Добірка наукової літератури з теми "CMOS micro-Nanotechnology"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "CMOS micro-Nanotechnology".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "CMOS micro-Nanotechnology"
Lu, Shaoxin, Ning Shao, Ye Liu, and Balaji Panchapakesan. "Carbon Nanotubes as Optical Materials." MRS Proceedings 1015 (2007). http://dx.doi.org/10.1557/proc-1015-bb07-05.
Повний текст джерелаДисертації з теми "CMOS micro-Nanotechnology"
Bel-Hadj, Ibrahim. "Conception de micro-générateurs thermoélectriques planaires intégrant une topologie de thermopile 2.5D." Thesis, Université de Lille (2022-....), 2022. https://pepite-depot.univ-lille.fr/ToutIDP/EDENGSYS/2022/2022ULILN005.pdf.
Повний текст джерелаThe tremendous growth of applications related to recent advances in the Internet of Things (IoT) requires the development of new solutions for harvesting/scavenging the environmental energy to power microsystems. The abundance of heat in our environment allows thermal energy harvesting devices to be one of the solutions. In this work, we have developed a family of planar micro-thermoelectric generators (µTEG), integrating a novel 2.5D thermopile topology periodically folded and distributed on multi-membrane, capable of converting heat directly into useful electrical energy. This thermopile, with high integration density, uses thermocouples based on metallic thermoelectric materials (Chromel and Constantan), electrically associated either in series or in parallel, allowing to reduce drastically the internal electrical resistance of these µTEGs to a few tens of Ohms. A 3D thermal modelling in COMSOL Multiphysics® was used to design the optimal dimensions of the modules so they would deliver the maximum output power. The fabrication of these devices is made by low-cost CMOS-compatible processes, using non-polluting, abundant and environmentally friendly materials. Deep reactive ionic etching (DRIE) of Silicon wafers is used to release membranes with adjustable lengths allowing to adapt the thermal resistance of these µTEGs to their environment. The devices realized in IEMN clean room, have been characterized using specific measurement benches developed for this purpose. The harvesting of one Watt of heat leads to thermo-generated electrical powers of a few hundred microwatts. This ranks these new 2.5D µTEGs among the best state-of-the-art µ-modules using metallic thermoelectrics
Тези доповідей конференцій з теми "CMOS micro-Nanotechnology"
Choi, Wooyeol, Dae-Yeon Kim, Zeshan Ahmad, Pranith R. Byreddy, Yukun Zhu, Jensen Newman, and Kenneth K. O. "CMOS circuits for terahertz imaging." In Micro- and Nanotechnology Sensors, Systems, and Applications XI, edited by M. Saif Islam and Thomas George. SPIE, 2019. http://dx.doi.org/10.1117/12.2518654.
Повний текст джерелаMita, Yoshio, Eric Lebrasseur, Matthieu Denoual, Kentaro Yamada, Julien Grand, Yuki Okamoto, Rangareddygari Ranga Reddy, Tixier-Mita Agnes, Svetlana Mintova, and Akio Higo. "Agile-Style Development of CMOS-Integrated Micro Electro Chemical Mechanical Systems by LSI Foundry and Nanotechnology Platform." In 2018 International Symposium on Electronics and Smart Devices (ISESD). IEEE, 2018. http://dx.doi.org/10.1109/isesd.2018.8605484.
Повний текст джерелаZhao Lu, Ryan Denomme, and Sylvain Martel. "Micro/Nanoparticle Detection: An Impedimetric Microsensor Based on CMOS Technology." In 7th IEEE International Conference on Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/nano.2007.4601200.
Повний текст джерелаRoy, Avisek, Mehdi Azadmehr, Philipp Hafliger, Bao Q. Ta, and knut E. Aasmundtveit. "Direct Synthesis of Carbon Nanotubes in CMOS-Layout of Micro-heaters." In 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2018. http://dx.doi.org/10.1109/nano.2018.8626363.
Повний текст джерелаRoy, Avisek, Perene Ender, Mehdi Azadmehr, Bao Q. Ta, and Knut E. Aasmundtveit. "Design considerations of CMOS micro-heaters to directly synthesize carbon nanotubes for gas sensing applications." In 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2017. http://dx.doi.org/10.1109/nano.2017.8117447.
Повний текст джерелаEckstein, Adric, and Pavlos Vlachos. "Compensating for the Phosphorescent Persistence in Intensified Cameras for Micro-PIV." In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55153.
Повний текст джерелаPerez-Diaz, J. L., I. Valiente-Blanco, E. Diez-Jimenez, J. Sanchez-Garcia-Casarrubios, M. A. Alvarez-Valenzuela, C. Cristache, J. Serrano, et al. "Contactless Superconducting Magnetic Instrument for Precise Positioning in Cryogenic Environments." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63742.
Повний текст джерела