Дисертації з теми "Classifications des images"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Classifications des images".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Sonoda, Luke Ienari. "Classifications of lesions in magnetic resonance images of the breast." Thesis, King's College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406934.
Повний текст джерелаThompson, J. Paul. "Classifications of gross morphologic and magnetic resonance images of human intervertebral discs." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26647.
Повний текст джерелаMedicine, Faculty of
Graduate
Arshad, Irshad Ahmad. "Using statistical methods for automatic classifications of clouds in ground-based photographs of the sky." Thesis, University of Essex, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250129.
Повний текст джерелаNgo, Ho Anh Khoi. "Méthodes de classifications dynamiques et incrémentales : application à la numérisation cognitive d'images de documents." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4006/document.
Повний текст джерелаThis research contributes to the field of dynamic learning and classification in case of stationary and non-stationary environments. The goal of this PhD is to define a new classification framework able to deal with very small learning dataset at the beginning of the process and with abilities to adjust itself according to the variability of the incoming data inside a stream. For that purpose, we propose a solution based on a combination of independent one-class SVM classifiers having each one their own incremental learning procedure. Consequently, each classifier is not sensitive to crossed influences which can emanate from the configuration of the models of the other classifiers. The originality of our proposal comes from the use of the former knowledge kept in the SVM models (represented by all the found support vectors) and its combination with the new data coming incrementally from the stream. The proposed classification model (mOC-iSVM) is exploited through three variations in the way of using the existing models at each step of time. Our contribution states in a state of the art where no solution is proposed today to handle at the same time, the concept drift, the addition or the deletion of concepts, the fusion or division of concepts while offering a privileged solution for interaction with the user. Inside the DIGIDOC project, our approach was applied to several scenarios of classification of images streams which can correspond to real cases in digitalization projects. These different scenarios allow validating an interactive exploitation of our solution of incremental classification to classify images coming in a stream in order to improve the quality of the digitized images
Alchicha, Élie. "Confidentialité Différentielle et Blowfish appliquées sur des bases de données graphiques, transactionnelles et images." Thesis, Pau, 2021. http://www.theses.fr/2021PAUU3067.
Повний текст джерелаDigital data is playing crucial role in our daily life in communicating, saving information, expressing our thoughts and opinions and capturing our precious moments as digital pictures and videos. Digital data has enormous benefits in all the aspects of modern life but forms also a threat to our privacy. In this thesis, we consider three types of online digital data generated by users of social media and e-commerce customers: graphs, transactional, and images. The graphs are records of the interactions between users that help the companies understand who are the influential users in their surroundings. The photos posted on social networks are an important source of data that need efforts to extract. The transactional datasets represent the operations that occurred on e-commerce services.We rely on a privacy-preserving technique called Differential Privacy (DP) and its generalization Blowfish Privacy (BP) to propose several solutions for the data owners to benefit from their datasets without the risk of privacy breach that could lead to legal issues. These techniques are based on the idea of recovering the existence or non-existence of any element in the dataset (tuple, row, edge, node, image, vector, ...) by adding respectively small noise on the output to provide a good balance between privacy and utility.In the first use case, we focus on the graphs by proposing three different mechanisms to protect the users' personal data before analyzing the datasets. For the first mechanism, we present a scenario to protect the connections between users (the edges in the graph) with a new approach where the users have different privileges: the VIP users need a higher level of privacy than standard users. The scenario for the second mechanism is centered on protecting a group of people (subgraphs) instead of nodes or edges in a more advanced type of graphs called dynamic graphs where the nodes and the edges might change in each time interval. In the third scenario, we keep focusing on dynamic graphs, but this time the adversaries are more aggressive than the past two scenarios as they are planting fake accounts in the dynamic graphs to connect to honest users and try to reveal their representative nodes in the graph. In the second use case, we contribute in the domain of transactional data by presenting an existed mechanism called Safe Grouping. It relies on grouping the tuples in such a way that hides the correlations between them that the adversary could use to breach the privacy of the users. On the other side, these correlations are important for the data owners in analyzing the data to understand who might be interested in similar products, goods or services. For this reason, we propose a new mechanism that exposes these correlations in such datasets, and we prove that the level of privacy is similar to the level provided by Safe Grouping.The third use-case concerns the images posted by users on social networks. We propose a privacy-preserving mechanism that allows the data owners to classify the elements in the photos without revealing sensitive information. We present a scenario of extracting the sentiments on the faces with forbidding the adversaries from recognizing the identity of the persons. For each use-case, we present the results of the experiments that prove that our algorithms can provide a good balance between privacy and utility and that they outperform existing solutions at least in one of these two concepts
Thornström, Johan. "Domain Adaptation of Unreal Images for Image Classification." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165758.
Повний текст джерелаPavez, Ojeda Jorge. "Africanismes à Cuba (1812-1917) : textes, images et classes." Paris, EHESS, 2007. http://www.theses.fr/2007EHES0097.
