Книги з теми "Closed Interacting Quantum Systems"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Closed Interacting Quantum Systems.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-31 книг для дослідження на тему "Closed Interacting Quantum Systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Nozières, Philippe. Theory of interacting Fermi systems. Reading, Mass: Addison-Wesley, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Albrecht, Andreas Johann. Identifying dechohering paths in closed quantum systems. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moral, Pierre Del. Feynman-Kac formulae: Genealogical and interacting particle systems with applications. New York: Springer-Verlag, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Clos, Govinda. Trapped atomic ions for fundamental studies of closed and open quantum systems. Freiburg: Universität, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Thermal relaxation for particle systems in interaction with several bosonic heat reservoirs. Norderstedt: Books on Demand GmbH, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

1938-, Arenhövel H., ed. Many body structure of strongly interacting systems: Refereed and selected contributions of the symposium "20 years of physics at the Mainz Microtron MAMI," Mainz, Germany, October 19-22, 2005. Bologna, Italy: Societá italiana di fisica, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

1975-, Sims Robert, and Ueltschi Daniel 1969-, eds. Entropy and the quantum II: Arizona School of Analysis with Applications, March 15-19, 2010, University of Arizona. Providence, R.I: American Mathematical Society, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Accardi, Luigi, and Franco Fagnola. Quantum Interacting Particle Systems. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/5055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Giamarchi, Thierry, Andrew J. Millis, Olivier Parcollet, Hubert Saleur, and Leticia F. Cugliandolo, eds. Strongly Interacting Quantum Systems out of Equilibrium. Oxford University Press, 2016. http://dx.doi.org/10.1093/acprof:oso/9780198768166.001.0001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Morawetz, Klaus. Interacting Systems far from Equilibrium: Quantum Kinetic Theory. Oxford University Press, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Theory of Interacting Fermi Systems. Avalon Publishing, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Nozieres, Philippe. Theory of Interacting Fermi Systems. Avalon Publishing, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Nozieres, Philippe. Theory of Interacting Fermi Systems. Taylor & Francis Group, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zinner, Nikolaj Thomas, and Manual Valiente. Strongly Interacting Quantum Systems in Structured Media: Many Body Physics. Institute of Physics Publishing, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Valiente, Manual. Strongly Interacting Quantum Systems in Structured Media: Many Body Physics. Institute of Physics Publishing, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Morawetz, Klaus. Interacting Systems far from Equilibrium. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.001.0001.

Повний текст джерела
Анотація:
In quantum statistics based on many-body Green’s functions, the effective medium is represented by the selfenergy. This book aims to discuss the selfenergy from this point of view. The knowledge of the exact selfenergy is equivalent to the knowledge of the exact correlation function from which one can evaluate any single-particle observable. Complete interpretations of the selfenergy are as rich as the properties of the many-body systems. It will be shown that classical features are helpful to understand the selfenergy, but in many cases we have to include additional aspects describing the internal dynamics of the interaction. The inductive presentation introduces the concept of Ludwig Boltzmann to describe correlations by the scattering of many particles from elementary principles up to refined approximations of many-body quantum systems. The ultimate goal is to contribute to the understanding of the time-dependent formation of correlations. Within this book an up-to-date most simple formalism of nonequilibrium Green’s functions is presented to cover different applications ranging from solid state physics (impurity scattering, semiconductor, superconductivity, Bose–Einstein condensation, spin-orbit coupled systems), plasma physics (screening, transport in magnetic fields), cold atoms in optical lattices up to nuclear reactions (heavy-ion collisions). Both possibilities are provided, to learn the quantum kinetic theory in terms of Green’s functions from the basics using experiences with phenomena, and experienced researchers can find a framework to develop and to apply the quantum many-body theory straight to versatile phenomena.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Moral, Pierre Del. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer New York, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Roychowdhury, Rina Basu. Polarization propagator calculations for open and closed shell systems. 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Schomerus, Henning. Random matrix approaches to open quantum systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0010.

Повний текст джерела
Анотація:
Over the past decades, a great body of theoretical and mathematical work has been devoted to random-matrix descriptions of open quantum systems. This chapter reviews the physical origins and mathematical structures of the underlying models, and collects key predictions which give insight into the typical system behaviour. In particular, the aim is to give an idea how the different features are interlinked. The chapter mainly focuses on elastic scattering but also includes a short detour to interacting systems, which are motivated by the overarching question of ergodicity. The first sections introduce general notions from random matrix theory, such as the 10 universality classes and ensembles of Hermitian, unitary, positive-definite, and non-Hermitian matrices. The following sections then review microscopic scattering models that form the basis for statistical descriptions, and consider signatures of random scattering in decay, dynamics, and transport. The last section touches on Anderson localization and localization in interacting systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Strongly Interacting Quantum Systems out of Equilibrium : Lecture Notes of the Les Houches Summer School: Volume 99, August 2012. Oxford University Press, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Tiwari, Sandip. Electromagnetic-matter interactions and devices. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0006.

Повний текст джерела
Анотація:
This chapter explores electromagnetic-matter interactions from photon to extinction length scales, i.e., nanometer of X-ray and above. Starting with Casimir-Polder effect to understand interactions of metals and dielectrics at near-atomic distance scale, it stretches to larger wavelengths to explore optomechanics and its ability for energy exchange and signal transduction between PHz and GHz. This range is explored with near-quantum sensitivity limits. The chapter also develops the understanding phononic bandgaps, and for photons, it explores the use of energetic coupling for useful devices such as optical tweezers, confocal microscopes and atomic clocks. It also explores miniature accelerators as a frontier area in accelerator physics. Plasmonics—the electromagnetic interaction with electron charge cloud—is explored for propagating and confined conditions together with the approaches’ possible uses. Optoelectronic energy conversion is analyzed in organic and inorganic systems, with their underlying interaction physics through solar cells and its thermodynamic limit, and quantum cascade lasers.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Quantum Transport in Periodically Driven Systems: Theory and Application to Atoms and Molecules Interacting with Interacting with Intense Strong Laser Pulses. World Scientific Publishing Company, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

1947-, Accardi L., Fagnola Franco, and Centro internazionale per la ricerca matematica (Trento, Italy), eds. Quantum interacting particle systems: Lecture notes of the Volterra-CIRM International School, Trento, Italy, 23-29 September 2000. River Edge, NJ: World Scientific Pub., 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Fagnola, Franco. Quantum Interacting Particle Systems: Lecture Notes of the Volterra-Cirm International School, Trento, Italy, 23-29 September 2000 (Qp-Pq, Quantum Probability and White Noise Analysis, V. 14). World Scientific Publishing Company, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Horing, Norman J. Morgenstern. Schwinger Action Principle and Variational Calculus. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0004.

Повний текст джерела
Анотація:
Chapter 4 introduces the Schwinger Action Principle, along with associated particle and potential sources. While the methods described here originally arose in the relativistic quantum field theory of elementary particle physics, they have also profoundly advanced our understanding of non-relativistic many-particle physics. The Schwinger Action Principle is a quantum-mechanical variational principle that closely parallels the Hamilton Principle of Least Action of classical mechanics, generalizing it to include the role of quantum operators as generalized coordinates and momenta. As such, it unifies all aspects of quantum theory, incorporating Hamilton equations of motion for those operators and the Heisenberg equation, as well as producing the canonical equal-time commutation/anticommutation relations. It yields dynamical coupled field equations for the creation and annihilation operators of the interacting many-body system by variational differentiation of the Hamiltonian with respect to the field operators. Also, equations for the development of matrix elements (underlying Green’s functions) are derived using variations with respect to particle and potential “sources” (and coupling strength). Variational calculus, involving impressed potentials, c-number coordinates and fields, also quantum operator coordinates and fields, is discussed in full detail. Attention is given to the introduction of fermion and boson particle sources and their use in variational calculus.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Many Body Structure of Strongly Interacting Systems: Refereed and Selected Contributions from the Symposium "20 Years of Physics at the Mainz Microtron MAMI". Springer, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Eckle, Hans-Peter. Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.001.0001.

Повний текст джерела
Анотація:
This book focuses on the theory of quantum matter, strongly interacting systems of quantum many–particle physics, particularly on their study using exactly solvable and quantum integrable models with Bethe ansatz methods. Part 1 explores the fundamental methods of statistical physics and quantum many–particle physics required for an understanding of quantum matter. It also presents a selection of the most important model systems to describe quantum matter ranging from the Hubbard model of condensed matter physics to the Rabi model of quantum optics. The remaining five parts of the book examines appropriate special cases of these models with respect to their exact solutions using Bethe ansatz methods for the ground state, finite–size, and finite temperature properties. They also demonstrate the quantum integrability of an exemplary model, the Heisenberg quantum spin chain, within the framework of the quantum inverse scattering method and through the algebraic Bethe ansatz. Further models, whose Bethe ansatz solutions are derived and examined, include the Bose and Fermi gases in one dimension, the one–dimensional Hubbard model, the Kondo model, and the quantum Tavis–Cummings model, the latter a model descendent from the Rabi model.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Glazov, M. M. Spin Systems in Semiconductor Nanostructures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0002.

Повний текст джерела
Анотація:
This chapter is an introduction to a rich variety of effects taking place in the interacting system of electrons and nuclei in semiconductors. It includes also the basics of electronic properties of nanostructures and of spin physics, an overview of fundamental interactions in the electron and nuclear spin systems, the selection rules at optical transitions in semiconductors, spin resonance effect, as well as optical orientation, and dynamical nuclear polarization. In this chapter an analysis of particular features of spin dynamics arising in the structures with localized electrons such as quantum dots, which are studied further in the book, are addressed. The aim of this chapter is to provide basic minimum of information needed to read the remaining chapters.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Glazov, M. M. Electron & Nuclear Spin Dynamics in Semiconductor Nanostructures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.001.0001.

Повний текст джерела
Анотація:
In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, solid state systems, particularly semicon- ductors and semiconductor nanosystems, allow one to perform benchtop studies of quantum and relativistic phenomena. On the other hand, interest is supported by the prospects of realizing spin-based electronics where the electron or nuclear spins can play a role of quantum or classical information carriers. This book aims at rather detailed presentation of multifaceted physics of interacting electron and nuclear spins in semiconductors and, particularly, in semiconductor-based low-dimensional structures. The hyperfine interaction of the charge carrier and nuclear spins increases in nanosystems compared with bulk materials due to localization of electrons and holes and results in the spin exchange between these two systems. It gives rise to beautiful and complex physics occurring in the manybody and nonlinear system of electrons and nuclei in semiconductor nanosystems. As a result, an understanding of the intertwined spin systems of electrons and nuclei is crucial for in-depth studying and control of spin phenomena in semiconductors. The book addresses a number of the most prominent effects taking place in semiconductor nanosystems including hyperfine interaction, nuclear magnetic resonance, dynamical nuclear polarization, spin-Faraday and -Kerr effects, processes of electron spin decoherence and relaxation, effects of electron spin precession mode-locking and frequency focusing, as well as fluctuations of electron and nuclear spins.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Nonlinear Dirac Equation: Spectral Stability of Solitary Waves. American Mathematical Society, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Swendsen, Robert H. An Introduction to Statistical Mechanics and Thermodynamics. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198853237.001.0001.

Повний текст джерела
Анотація:
This is a textbook on statistical mechanics and thermodynamics. It begins with the molecular nature of matter and the fact that we want to describe systems containing many (1020) particles. The first part of the book derives the entropy of the classical ideal gas using only classical statistical mechanics and Boltzmann’s analysis of multiple systems. The properties of this entropy are then expressed as postulates of thermodynamics in the second part of the book. From these postulates, the structure of thermodynamics is developed. Special features are systematic methods for deriving thermodynamic identities using Jacobians, the use of Legendre transforms as a basis for thermodynamic potentials, the introduction of Massieu functions to investigate negative temperatures, and an analysis of the consequences of the Nernst postulate. The third part of the book introduces the canonical and grand canonical ensembles, which are shown to facilitate calculations for many models. An explanation of irreversible phenomena that is consistent with time-reversal invariance in a closed system is presented. The fourth part of the book is devoted to quantum statistical mechanics, including black-body radiation, the harmonic solid, Bose–Einstein and Fermi–Dirac statistics, and an introduction to band theory, including metals, insulators, and semiconductors. The final chapter gives a brief introduction to the theory of phase transitions. Throughout the book, there is a strong emphasis on computational methods to make abstract concepts more concrete.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії