Статті в журналах з теми "CO₂ laser"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: CO₂ laser.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "CO₂ laser".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Grigorian, Galina M., and Adam Cenian. "Influence of nitrogen on CO-laser characteristics." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 69. http://dx.doi.org/10.4302/plp.v9i2.675.

Повний текст джерела
Анотація:
The role of the addition of nitrogen to the discharge plasma of CO lasers on plasma-chemical processes is discussed here. It is shown that nitrogen addition improves laser characteristics and changes the composition of the laser active medium. A reduction of CO highly-excited vibrational-states populations with current is smaller in the case of mixtures with nitrogen additions. The addition of nitrogen significantly decreases CO dissociation level and concentrations of C atoms created in plasma-chemical reactions of laser discharge. Full Text: PDF ReferencesG.M. Grigorian and I.V. Kochetov, "Balance of CO molecules in the plasma of a sealed-off CO laser", Plasma Phys. Rep. 30, 788 (2004). CrossRef V.S. Aleinikov and V.I. Masychev, CO Lasers (Moscow, Radio i Svyaz' 1990).A. Cenian, A. Chernukho, V. Borodin and G.Śliwiński, "Modeling of Plasma-Chemical Reactions in Gas Mixture of CO2 Lasers I. Gas Decomposition in Pure CO2 Glow Discharge", Contr. Plasma Phys. 34, 25 (1994). CrossRef A. Cenian, A. Chernukho, V. Borodin, "Modeling of Plasma-Chemical Reactions in Gas Mixture of CO2 lasers. II. Theoretical Model and its Verification", Contrib. Plasma Phys. 35, 273 (1995). CrossRef A. Cenian, A. Chernukho, P. Kukiełło, R. Zaremba, V. Borodin and G. Śliwiński, "Improvement of self-regeneration of gas mixtures in a convection-cooled 1.2 kW laser", J.Phys. D: Appl.Phys. 30, 1103 (1997). CrossRef E.A. Trubacheev, Trudy FIAN 102, 3 (1977).G.M. Grigorian, B.M. Dymshits and Yu.Z. Ionikh, "Influence of oxygen on the parameters of the active medium in an electric-discharge CO laser", Sov J Quant Electron 19, 889 (1989). CrossRef V.N. Ochkin, S.Yu. Savinov, N.N. Sobolev and E.A. Trubacheev, Kvant. Elektr. 1, 573 (1974).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rytlewski, Piotr, Bartłomiej Jagodziński, Tomasz Karasiewicz, Piotr Augustyn, Daniel Kaczor, Rafał Malinowski, Krzysztof Szabliński, Marcin Mazurkiewicz, and Krzysztof Moraczewski. "Copper Filled Poly(Acrylonitrile-co-Butadiene-co-Styrene) Composites for Laser-Assisted Selective Metallization." Materials 13, no. 10 (May 12, 2020): 2224. http://dx.doi.org/10.3390/ma13102224.

Повний текст джерела
Анотація:
Selective metallization of polymeric materials using the technique known as laser direct structuring (LDS) is intensively developed. In this technique, metallized products can be manufactured by injection molding or by 3D printing process if rapid prototyping is need. Special additives present in the polymer matrix enable direct electroless metallization only on the surface which was laser activated. This paper presents the results of using copper microparticles introduced into the poly(acrylonitrile-butadiene-styrene) (ABS) matrix at various amounts (up to about 5 vol %). ABS was selected due to its good processing and mechanical properties and as one of the most common thermoplastics used in 3D printing. The influence of copper on structural, mechanical, and processing properties as well as on the effects of laser surface activation were determined. Two types of infrared lasers were tested for surface activation: Nd:YAG fiber laser (λ = 1064 nm) and CO2 laser (λ = 10.6 µm). Various irradiation parameters (power, scanning speed, and frequency) were applied to find suitable conditions for laser surface activation and electroless metallization. It was found that the composites tested can be effectively metallized using the Nd:YAG laser, but only in a narrow range of radiation parameters. Activation with CO2 laser failed, regardless of applied irradiation conditions. It resulted from the fact that ablation rate and thickness of modified surface layer for CO2 were lower than for Nd:YAG laser using the same irradiation parameters (power, speed, and frequency of laser beams), thus the laser wavelength was crucial for successful surface activation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Durante, E. J. "The carbon dioxide laser scalpel." Journal of the South African Veterinary Association 62, no. 4 (December 31, 1991): 191–92. http://dx.doi.org/10.4102/jsava.v62i4.2083.

Повний текст джерела
Анотація:
The CO₂-laser is currently used as a scalpel by a large number of medical surgeons, but in the field of veterinary surgery, relatively little has been published on the subject. A review of the origin of medical lasers, the basic physics of laser energy production and the characteristics of laser light was therefore considered necessary. This review includes a discussion on how the optical radiation generated by the different lasers is absorbed, the cutting power of the CO₂-laser, and the effect on healing, tensile strength and haemostasis when used in the skin, linea alba and gastrointestinal tract.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

BUZYKIN, O. G., A. A. IONIN, S. V. IVANOV, A. A. KOTKOV, L. V. SELEZNEV, and A. V. SHUSTOV. "Resonant absorption of first-overtone CO laser radiation by atmospheric water vapor and pollutants." Laser and Particle Beams 18, no. 4 (October 2000): 697–713. http://dx.doi.org/10.1017/s0263034600184113.

Повний текст джерела
Анотація:
Resonant absorption of first-overtone (FO) CO laser radiation by atmospheric water vapor and various organic and nonorganic pollutants is discussed. Suitable ro-vibrational lines are selected for their potential use in traditional spectroscopic schemes of atmospheric pollution diagnostics. Nonlinear atmospheric absorption of intense multiline FO CO laser radiation is simulated and laser-induced changes in absorption spectra are demonstrated. Absorption coefficients of a few substances on several FO CO ro-vibrational lines are experimentally measured. A comparative analysis of spectral characteristics of an FO CO laser and an HF (DF) laser demonstrates that the potential of FO CO laser applications for spectroscopic detection of various molecular trace gases is greater than that of HF and DF lasers.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Haris, Hazlihan, Ahmad Razif Muhammad, Norazlina Saidin, Mohd Shahnan Zainal Abidin, Hamzah Arof, Mukul Chandra Paul, and Sulaiman Wadi Harun. "Dual-Wavelength Thulium Ytterbium Co-Doped Fiber Laser." Indonesian Journal of Electrical Engineering and Computer Science 8, no. 2 (November 1, 2017): 457. http://dx.doi.org/10.11591/ijeecs.v8.i2.pp457-461.

Повний текст джерела
Анотація:
<p>We report on the generation of dual-wavelength fiber laser peaking at 1990.64 and 1998.92 nm with a simple ring cavity setup. The lasers are demonstrated using a fabricated silica-based nano-engineered octagonal shaped double-clad Thulium-Ytterbium co-doped fiber (TYDF) as a gain medium in a simple all-fiber ring configuration. By using 980 nm multimode laser, a stable dual-wavelength laser is generated at a threshold pump power of 1500 mW due to the non-polarization rotation (NPR) effect occurred in the cavity. The effect has been self-controlled by a suppression of mode competition in the gain medium. The result shows that the slope efficiency of the generated dual–wavelength laser is measured to be 27.23%. This dual-wavelength TYDF laser operated steadily at room temperature with a 34 dB optical signal-to-noise ratio.</p><p> </p><strong><em>Keywords</em></strong><em>: Dual-wavelength fiber laser, nano-engineered glass, silica-based TYDF, NPR effect.</em>
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mahrle, A., M. Lütke, and E. Beyer. "Fibre laser cutting: Beam absorption characteristics and gas-free remote cutting." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224, no. 5 (November 5, 2009): 1007–18. http://dx.doi.org/10.1243/09544062jmes1747.