Повний текст джерелаThis dissertation analyzes the constitution of the field of Afro-Cuban Studies at the beginnings of the XXth century in the work of Fernando Ortiz, criminal lawyer, ethnologist, historian and folklorist. We will find in it the tension between the European logics of disciplines and the forms of Afro Cuban agency in the co-production of ethnographical knowledge. In that way, we propose a deconstruction of the principals subjects and concepts on which is instituted a vision of Africa in Cuba: witchcraft, degeneration, "mob", ethnic classifications, Afro-Cubans' writings (tattoos, symbolisms, music, cults and rites). The accent on the classes and the classifications systems of social and medical disciplines will lead to a genealogy of the conceptions of black class and race adopted by the Afro-Cubans. For this, we will propose the analysis of a corpus of archives about the Afro Cuban artist and intellectual Jose Antonio Aponte, accused and executed in 1812 as conspirator and rebel
BATISTA, LEONARDO VIDAL. "COMPARING AUTOMATIC IMAGE CLASSIFICATION TECHNIQUES OF REMOTE SENSING IMAGES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1993. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8870@1.
Повний текст джерелаNeste trabalho, diversas técnicas de classificação automática de imagens de sensoriamento remoto são investigadas. Na análise, incluem-se um método não- paramétrico, denominado K-Médias. Adaptativos Hierárquico (KMAH), e seis paramétricos: o Classificador de Máxima Verossimilhança (MV), o de Máxima Probabilidade a Posteriori (MAP), o MAP Adaptativo (MAPA), por Subimagens (MAPSI), o Contextual Tilton-Swain (CXTS) e o Contextual por Subimagens (CXSI). O treinamento necessário à implementação das técnicas paramétricas foi realizado de forma não-supervisionada, usando-se para tanto a classificação efetuada pelo KMAH. Considerações a respeito das vantagens e desvantagens dos classificadores, de acordo com a observação das taxas de erros e dos tempos de processamento, apontaram as técnicas MAPA e MAPSI com as mais convenientes
In this thesis, several techniques of automatic classfication of remote sensing impeages are investigated. Included in the analysis are ane non-parametric method, known as Adaptative hierarchical K-means (KMAH), and six parametric ones: the Maximum Likelihood (MV), the Maximum a Posteriori Probability (MAP), the Adaptative MAP (MAPA), the Subimages MAP (MAPSI), the tilton-Swain Contextual, (CXTS) and the Subimages Contextual (CXSI) classifiers. The necessary training for the parametric case was done in a non-supervised form, by using the KMAH classification. Considerations about the advantages and disadvantages of the classifiers were made and, based on the observation of the error rates and processing time, the MAPA and MAPSI have shown the best performances.
Råhlén, Oskar, and Sacharias Sjöqvist. "Image Classification of Real Estate Images with Transfer Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259759.
Повний текст джерелаVarje minut görs 2000 sökningar på Sveriges största webbplats för bostadsannonser som har 20 000 bostadsrätter till salu bara i Stockholm. Detta ställer höga krav på sökfunktionen för att ge användarna en chans att hitta sin drömbostad. Idag finns det möjlighet att filtrera på attribut såsom antal rum, boarea, pris och område men inte på attribut som balkong och eldstad. För att inte behöva kategorisera objekt manuellt för attribut såsom balkong och eldstad finns det möjlighet att använda sig av mäklarbilder samt djupa neurala nätverk för att klassificera objekten automatiskt. Denna uppsats syftar till att utreda om det med hög sannolikhet går att klassificera mäklarbilder efter attributen balkong, eldstad samt typ av rum, med hjälp av djupa neurala nätverk. För att undersöka detta på ett utförligt sätt jämfördes olika arkitekturer med varandra samt feature extraction mot fine-tuning. Testerna visade att balkongmodellen med 98,1% sannolikhet kan avgöra om det finns en balkong på någon av bilderna eller inte. För eldstäder nåddes ett maximum på 85,5% vilket är väsentligt sämre än för balkonger. Under sista klassificeringen, den för rum, nåddes ett resultat på 97,9%.Sammanfattningsvis påvisar detta att det är fullt möjligt att använda djupa neurala nätverk för att klassificera mäklarbilder.
Vargas, Muñoz John Edgar 1991. "Contextual superpixel-based active learning for remote sensing image classification = Aprendizado ativo baseado em atributos contextuais de superpixel para classificação de imagem de sensoriamento remoto." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275555.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-27T14:43:51Z (GMT). No. of bitstreams: 1 VargasMunoz_JohnEdgar_M.pdf: 9138091 bytes, checksum: bdb40e3a5655df0e10a137f2d08f0d8d (MD5) Previous issue date: 2015
Resumo: Recentemente, técnicas de aprendizado de máquina têm sido propostas para criar mapas temáticos a partir de imagens de sensoriamento remoto. Estas técnicas podem ser divididas em métodos de classificação baseados em pixels ou regiões. Este trabalho concentra-se na segunda abordagem, uma vez que estamos interessados em imagens com milhões de pixels e a segmentação da imagem em regiões (superpixels) pode reduzir consideravelmente o número de amostras a serem classificadas. Porém, mesmo utilizando superpixels, o número de amostras ainda é grande para anotá-las manualmente e treinar o classificador. As técnicas de aprendizado ativo propostas resolvem este problema começando pela seleção de um conjunto pequeno de amostras selecionadas aleatoriamente. Tais amostras são anotadas manualmente e utilizadas para treinar a primeira instância do classificador. Em cada iteração do ciclo de aprendizagem, o classificador atribui rótulos e seleciona as amostras mais informativas para a correção/confirmação pelo usuário, aumentando o tamanho do conjunto de treinamento. A instância do classificador é melhorada no final de cada iteração pelo seu treinamento e utilizada na iteração seguinte até que o usuário esteja satisfeito com o classificador. Observamos que a maior parte dos métodos reclassificam o conjunto inteiro de dados em cada iteração do ciclo de aprendizagem, tornando este processo inviável para interação com o usuário. Portanto, enderaçamos dois problemas importantes em classificação baseada em regiões de imagens de sensoriamento remoto: (a) a descrição efetiva de superpixels e (b) a redução do tempo requerido para seleção de amostras em aprendizado ativo. Primeiro, propusemos um descritor contextual de superpixels baseado na técnica de sacola de palavras, que melhora o resultado de descritores de cor e textura amplamente utilizados. Posteriormente, propusemos um método supervisionado de redução do conjunto de dados que é baseado em um método do estado da arte em aprendizado ativo chamado Multi-Class Level Uncertainty (MCLU). Nosso método mostrou-se tão eficaz quanto o MCLU e ao mesmo tempo consideravelmente mais eficiente. Adicionalmente, melhoramos seu desempenho por meio da aplicação de um processo de relaxação no mapa de classificação, utilizando Campos Aleatórios de Markov
Abstract: In recent years, machine learning techniques have been proposed to create classification maps from remote sensing images. These techniques can be divided into pixel- and region-based image classification methods. This work concentrates on the second approach, since we are interested in images with millions of pixels and the segmentation of the image into regions (superpixels) can considerably reduce the number of samples for classification. However, even using superpixels the number of samples is still large for manual annotation of samples to train the classifier. Active learning techniques have been proposed to address the problem by starting from a small set of randomly selected samples, which are manually labeled and used to train a first instance of the classifier. At each learning iteration, the classifier assigns labels and selects the most informative samples for user correction/confirmation, increasing the size of the training set. An improved instance of the classifier is created by training, after each iteration, and used in the next iteration until the user is satisfied with the classifier. We observed that most methods reclassify the entire pool of unlabeled samples at every learning iteration, making the process unfeasible for user interaction. Therefore, we address two important problems in region-based classification of remote sensing images: (a) the effective superpixel description and (b) the reduction of the time required for sample selection in active learning. First, we propose a contextual superpixel descriptor, based on bag of visual words, that outperforms widely used color and texture descriptors. Second, we propose a supervised method for dataset reduction that is based on a state-of-art active learning technique, called Multi-Class Level Uncertainty (MCLU). Our method has shown to be as effective as MCLU, while being considerably more efficient. Additionally, we further improve its performance by applying a relaxation process on the classification map by using Markov Random Fields
Mestrado
Ciência da Computação
Mestre em Ciência da Computação
Udas, Swati. "Classification algorithms for finding the eye fixation from digital images /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p1418072.
Повний текст джерелаMasse, Antoine. "Développement et automatisation de méthodes de classification à partir de séries temporelles d'images de télédétection - Application aux changements d'occupation des sols et à l'estimation du bilan carbone." Phd thesis, Université Paul Sabatier - Toulouse III, 2013. http://tel.archives-ouvertes.fr/tel-00921853.
Повний текст джерелаCheriyadat, Anil Meerasa. "Limitations of principal component analysis for dimensionality-reduction for classification of hyperspectral data." Master's thesis, Mississippi State : Mississippi State University, 2003. http://library.msstate.edu/etd/show.asp?etd=etd-11072003-133109.
Повний текст джерелаGormus, Esra Tunc. "Improved classification of remote sensing imagery using image fusion techniques." Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601185.
Повний текст джерелаNyman, Joakim. "Pixel classification of hyperspectral images." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-353175.
Повний текст джерелаNETO, ALEXANDRE HENRIQUE LEAL. "UNSUPERVISED CLASSIFICATION OF SATELLITE IMAGES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1994. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8497@1.
Повний текст джерелаA classificação e segmentação não-supervisionadas de imagens de sensoriamento remoto são examinadas neste trabalho. A classificação é realizada tomando-se como base o critério de Bayes, que busca minimizar o valor esperado do erro de classificação. Os algoritmos desenvolvidos foram propostos pressupondo-se que a estrutura das classes presentes na imagem podem ser bem modeladas por vetores aleatórios guassianos. Os classificadores convencionais, que só levam em conta a informação dos pixels de forma isolada, forma tratados sob a ótica da quantização vetorial. Em particular, foi proposto um algoritmo de classificação com base na quantização vetorial com restrição de entropia. O desempenho das técnicas de classificação é analisado obsevando-se a discrepância entre classificações, comparando-se as imagens classificadas com imagens referencia e classificando-se imagens sintéticas. A taxa de acerto, entre 80% e 95%. Este bom desempenho dos classificadores é limitado pelo fato de, em suas estruturas, levarem em conta a informação dos pixels de forma isolada. Buscamos, através da classificação de segmentos, incorporar informações de contexto em nossos classificadores. A classificação de segmentos levou a taxas de erros inferiores àquelas alcançadas por classificadores baseados em pixels isolados. Um algoritmo de segmentação, que incorpora ao modelo de classificação por pixels a influencia de sua vizinhança através de uma abordagem markoviana, é apresentado.
Unsupervised classification and segmentation of satellite images are examined in this work. The classification is based on Bayes` criterion, which tries to minimize the expected value of the classification error. The algorthms developed were proposed postulating that the classes in the image are well modeled by gaussian random vectors. Conventional classifiers, which take into account only pixelwise information, were treated as vector quantizers. Specifically, it was proposed a classification algorithm based on entropy constrained vector. The behaviour of the classifiers is examined observing the discrepancy between classifications, comparing classified images with reference-images and classifyng sinthetic images. The percentage of pixels whitch are assigned to the same class as in the reference-images ranged from 80,0% to 95,0%. This good behaviour of the classidiers is limited by the fact that, in theirs structures, are taken into account only isolated pixel information. We have sought, by classifying segments, to introduce contextual information into the classifiers structure. The segments classidiers. A segmentation algorithm, which introduces contextual information into pixelwise classifier by a markovian approach, is presented.
Santos, Jefersson Alex dos 1984. "Semi-automatic classification of remote sensing images = Classificação semi-automática de imagens de sensorimento remoto." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275630.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação
Made available in DSpace on 2018-08-23T15:18:27Z (GMT). No. of bitstreams: 1 Santos_JeferssonAlexdos_D.pdf: 18672412 bytes, checksum: 58ac60d8b5342ab705a78d5c82265ab8 (MD5) Previous issue date: 2013
Resumo: Um grande esforço tem sido feito para desenvolver sistemas de classificação de imagens capazes de criar mapas temáticos de alta qualidade e estabelecer inventários precisos sobre o uso do solo. As peculiaridades das imagens de sensoriamento remoto (ISR), combinados com os desafios tradicionais de classificação de imagens, tornam a classificação de ISRs uma tarefa difícil. Grande parte dos desafios de pesquisa estão relacionados à escala de representação dos dados e, ao mesmo tempo, à dimensão e à representatividade do conjunto de treinamento utilizado. O principal foco desse trabalho está nos problemas relacionados à representação dos dados e à extração de características. O objetivo é desenvolver soluções efetivas para classificação interativa de imagens de sensoriamento remoto. Esse objetivo foi alcançado a partir do desenvolvimento de quatro linhas de pesquisa. A primeira linha de pesquisa está relacionada ao fato de embora descritores de imagens propostos na literatura obterem bons resultados em várias aplicações, muitos deles nunca foram usados para classificação de imagens de sensoriamento remoto. Nessa tese, foram testados doze descritores que codificam propriedades espectrais e sete descritores de textura. Também foi proposta uma metodologia baseada no classificador K-Vizinhos mais Próximos (K-nearest neighbors - KNN) para avaliação de descritores no contexto de classificação. Os descritores Joint Auto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition (SID) e Quantized Compound Change Histogram (QCCH), apresentaram os melhores resultados experimentais na identificação de alvos de café e pastagem. A segunda linha de pesquisa se refere ao problema de seleção de escalas de segmentação para classificação de imagens de sensoriamento baseada em objetos. Métodos propostos recentemente exploram características extraídas de objetos segmentados para melhorar a classificação de imagens de alta resolução. Entretanto, definir uma escala de segmentação adequada é uma tarefa desafiadora. Nessa tese, foram propostas duas abordagens de classificação multiescala baseadas no algoritmo Adaboost. A primeira abordagem, Multiscale Classifier (MSC), constrói um classificador forte que combina características extraídas de múltiplas escalas de segmentação. A outra, Hierarchical Multiscale Classifier (HMSC), explora a relação hierárquica das regiões segmentadas para melhorar a eficiência sem reduzir a qualidade da classificação xi quando comparada à abordagem MSC. Os experimentos realizados mostram que é melhor usar múltiplas escalas do que utilizar apenas uma escala de segmentação. A correlação entre os descritores e as escalas de segmentação também é analisada e discutida. A terceira linha de pesquisa trata da seleção de amostras de treinamento e do refinamento dos resultados da classificação utilizando segmentação multiescala. Para isso, foi proposto um método interativo para classificação multiescala de imagens de sensoriamento remoto. Esse método utiliza uma estratégia baseada em aprendizado ativo que permite o refinamento dos resultados de classificação pelo usuário ao longo de interações. Os resultados experimentais mostraram que a combinação de escalas produzem melhores resultados do que a utilização de escalas isoladas em um processo de realimentação de relevância. Além disso, o método interativo obtém bons resultados com poucas interações. O método proposto necessita apenas de uma pequena porção do conjunto de treinamento para construir classificadores tão fortes quanto os gerados por um método supervisionado utilizando todo o conjunto de treinamento disponível. A quarta linha de pesquisa se refere à extração de características de uma hierarquia de regiões para classificação multiescala. Assim, foi proposta uma abordagem que explora as relações existentes entre as regiões da hierarquia. Essa abordagem, chamada BoW-Propagation, utiliza o modelo bag-of-visual-word para propagar características ao longo de múltiplas escalas. Essa ideia foi estendida para propagar descritores globais baseados em histogramas, a abordagem H-Propagation. As abordagens propostas aceleram o processo de extração e obtém bons resultados quando comparadas a descritores globais
Abstract: A huge effort has been made in the development of image classification systems with the objective of creating high-quality thematic maps and to establish precise inventories about land cover use. The peculiarities of Remote Sensing Images (RSIs) combined with the traditional image classification challenges make RSI classification a hard task. Many of the problems are related to the representation scale of the data, and to both the size and the representativeness of used training set. In this work, we addressed four research issues in order to develop effective solutions for interactive classification of remote sensing images. The first research issue concerns the fact that image descriptors proposed in the literature achieve good results in various applications, but many of them have never been used in remote sensing classification tasks. We have tested twelve descriptors that encode spectral/color properties and seven texture descriptors. We have also proposed a methodology based on the K-Nearest Neighbor (KNN) classifier for evaluation of descriptors in classification context. Experiments demonstrate that Joint Auto-Correlogram (JAC), Color Bitmap, Invariant Steerable Pyramid Decomposition (SID), and Quantized Compound Change Histogram (QCCH) yield the best results in coffee and pasture recognition tasks. The second research issue refers to the problem of selecting the scale of segmentation for object-based remote sensing classification. Recently proposed methods exploit features extracted from segmented objects to improve high-resolution image classification. However, the definition of the scale of segmentation is a challenging task. We have proposed two multiscale classification approaches based on boosting of weak classifiers. The first approach, Multiscale Classifier (MSC), builds a strong classifier that combines features extracted from multiple scales of segmentation. The other, Hierarchical Multiscale Classifier (HMSC), exploits the hierarchical topology of segmented regions to improve training efficiency without accuracy loss when compared to the MSC. Experiments show that it is better to use multiple scales than use only one segmentation scale result. We have also analyzed and discussed about the correlation among the used descriptors and the scales of segmentation. The third research issue concerns the selection of training examples and the refinement of classification results through multiscale segmentation. We have proposed an approach for xix interactive multiscale classification of remote sensing images. It is an active learning strategy that allows the classification result refinement by the user along iterations. Experimental results show that the combination of scales produces better results than isolated scales in a relevance feedback process. Furthermore, the interactive method achieves good results with few user interactions. The proposed method needs only a small portion of the training set to build classifiers that are as strong as the ones generated by a supervised method that uses the whole available training set. The fourth research issue refers to the problem of extracting features of a hierarchy of regions for multiscale classification. We have proposed a strategy that exploits the existing relationships among regions in a hierarchy. This approach, called BoW-Propagation, exploits the bag-of-visual-word model to propagate features along multiple scales. We also extend this idea to propagate histogram-based global descriptors, the H-Propagation method. The proposed methods speed up the feature extraction process and yield good results when compared with global low-level extraction approaches
Doutorado
Ciência da Computação
Doutor em Ciência da Computação
De, Hoedt Amanda Marie. "Clubfoot Image Classification." Thesis, University of Iowa, 2013. https://ir.uiowa.edu/etd/4836.
Повний текст джерелаBorges, Vinicius Ruela Pereira. "A computer-assisted approach to supporting taxonomical classification of freshwater green microalga images." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07022017-163412/.
Повний текст джерелаA identificação taxonômica de algas verdes de água doce é um problema de extrema relevância na Ficologia. Identificar espécies de algas da família Selenastraceae é uma tarefa complexa devido às inconsistências existentes em sua taxonomia, reconhecida como problemática. Os biólogos analisam manualmente imagens de microscópio de cepas de algas e realizam diversos procedimentos demorados que necessitamde conhecimento sólido. Tais limitaçõesmotivaramo estudo da aplicabilidade de técnicas de processamento de imagens, reconhecimento de padrões e mineração visual de dados para apoiar os biólogos em tarefas de identificação de espécies de algas. Esta tese descreve metodologias computacionais para a classificação de imagens de algas verdes, nas abordagens tradicional e baseada em classificação visual incremental com participação do usuário. Nesta última, os usuários interagem com visualizações baseadas em árvores filogenéticas para utilizar seu conhecimento no processo de classificação, como por exemplo, na seleção de instâncias relevantes para o conjunto de treinamento de um classificador, como também na avaliação dos resultados. De forma a viabilizar o uso de classificadores e técnicas de visualização, vetores de características devem ser obtidos das imagens de algas verdes. Neste trabalho, utiliza-se extração de características de forma, uma vez que a taxonomia da família Selenastraceae considera primordialmente as características morfológicas na identificação das espécies. No entanto, a obtenção de características representativas requer que as algas sejam precisamente segmentadas das imagens. Esta é, de fato, uma tarefa altamente desafiadora considerando a baixa qualidade das imagens e a maneira pelas quais as algas se organizam nas imagens. Duas metodologias de segmentação foram introduzidas: uma baseada no método Level Set e outra baseada no algoritmo de crescimento de regiões. A primeira se mostrou robusta e consegue identificar com alta precisão as algas nas imagens, mas seu tempo de execução é alto. A outra apresenta maior precisão e é mais rápida, uma vez que as técnicas de pré-processamento são especializadas para as imagens de algas verdes. Uma vez segmentadas as algas, dois descritores para caracterizar as imagens foram propostos: um baseado em características geométricas básicas e outro que utiliza medidas quantitativas calculadas a partir das assinaturas de forma. Resultados experimentais indicaram que as soluções propostas têm um bom potencial para serem utilizadas em tarefas de identificação taxonômica de algas verdes, uma vez que reduz o esforço nos procedimentos manuais e obtém-se classificações satisfatórias.
Maggiori, Emmanuel. "Approches d'apprentissage pour la classification à large échelle d'images de télédétection." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4041/document.
Повний текст джерелаThe analysis of airborne and satellite images is one of the core subjects in remote sensing. In recent years, technological developments have facilitated the availability of large-scale sources of data, which cover significant extents of the earth’s surface, often at impressive spatial resolutions. In addition to the evident computational complexity issues that arise, one of the current challenges is to handle the variability in the appearance of the objects across different geographic regions. For this, it is necessary to design classification methods that go beyond the analysis of individual pixel spectra, introducing higher-level contextual information in the process. In this thesis, we first propose a method to perform classification with shape priors, based on the optimization of a hierarchical subdivision data structure. We then delve into the use of the increasingly popular convolutional neural networks (CNNs) to learn deep hierarchical contextual features. We investigate CNNs from multiple angles, in order to address the different points required to adapt them to our problem. Among other subjects, we propose different solutions to output high-resolution classification maps and we study the acquisition of training data. We also created a dataset of aerial images over dissimilar locations, and assess the generalization capabilities of CNNs. Finally, we propose a technique to polygonize the output classification maps, so as to integrate them into operational geographic information systems, thus completing the typical processing pipeline observed in a wide number of applications. Throughout this thesis, we experiment on hyperspectral, atellite and aerial images, with scalability, generalization and applicability goals in mind
Hagedorn, Michael. "Classification of synthetic aperture radar images." Thesis, University of Canterbury. Electrical and Computer Engineering, 2004. http://hdl.handle.net/10092/5966.
Повний текст джерелаLangdon, Matthew James. "Classification of images and censored data." Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.434618.
Повний текст джерелаMcGuire, Peter Frederick. "Image classification using eigenpaxels." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0002/NQ41239.pdf.
Повний текст джерелаLong, Yang. "Zero-shot image classification." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/18613/.
Повний текст джерелаWakade, Shruti Vijay. "Classification of Image Spam." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1311113808.
Повний текст джерелаBittencourt, Helio Radke. "Detecção de mudanças a partir de imagens de fração." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/36053.
Повний текст джерелаLand cover change detection is a major goal in multitemporal remote sensing applications. It is well known that images acquired on different dates tend to be highly influenced by radiometric differences and registration problems. Using fraction images, obtained from the linear model of spectral mixing (LMSM), radiometric problems can be minimized and the interpretation of changes in land cover is facilitated because the fractions have a physical meaning. Furthermore, interpretations at the subpixel level are possible. This thesis presents three algorithms – hard, soft and fuzzy – for detecting changes between a pair of fraction images. The algorithms require multivariate normality for the differences among fractions and very little intervention by the analyst. The hard algorithm creates binary change maps following the same methodology of hypothesis testing, based on the fact that the contours of constant density are defined by chi-square values, according to the choice of the probability level. The soft one allows for the generation of estimates of the probability of each pixel belonging to the change class by using a logistic regression model. These probabilities are used to create a map of change probabilities. The fuzzy approach is the one that best fits the concept behind the fraction images because the changes in land cover can occurr at a subpixel level. Based on these algorithms, maps of membership degrees were created. Other mathematical and statistical techniques were also used, such as morphological operations, ROC curves and a clustering algorithm. The algorithms were tested using synthetic and real images (Landsat-TM) and the results were analyzed qualitatively and quantitatively. The results indicate that fraction images can be used in change detection studies by using the proposed algorithms.
Shin, Jiwon. "Parts-based object classification for range images." Zürich : Swiss Federal Institute of Technology, Autonomous Systems Lab, 2008. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=384.
Повний текст джерелаDos, santos Jefersson Alex. "Semi-automatic Classification of Remote Sensing Images." Phd thesis, Université de Cergy Pontoise, 2013. http://tel.archives-ouvertes.fr/tel-00878612.
Повний текст джерелаPop, David. "Classification of Heart Views in Ultrasound Images." Thesis, Linköpings universitet, Datorseende, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165276.
Повний текст джерелаAugereau, Olivier. "Reconnaissance et classification d’images de documents." Thesis, Bordeaux 1, 2013. http://www.theses.fr/2013BOR14764/document.
Повний текст джерелаThe aim of this research is to contribute to the document image classification problem. More specifically, these studies address digitizing company issues which objective is to provide the digital version of paper document with information relating to them. Given the diversity of documents, information extraction can be complex. This is why the classification and the indexing of documents are often performed manually. This research provides several solutions based on knowledge of the images that the user has. The first contribution of this thesis is a method for classifying interactively document images, where the content of documents and classes are unknown. The second contribution of this work is a new technique for document image retrieval by giving one example of researched document. This technique is based on the extraction and matching of interest points. The last contribution of this thesis is a method for classifying document images by using bags of visual words techniques
Lu, Ying. "Transfer Learning for Image Classification." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEC045/document.
Повний текст джерелаWhen learning a classification model for a new target domain with only a small amount of training samples, brute force application of machine learning algorithms generally leads to over-fitted classifiers with poor generalization skills. On the other hand, collecting a sufficient number of manually labeled training samples may prove very expensive. Transfer Learning methods aim to solve this kind of problems by transferring knowledge from related source domain which has much more data to help classification in the target domain. Depending on different assumptions about target domain and source domain, transfer learning can be further categorized into three categories: Inductive Transfer Learning, Transductive Transfer Learning (Domain Adaptation) and Unsupervised Transfer Learning. We focus on the first one which assumes that the target task and source task are different but related. More specifically, we assume that both target task and source task are classification tasks, while the target categories and source categories are different but related. We propose two different methods to approach this ITL problem. In the first work we propose a new discriminative transfer learning method, namely DTL, combining a series of hypotheses made by both the model learned with target training samples, and the additional models learned with source category samples. Specifically, we use the sparse reconstruction residual as a basic discriminant, and enhance its discriminative power by comparing two residuals from a positive and a negative dictionary. On this basis, we make use of similarities and dissimilarities by choosing both positively correlated and negatively correlated source categories to form additional dictionaries. A new Wilcoxon-Mann-Whitney statistic based cost function is proposed to choose the additional dictionaries with unbalanced training data. Also, two parallel boosting processes are applied to both the positive and negative data distributions to further improve classifier performance. On two different image classification databases, the proposed DTL consistently out performs other state-of-the-art transfer learning methods, while at the same time maintaining very efficient runtime. In the second work we combine the power of Optimal Transport and Deep Neural Networks to tackle the ITL problem. Specifically, we propose a novel method to jointly fine-tune a Deep Neural Network with source data and target data. By adding an Optimal Transport loss (OT loss) between source and target classifier predictions as a constraint on the source classifier, the proposed Joint Transfer Learning Network (JTLN) can effectively learn useful knowledge for target classification from source data. Furthermore, by using different kind of metric as cost matrix for the OT loss, JTLN can incorporate different prior knowledge about the relatedness between target categories and source categories. We carried out experiments with JTLN based on Alexnet on image classification datasets and the results verify the effectiveness of the proposed JTLN in comparison with standard consecutive fine-tuning. To the best of our knowledge, the proposed JTLN is the first work to tackle ITL with Deep Neural Networks while incorporating prior knowledge on relatedness between target and source categories. This Joint Transfer Learning with OT loss is general and can also be applied to other kind of Neural Networks
Dutt, Anuvabh. "Continual learning for image classification." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM063.
Повний текст джерелаThis thesis deals with deep learning applied to image classification tasks. The primary motivation for the work is to make current deep learning techniques more efficient and to deal with changes in the data distribution. We work in the broad framework of continual learning, with the aim to have in the future machine learning models that can continuously improve.We first look at change in label space of a data set, with the data samples themselves remaining the same. We consider a semantic label hierarchy to which the labels belong. We investigate how we can utilise this hierarchy for obtaining improvements in models which were trained on different levels of this hierarchy.The second and third contribution involve continual learning using a generative model. We analyse the usability of samples from a generative model in the case of training good discriminative classifiers. We propose techniques to improve the selection and generation of samples from a generative model. Following this, we observe that continual learning algorithms do undergo some loss in performance when trained on several tasks sequentially. We analyse the training dynamics in this scenario and compare with training on several tasks simultaneously. We make observations that point to potential difficulties in the learning of models in a continual learning scenario.Finally, we propose a new design template for convolutional networks. This architecture leads to training of smaller models without compromising performance. In addition the design lends itself to easy parallelisation, leading to efficient distributed training.In conclusion, we look at two different types of continual learning scenarios. We propose methods that lead to improvements. Our analysis also points to greater issues, to over come which we might need changes in our current neural network training procedure
Mohamed, Aamer S. S. "From content-based to semantic image retrieval. Low level feature extraction, classification using image processing and neural networks, content based image retrieval, hybrid low level and high level based image retrieval in the compressed DCT domain." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4438.
Повний текст джерелаMohamed, Aamer Saleh Sahel. "From content-based to semantic image retrieval : low level feature extraction, classification using image processing and neural networks, content based image retrieval, hybrid low level and high level based image retrieval in the compressed DCT domain." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4438.
Повний текст джерелаPaulin, Mattis. "De l'apprentissage de représentations visuelles robustes aux invariances pour la classification et la recherche d'images." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM007/document.
Повний текст джерелаThis dissertation focuses on designing image recognition systems which are robust to geometric variability. Image understanding is a difficult problem, as images are two-dimensional projections of 3D objects, and representations that must fall into the same category, for instance objects of the same class in classification can display significant differences. Our goal is to make systems robust to the right amount of deformations, this amount being automatically determined from data. Our contributions are twofolds. We show how to use virtual examples to enforce robustness in image classification systems and we propose a framework to learn robust low-level descriptors for image retrieval. We first focus on virtual examples, as transformation of real ones. One image generates a set of descriptors –one for each transformation– and we show that data augmentation, ie considering them all as iid samples, is the best performing method to use them, provided a voting stage with the transformed descriptors is conducted at test time. Because transformations have various levels of information, can be redundant, and can even be harmful to performance, we propose a new algorithm able to select a set of transformations, while maximizing classification accuracy. We show that a small amount of transformations is enough to considerably improve performance for this task. We also show how virtual examples can replace real ones for a reduced annotation cost. We report good performance on standard fine-grained classification datasets. In a second part, we aim at improving the local region descriptors used in image retrieval and in particular to propose an alternative to the popular SIFT descriptor. We propose new convolutional descriptors, called patch-CKN, which are learned without supervision. We introduce a linked patch- and image-retrieval dataset based on structure from motion of web-crawled images, and design a method to accurately test the performance of local descriptors at patch and image levels. Our approach outperforms both SIFT and all tested approaches with convolutional architectures on our patch and image benchmarks, as well as several styate-of-theart datasets
Laouamer, Lamri. "Approche exploratoire sur la classification appliquée aux images /." Trois-Rivières : Université du Québec à Trois-Rivières, 2006. http://www.uqtr.ca/biblio/notice/resume/24710337R.pdf.
Повний текст джерелаTress, Andrew. "Practical classification and segmentation of large textural images." Thesis, Heriot-Watt University, 1996. http://hdl.handle.net/10399/720.
Повний текст джерелаNwoye, Ephraim O. "Fuzzy neural classification of colon cancer cell images." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432763.
Повний текст джерелаWalder, Patrick. "Automated classification of cloud types from satellite images." Thesis, University of the West of Scotland, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496612.
Повний текст джерелаTrakas, Joannis. "Classification of medical images with small data sets." Thesis, University of Sussex, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508988.
Повний текст джерелаBin, Ghaith Alsuwaidi Ali Rashed Saeed A. "Feature analysis of hyperspectral images for plant classification." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/feature-analysis-of-hyperspectral-images-for-plant-classification(38a3f58f-d057-4a04-8899-81768c055652).html.
Повний текст джерелаLaouamer, Lamri. "Approche exploratoire sur la classification appliquée aux images." Thèse, Université du Québec à Trois-Rivières, 2006. http://depot-e.uqtr.ca/1208/1/000133228.pdf.
Повний текст джерелаKalvakolanu, Anjaneya Teja Sarma. "Brain Tumor Detection and Classification from MRI Images." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2267.
Повний текст джерелаOuji, Asma. "Segmentation et classification dans les images de documents numérisés." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00749933.
Повний текст джерелаHan, Yiding. "An Autonomous Unmanned Aerial Vehicle-Based Imagery System Development and Remote Sensing Images Classification for Agricultural Applications." DigitalCommons@USU, 2009. https://digitalcommons.usu.edu/etd/513.
Повний текст джерелаRimer, Michael Edwin. "Improving Neural Network Classification Training." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd2094.pdf.
Повний текст джерелаColak, Tufan, and Rami S. R. Qahwaji. "Automated McIntosh-Based Classification of Sunspot Groups Using MDI Images." Springer, 2007. http://hdl.handle.net/10454/4091.
Повний текст джерелаThis paper presents a hybrid system for automatic detection and McIntosh-based classification of sunspot groups on SOHO/MDI white-light images using active-region data extracted from SOHO/MDI magnetogram images. After sunspots are detected from MDI white-light images they are grouped/clustered using MDI magnetogram images. By integrating image-processing and neural network techniques, detected sunspot regions are classified automatically according to the McIntosh classification system. Our results show that the automated grouping and classification of sunspots is possible with a high success rate when compared to the existing manually created catalogues. In addition, our system can detect and classify sunspot groups in their early stages, which are usually missed by human observers.
EPSRC
"Image partial blur detection and classification." 2008. http://library.cuhk.edu.hk/record=b5893527.
Повний текст джерелаThesis (M.Phil.)--Chinese University of Hong Kong, 2008.
Includes bibliographical references (leaves 40-46).
Abstracts in English and Chinese.
Chapter 1 --- Introduction --- p.1
Chapter 2 --- Related Work and System Overview --- p.6
Chapter 2.1 --- Previous Work in Blur Analysis --- p.6
Chapter 2.1.1 --- Blur detection and estimation --- p.6
Chapter 2.1.2 --- Image deblurring --- p.8
Chapter 2.1.3 --- Low DoF image auto-segmentation --- p.14
Chapter 2.2 --- System Overview --- p.15
Chapter 3 --- Blur Features and Classification --- p.18
Chapter 3.1 --- Blur Features --- p.18
Chapter 3.1.1 --- Local Power Spectrum Slope --- p.19
Chapter 3.1.2 --- Gradient Histogram Span --- p.21
Chapter 3.1.3 --- Maximum Saturation --- p.24
Chapter 3.1.4 --- Local Autocorrelation Congruency --- p.25
Chapter 3.2 --- Classification --- p.28
Chapter 4 --- Experiments and Results --- p.29
Chapter 4.1 --- Blur Patch Detection --- p.29
Chapter 4.2 --- Blur degree --- p.33
Chapter 4.3 --- Blur Region Segmentation --- p.34
Chapter 5 --- Conclusion and Future Work --- p.38
Bibliography --- p.40
Chapter A --- Blurred Edge Analysis --- p.47
Chang, Chia-Chin, and 張傢欽. "An Image Spam Classification Method for Rotating and Scaling Images." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/96923222784300373599.
Повний текст джерела朝陽科技大學
資訊工程系
103
This thesis proposes a novel algorithm to effectively identify the image spam for the problems of image rotation, scaling and the background interference. This algorithm uses image color layering to reduce the interference of the background color and adopts seven resistant scaling parameters to identifier, and capture the image objects in oval way. This thesis also proposes a hybrid image spam filter. The first part uses Optical Character Recognition (OCR) to capture the text that embed in the image, and used keyword list to filter the identify the spam. The second part uses the proposed algorithm to filter the rotation and scaling of image spam. The experimental results demonstrated that the proposed algorithm can achieve a good classification results.
Bijaoui, Jérôme. "Complémentarité des images optiques et radars pour la connaissance des littoraux." Phd thesis, 1995. http://pastel.archives-ouvertes.fr/pastel-00979423.
Повний текст джерела