasuko, Yasushi Sakurai, Naonori Ueda, and Masatoshi Yoshikawa. "Fast and Exact Monitoring of Co-Evolving Data Streams." In 2014 IEEE International Conference on Data Mining (ICDM). IEEE, 2014. http://dx.doi.org/10.1109/icdm.2014.62.
Повний текст джерелаKimura, Tasuku, Yasuko Matsubara, Koki Kawabata, and Yasushi Sakurai. "Fast Mining and Forecasting of Co-evolving Epidemiological Data Streams." In KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3534678.3539078.
Повний текст джерелаMoran, Alejandro, Vincent Canals, Plamen P. Angelov, Christian F. Frasser, Erik S. Skibinsky-Gitlin, Joan Font, Eugeni Isern, Miquel Roca, and Josep L. Rossello. "Stochastic Computing co-processing elements for Evolving Autonomous Data Partitioning." In 2021 XXXVI Conference on Design of Circuits and Integrated Systems (DCIS). IEEE, 2021. http://dx.doi.org/10.1109/dcis53048.2021.9666167.
Повний текст джерелаMa, Yunqiang, Junli Lu, and Dazhi Yang. "Mining Evolving Spatial Co-location Patterns from Spatio-temporal Databases." In 2022 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE, 2022. http://dx.doi.org/10.1109/bigcomp54360.2022.00034.
Повний текст джерелаCazzola, Walter, Sonia Pini, Ahmed Ghoneim, and Gunter Saake. "Co-evolving application code and design models by exploiting meta-data." In the 2007 ACM symposium. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1244002.1244278.
Повний текст джерелаPillai, Karthik Ganesan, Rafal A. Angryk, Juan M. Banda, Michael A. Schuh, and Tim Wylie. "Spatio-temporal Co-occurrence Pattern Mining in Data Sets with Evolving Regions." In 2012 IEEE 12th International Conference on Data Mining Workshops. IEEE, 2012. http://dx.doi.org/10.1109/icdmw.2012.130.
Повний текст джерелаGu, Yupeng, Yizhou Sun, and Jianxi Gao. "The Co-Evolution Model for Social Network Evolving and Opinion Migration." In KDD '17: The 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3097983.3098002.
Повний текст джерелаTajeuna, Etienne Gael, and Mohamed Bouguessa. "Dynamic Cox-Regression for Motif Prediction in Co-Evolving Time Series Data." In 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022. http://dx.doi.org/10.1109/ijcnn55064.2022.9892174.
Повний текст джерелаEicken, Hajo, Olivia A. Lee, and Amy L. Lovecraft. "Evolving roles of observing systems and data co-management in Arctic Ocean governance." In OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016. http://dx.doi.org/10.1109/oceans.2016.7761298.
Повний текст джерелаЗвіти організацій з теми "Co-Evolving data"
Yi, B. K., N. D. Sidiropoulos, T. Johnson, H. V. Jagadish, and C. Faloutsos. Online Data Mining for Co-Evolving Time Sequences. Fort Belvoir, VA: Defense Technical Information Center, October 1999. http://dx.doi.org/10.21236/ada371154.
Повний текст джерелаBernardo, Allan, Jose Ramon Albert, Jana Flor Vizmanos, and Mika Muñoz. Toward Measuring Soft Skills for Youth Development: A Scoping Study. Philippine Institute for Development Studies, December 2023. http://dx.doi.org/10.62986/dp2023.28.
Повний текст джерела