Повний текст джерела
Анотація:
Laser cutting is still the most common industrial application of CO 2 laser systems but currently available high-power fibre lasers seem to be an attractive alternative to the established CO 2 laser sources for several cutting tasks. Practical experience has shown that fibre lasers enable significantly increased travel rates in the case of inert-gas fusion cutting. This advantage in achieving higher cutting speeds in comparison to CO 2 laser cutting is however a clear function of the sheet thickness to be cut. In the first part of this article, possible reasons for this experimental fact are derived from a thermodynamic analysis of the process with consideration of the specific beam absorption characteristics under cutting conditions. After that, in the second part, a quite new laser cutting variant, namely the gas-free remote cutting process that considerably benefits from the high beam quality of fibre laser systems, is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Grigorian, Galina M., and Adam Cenian. "Influence of nitrogen on thermodynamic properties and plasma composition in discharge tube of CO-laser." Archives of Thermodynamics 37, no. 3 (September 1, 2016): 31–43. http://dx.doi.org/10.1515/aoter-2016-0018.

Повний текст джерела
Анотація:
Abstract The role of the addition of nitrogen to the discharge plasma of CO lasers on thermodynamic properties and composition of the laser active medium is discussed here. It is shown that nitrogen addition improves laser characteristics and changes the composition of the laser active medium. The addition of nitrogen significantly decreases CO dissociation level and concentrations of C atoms created in plasma-chemical reactions of laser discharge.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gallais, Laurent, and Philippe Cormont. "Procédés d’usinage laser CO2 de composants optiques en silice." Photoniques, no. 112 (2022): 32–36. http://dx.doi.org/10.1051/photon/202211232.

Повний текст джерела
Анотація:
Les procédés par laser CO2 sont particulièrement adaptés aux traitements de surface de composants optiques en silice : lissage, refonte, micro-usinage. Cet article décrit la physique d’interaction laser matière et la mise en oeuvre pour adresser des applications dans le domaine des lasers de puissance : réparation de défauts de surface et amélioration de la tenue au flux laser des composants en silice du Laser Mégajoule.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Arai, Tsunenori, Midori Chigira, Makoto Kikuchi, Kyoichi Mizuno, Toshio Shibuya, Ko Arakawa, Kazunari Isojima, Akira Kurita, and Haruo Nakamura. "CO Laser Angioplasty (II)." JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 7, no. 3 (1987): 159–60. http://dx.doi.org/10.2530/jslsm1980.7.3_159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arai, T., M. Kikuchi, K. Mizuno, K. Arakawa, T. Shibuya, K. Horiuchi, Y. Okamoto, et al. "CO Laser Angioplasty (III)." JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 8, no. 3 (1987): 147–48. http://dx.doi.org/10.2530/jslsm1980.8.3_147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Arai, T., M. Kikuchi, K. Mizuno, K. Arakawa, T. Shibuya, K. Horiuchi, Y. Okamoto, et al. "CO Laser Angioplasty (IV)." JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 8, no. 3 (1987): 149–50. http://dx.doi.org/10.2530/jslsm1980.8.3_149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Arai, Tsunenori, Masato Nakagawa, Makoto Kikuchi, Kyoichi Mizuno, Yasuyuki Okamoto, Akira Miyamoto, Toshio Shibutani, et al. "CO Laser Angioplasty (V)." JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 9, no. 3 (1988): 45–48. http://dx.doi.org/10.2530/jslsm1980.9.3_45.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kuno, Koji, Kazuyuki Kanbe, Yoshiro Akai, Tsunenori Arai, and Makoto Kikuchi. "Development of Medical CO Laser." JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 13, Supplement (1992): 199–202. http://dx.doi.org/10.2530/jslsm1980.13.supplement_199.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Glorieux, Pierre. "Control of Chaos in Lasers by Feedback and Nonfeedback Methods." International Journal of Bifurcation and Chaos 08, no. 09 (September 1998): 1749–58. http://dx.doi.org/10.1142/s0218127498001455.

Повний текст джерела
Анотація:
Analytical approaches of the theory of chaos control in class B lasers are presented in the cases of continuous delayed feedback and of subharmonic modulation. They are compared with experimental findings on a CO 2 laser and a Nd-doped fiber laser with modulated loss and pump respectively. In both cases, analytical theory allows one to predict the shift of the first period-doubling bifurcations, Numerical simulations show that subharmonic modulation may induce shifts, crises and new attractors in a laser with modulated parameters and that its phase relative to the main modulation allows one to control the laser dynamics. These results agree well with the experimental observations on control of chaos in CO 2 and fiber lasers.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Fu, Yunlei, Xiuyun Zhang, Chunfeng Lao, Danhong Shang, and Maoshuai He. "Laser Irradiation-Hindered Growth of Small-Diameter Single-Walled Carbon Nanotubes by Chemical Vapor Deposition." Journal of Nanomaterials 2019 (May 27, 2019): 1–7. http://dx.doi.org/10.1155/2019/4380435.

Повний текст джерела
Анотація:
SWNTs are synthesized on a Co/MgO catalyst using “laser-disturbed” CVD with CO as the carbon source. Compared with SWNTs grown by thermal CVD without laser irradiation (normal CVD), SWNTs synthesized under laser irradiation demonstrate the suppression of small-diameter SWNT growth, as indicated by Raman spectroscopy. Such a phenomenon is also observed for other supported catalysts, such as Co/SiO2 and Fe/MgO. Controlled experiments were carried out to clarify the effects of lasers. On the one hand, laser irradiation increases the reaction temperature locally, favoring the growth of SWNTs at a set temperature as low as 350°C. On the other hand, laser irradiation inhibits the nucleation of small SWNT caps, leading to the growth of large-diameter SWNT species. This work opens a new avenue for growing SWNTs with controlled diameters.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Baranov, Igor Y., and Andrey V. Koptev. "Mode-Locked CO Laser for Isotope Separation of Uranium Employing Condensation Repression." Advances in Optical Technologies 2010 (December 16, 2010): 1–6. http://dx.doi.org/10.1155/2010/693530.

Повний текст джерела
Анотація:
In the present work, we have suggested a technical solution of a CO laser facility for industrial separation of uranium used in the production of fuel for nuclear power plants. There has been used a method of laser isotope separation of uranium, employing condensation repression in a free jet. The laser operation with nanosecond pulse irradiation can provide acceptable efficiency in the separating unit and the high effective coefficient of the laser with the wavelength of 5.3 μm. Receiving a uniform RF discharge under medium pressure and high Mach numbers in the gas stream solves the problem of an electron beam and cryogenic cooler of CO lasers. The laser active medium is being cooled while it is expanding in the nozzle; a low-current RF discharge is similar to a non-self-sustained discharge. In the present work, we have developed a calculation model of optimization and have defined the parameters of a mode-locked CO laser with an RF discharge in the supersonic stream. The CO laser average power of 3 kW is sufficient for efficient industrial isotope separation of uranium at one facility.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kimura, W. D., N. E. Andreev, M. Babzien, I. Ben-Zvi, D. B. Cline, C. E. Dilley, S. C. Gottschalk, et al. "Inverse free electron lasers and laser wakefield acceleration driven by CO 2 lasers." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1840 (January 24, 2006): 611–22. http://dx.doi.org/10.1098/rsta.2005.1726.

Повний текст джерела
Анотація:
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e -beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e -beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e -beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO 2 laser beam.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Arai, Tsunenori, Makoto Kikuchi, Yasuhiko Tomita, Shiro Sakuragi, Mitsunori Saito, and Masaya Takizawa. "Combined Laser Power Delivery of CO Laser and Nd:YAG Laser by IR Glass Fiber." JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 6, no. 3 (1986): 355–58. http://dx.doi.org/10.2530/jslsm1980.6.3_355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Lin, T. X., S. L. Song, Q. X. Yu, J. Han, and W. Urban. "A new c.w. CO laser: simultaneous double-wavelength operation of tunable CO laser." Optical and Quantum Electronics 21, no. 3 (May 1989): 233–34. http://dx.doi.org/10.1007/bf02192004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ali, Mohamed, Amr Zaher, and Carmen M. Ali. "Using CO₂ laser for transmyocardial laser revascularization (TMLR)." Qatar Foundation Annual Research Forum Proceedings, no. 2012 (October 2012): BMP23. http://dx.doi.org/10.5339/qfarf.2012.bmp23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Arai, Tsunenori, Kyoichi Mizuno, Makoto Kikuchi, Akira Kurita, Kiyoshi Takeuchi, Atsushi Utsumi, and Yoshiro Akai. "CO Laser Angioplasty: System Operation." JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 13, Supplement (1992): 511–14. http://dx.doi.org/10.2530/jslsm1980.13.supplement_511.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Ionin, Andrei A., A. Yu Kozlov, L. V. Seleznev, and D. V. Sinitsyn. "A cryogenic slab CO laser." Quantum Electronics 39, no. 3 (March 31, 2009): 229–34. http://dx.doi.org/10.1070/qe2009v039n03abeh013811.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wang, Tao, and Qingmin Cheng. "Magnetically confined discharge CO laser." Optics & Laser Technology 33, no. 7 (October 2001): 475–78. http://dx.doi.org/10.1016/s0030-3992(01)00062-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Lee, Kuang Chyi, Chen Chuan Hwu, and Gavin Thomson. "A CO2 Laser Camera." Applied Mechanics and Materials 300-301 (February 2013): 203–6. http://dx.doi.org/10.4028/www.scientific.net/amm.300-301.203.

Повний текст джерела
Анотація:
This paper develops a CO2laser camera by using an ARM embedded system with a CCD camera. The power controller, embedded on an FPGA chip, controls laser cutting depth by modifying the DPWM power controller for a CO2laser machine. The relationship model between feed rate, laser power and cutting depth was trained by the adaptive neural fuzzy inference system (ANFIS). Laser power output was determined by the grayscale level in the image from CCD camera to reproduce a bitmap image in a 2.5D engraving. The maximum laser cutting depth was 4mm, and the feed rate varied between 10mm/s and 80 mm/s. Laser power was less than 48W. The precision for the cutting depth in the model was less than 0.036mm. The precision for the actual cutting depth of the laser was within 0.044mm. Implementation of the model improved the precision of the laser cutting machine to within the range ±0.05mm.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Li, Kun, Boyang Wang, Mingyao Yuan, Zhixiong Yang, Chunchao Yu та Weijian Zheng. "CO Detection System Based on TDLAS Using a 4.625 μm Interband Cascaded Laser". International Journal of Environmental Research and Public Health 19, № 19 (7 жовтня 2022): 12828. http://dx.doi.org/10.3390/ijerph191912828.

Повний текст джерела
Анотація:
During industrial operations and in confined places, carbon monoxide (CO) may collect in harmful proportions if ventilation is insufficient or appliances are not properly maintained. When the concentration of CO is too high, it might result in suffocation, coma, or even death. The detection of tiny concentrations of CO plays an important role in safe production. Due to the selective absorption of specific wavelengths of light by gas molecules, lasers have a wide range of applications in the field of gas detection. In this paper, a tunable diode laser absorption spectroscopy (TDLAS) system for CO detection was constructed using an interband cascaded laser (ICL) with a central wavelength of 4.625 μm. The modulated signal generated by the FPGA module was output to the laser controller to modulate the laser. The signal received by the detector was input to the FPGA module. After lock-in amplification, the second harmonic signal of high frequency modulation was output. Several concentrations of CO that were dispersed via static gas distribution were identified. A CO detection system with an open optical path was constructed, and the detection distance was about 8 m. The minimum detectable concentration is around 10.32 ppmm. The concentration of CO in the open optical path was 510.6 ppmm, according to the calibration of the detected concentration. The remote detection system based on TDLAS using an ICL can be used to monitor CO in the open optical path.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Friebel, S., R. Scheunemann, J. Walz, T. W. Hänsch, and M. Weitz. "Laser cooling in a CO 2 -laser optical lattice." Applied Physics B: Lasers and Optics 67, no. 6 (December 1, 1998): 699–704. http://dx.doi.org/10.1007/s003400050568.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Urban, W., J. X. Lin, V. V. Subramaniam, M. Havenith, and J. W. Rich. "Treanor pumping of CO initiated by CO laser excitation." Chemical Physics 130, no. 1-3 (February 1989): 389–99. http://dx.doi.org/10.1016/0301-0104(89)87068-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Xiang, Chengzhi, Xin Ma, Ge Han, Ailin Liang, and Wei Gong. "ON-LINE WAVELENGTH CALIBRATION OF PULSED LASER FOR CO2 DIFFERENTIAL ABSORPTION LIDAR." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 2, 2016): 141–46. http://dx.doi.org/10.5194/isprs-archives-xli-b1-141-2016.

Повний текст джерела
Анотація:
Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO<sub>2</sub> detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO<sub>2</sub> concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO<sub>2</sub> detection. The MWS conducted segmented sampling across the CO<sub>2</sub> absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO<sub>2</sub> can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wong, Brian J. F., Ming-Sing Si, Calvin Cho, Lih-Huei L. Liaw, and Joseph Neev. "XeCl Laser Surgery of the Vocal Cords: A Histologic Comparison with CO2 Laser in a Porcine Model." Otolaryngology–Head and Neck Surgery 118, no. 3 (March 1998): 371–75. http://dx.doi.org/10.1016/s0194-59989870317-1.

Повний текст джерела
Анотація:
Fresh cadaveric pig larynxes were ablated with a CO2 (λ = 10.6 μm) and a XeCl excimer (λ = 308 nm) laser. Histologic comparison of the ablation craters created by the two lasers was performed, and ablation crater depth and marginal tissue damage were measured. Crater depth for both laser treatments is correlated with energy deposition and exposure time. The CO2 laser creates three times more nonspecific, marginal tissue damage than the XeCl laser at the ranges of total energy and exposure times used. This study demonstrates the potential of the XeCl laser as an alternative to the CO2 laser in microlaryngeal surgery.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Sensaki, Koji, and Tsunenori Arai. "Study on Thoracoscopic CO Laser Irradiation." JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 12, Supplement (1991): 79–82. http://dx.doi.org/10.2530/jslsm1980.12.supplement_79.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Arai, Tsunenori, Makoto Kikuchi, Shiro Sakuragi, Mitsunori Saito, and Masaya Takizawa. "A Study for Development of CO Laser Scalpel CO Laser Power Delivery with As2S3 Chalcogenide Glass Fiber." JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 5, no. 3 (1985): 293–98. http://dx.doi.org/10.2530/jslsm1980.5.3_293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Olsen, F. O., and L. Alting. "Pulsed Laser Materials Processing, ND-YAG versus CO 2 Lasers." CIRP Annals 44, no. 1 (1995): 141–45. http://dx.doi.org/10.1016/s0007-8506(07)62293-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

KURIBAYASHI, Shizuma, Osamu NODA, Motoe KONDO, Shigenori IMATAKE, Keiichi MATSUDA, Shunichi SATO, Kunimitsu TAKAHASHI, and Kojiro SHIMAMOTO. "Development of A High Power CO Laser. Performance Characteristics of a 20 kW CO Laser." Review of Laser Engineering 22, no. 6 (1994): 466–73. http://dx.doi.org/10.2184/lsj.22.466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Yuan Gao, Yuan Gao, Yong Deng Yong Deng, Xiliang Tong Xiliang Tong, Hui Wang Hui Wang, Zilin Deng Zilin Deng, Xiaoquan Yang Xiaoquan Yang, Yanyan Liu Yanyan Liu, Hui Gong Hui Gong, and Qingming Luo Qingming Luo. "Co-registration method for photoacoustic imaging and laser speckle imaging." Chinese Optics Letters 10, no. 6 (2012): 061101–61104. http://dx.doi.org/10.3788/col201210.061101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

LI Chen, 李. 晨., STOIAN Razvan STOIAN Razvan, and 程光华 CHENG Guang-hua. "Laser-induced periodic surface structures with ultrashort laser pulse." Chinese Optics 11, no. 1 (2018): 1–17. http://dx.doi.org/10.3788/co.20181101.0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wong, Brian J. F., Jon Lee, George T. Hashisaki, Michael W. Berns, and Joseph Neev. "Thermal Imaging of the Temporal Bone in CO2 Laser Surgery: An Experimental Model." Otolaryngology–Head and Neck Surgery 117, no. 6 (December 1997): 610–15. http://dx.doi.org/10.1016/s0194-59989770041-x.

Повний текст джерела
Анотація:
The unique properties of lasers create an enormous potential for specific treatment of chronic ear disease. Despite the widespread acceptance and use of the laser, however, a complete understanding of the time- and space-dependent temperature distribution in otic capsule bone immediately after pulsed laser exposure has not been elucidated. Using a liquid nitrogen-cooled mercury-cadmium telluride infrared detector, the temperature distribution in human cadaveric otic capsule bone was determined immediately after pulsed (100 msec) carbon dioxide laser exposure (0.3 to 4.0 W; 200 urn spot diameter). The time- and space-dependent temperature increases and thermal diffusion were determined as a function of the laser power density and were found to vary linearly.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Lackner, Maximilian, Gerhard Totschnig, Gerhard Loeffler, Hermann Hofbauer, and Franz Winter. "In-situ laser spectroscopy of CO, Ch4, and H2O in a particle laden laboratory-scale fluidized bed combustor." Thermal Science 6, no. 2 (2002): 13–27. http://dx.doi.org/10.2298/tsci0202013l.

Повний текст джерела
Анотація:
The pyrolysis, devolatilization and char combustion of bituminous coal and biomass (beechwood, firwood) were investigated in a laboratory-scale fluidized bed combustor by tunable diode laser spectroscopy. Individual fuel particles were suspended in the freeboard of the unit. The bed temperature was 800 ?C, the oxygen partial pressure 0 to 20 kPa (0-10 vol.%). Two Fabry Perot type tunable near infrared diode lasers were deployed for quantitative in-situ species concentration measurements. CH4 and CO were measured simultaneously during devolatilization and char combustion in-situ 10 mm above the surface of the fuel particles as well as H2O using laser spectroscopy. Sand particles were passing the probing laser beam path. Besides the resonant absorption of the laser light by CO, CH4 and H2O severe and strongly transient non-resonant attenuation by partial blocking of the beam and beam steering effects occurred. By wavelength tuning the two laser sources, species concentrations could be determined. The measured absorbances had to be corrected for the real temperature measured at the position of the probing laser beam. In addition, CO, CO2 and O2 were determined ex-situ by con ventional methods. A spatial profile inside the FBC of major species (CH4, CO, CO2, O, H, OH) was calculated using a chemical kinetics program for a single fuel particle in a plug flow reactor geometry. The results were compared to the experimental findings. Good agreement was found. Tunable diode laser spectroscopy was found to be an apt method of determining quantitative species concentrations of multiple gases in a high temperature multi phase environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Dolchinkov, Nikolay Todorov. "Marking and Cutting of Non-metallic Products with CO2 Laser." Journal of Physics: Conference Series 2224, no. 1 (April 1, 2022): 012028. http://dx.doi.org/10.1088/1742-6596/2224/1/012028.

Повний текст джерела
Анотація:
Abstract Since the discovery of the laser more than 60 years ago, research has begun on its application in various fields of technology. One of the most commonly used applications of laser technology is the cutting and marking of various materials. And while the use of different metals has been studied and used much better, the use of lasers in non-metallic materials has been studied much less. Research has been conducted with a CO2 laser on various materials -various types of textiles, felt, transparent and opaque Plexiglas and other materials that have wide application in technology and economics. The optimal parameters for performing various operations on this type of materials have been found and are shown in tabular and graphical form. Studies with different power and speed of the laser beam have been made. Based on the obtained results, the relevant conclusions are shown. These materials are widely used in industry, the manufacture of automobiles, aircraft, ships and other vehicles and machinery and the results prove the effectiveness of laser cutting and marking compared to the methods used so far to perform these operations.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Xiang, Chengzhi, Xin Ma, Ge Han, Ailin Liang, and Wei Gong. "ON-LINE WAVELENGTH CALIBRATION OF PULSED LASER FOR CO<sub>2</sub> DIFFERENTIAL ABSORPTION LIDAR." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 2, 2016): 141–46. http://dx.doi.org/10.5194/isprsarchives-xli-b1-141-2016.

Повний текст джерела
Анотація:
Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO&lt;sub&gt;2&lt;/sub&gt; detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO&lt;sub&gt;2&lt;/sub&gt; concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO&lt;sub&gt;2&lt;/sub&gt; detection. The MWS conducted segmented sampling across the CO&lt;sub&gt;2&lt;/sub&gt; absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO&lt;sub&gt;2&lt;/sub&gt; can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Scholl, T. J., S. D. Rosner та R. A. Holt. "B2Σ+ state lifetime in CO+". Canadian Journal of Physics 76, № 1 (1 січня 1998): 39–46. http://dx.doi.org/10.1139/p97-051.

Повний текст джерела
Анотація:
We measured the lifetime of the B2Σ+, v = 0 level of the astrophysically important CO+ molecule by applying the collinear beam-laser method. Ions in the long-lived A2Π level were excited to the B2Σ+ state by a single-frequency laser beam in resonance with a transition in the B2Σ+ – A2Π Baldet–Johnson band, and the laser-induced fluorescence from the B2Σ+ – X2Σ+ First Negative band was monitored as a function of distance from the excitation region. We claim that our result of 54.9 ± 0.7 ns is less likely to have suffered from systematic error than previous measurements, which were mutually discordant. PACS No. 33.70Ca
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Lee, Hakju, Seunghwan Leea, and Seongbeom Kim. "Development of Silicon Nanoparticle Production Technology using a CO₂ Laser-assisted Carbothermal Reduction Process." Journal of the Korean Society of Manufacturing Technology Engineers 30, no. 4 (August 31, 2021): 253–58. http://dx.doi.org/10.7735/ksmte.2021.30.4.253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

von Bülow, H., and E. Zeyfang. "Supersonic CO laser with rf excitation." Review of Scientific Instruments 64, no. 7 (July 1993): 1764–69. http://dx.doi.org/10.1063/1.1144007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Davies, Paul B., та Philip A. Martin. "Diode-laser spectroscopy of a3Π CO". Molecular Physics 70, № 1 (травень 1990): 89–106. http://dx.doi.org/10.1080/00268979000100861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Li, Yude, Yizhong Kuang, Xiuyun Zhang, and Yewei Zhou. "Assembly structure convective—flow CO laser." Optics & Laser Technology 35, no. 8 (November 2003): 633–37. http://dx.doi.org/10.1016/s0030-3992(03)00109-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Meyer-R�senberg, H. W., K. H. Emmerich, and N. Klein. "CO 2 -Laser in der Augenheilkunde." Der Ophthalmologe 97, no. 3 (March 14, 2000): 194–96. http://dx.doi.org/10.1007/s003470050513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Grigor'yan, G. M., and Yu Z. Ionikh. "Optogalvanic effect in a CO laser." Soviet Journal of Quantum Electronics 21, no. 1 (January 31, 1991): 24–27. http://dx.doi.org/10.1070/qe1991v021n01abeh003701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Baranov, I. Ya. "Multipurpose high-power electrogasdynamic CO laser." Quantum Electronics 24, no. 6 (June 30, 1994): 536–39. http://dx.doi.org/10.1070/qe1994v024n06abeh000133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Kornilov, S. T., E. D. Protsenko, and S. I. Tymper. "Gain of a waveguide CO laser." Soviet Journal of Quantum Electronics 16, no. 12 (December 31, 1986): 1669–71. http://dx.doi.org/10.1070/qe1986v016n12abeh008531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Van Roozendael, M., G. W. Hills, and M. Herman. "Optogalvanic studies with a CO laser." Optics Communications 58, no. 5 (July 1986): 319–23. http://dx.doi.org/10.1016/0030-4018(86)90235-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Nukariya, Michio. "Transmyocardial Laser Revascularization with the CO2 Laser." Journal of Japan Atherosclerosis Society 28, no. 9-10 (2001): 163–68. http://dx.doi.org/10.5551/jat1973.28.9-10_163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії