Добірка наукової літератури з теми "Classification of customers"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Classification of customers".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Classification of customers"
Gholami, Atena, Reza Sheikh, Neda Mizani, and Shib Sankar Sana. "ABC analysis of the customers using axiomatic design and incomplete rough set." RAIRO - Operations Research 52, no. 4-5 (October 2018): 1219–32. http://dx.doi.org/10.1051/ro/2018022.
Повний текст джерелаMoudani, Walid, Grace Zaarour, and Félix Mora-Camino. "Fuzzy Classification of Customer Insolvency in Mobile Telecommunication." International Journal of Decision Support System Technology 6, no. 3 (July 2014): 1–29. http://dx.doi.org/10.4018/ijdsst.2014070101.
Повний текст джерелаXu, Yong, Jian Liu, Baomei Ma, and Shuai Zhang. "Service Mechanism and Pricing Based on Fairness Preference of Customers in Queuing System." Journal of Systems Science and Information 6, no. 6 (December 10, 2018): 481–94. http://dx.doi.org/10.21078/jssi-2018-481-14.
Повний текст джерелаDu, Laihong, Hua Chen, Yadong Fang, Xiaowei Liang, Yujie Zhang, Yidan Qiao, and Zhen Guo. "Research on the Method of Acquiring Customer Individual Demand Based on the Quantitative Kano Model." Computational Intelligence and Neuroscience 2022 (April 11, 2022): 1–12. http://dx.doi.org/10.1155/2022/5052711.
Повний текст джерелаShen, Anyuan. "Recommendations as personalized marketing: insights from customer experiences." Journal of Services Marketing 28, no. 5 (August 5, 2014): 414–27. http://dx.doi.org/10.1108/jsm-04-2013-0083.
Повний текст джерелаG. Inyang, Udoinyang, Okure O. Obot, Moses E. Ekpenyong, and Aliu M. Bolanle. "Unsupervised Learning Framework for Customer Requisition and Behavioral Pattern Classification." Modern Applied Science 11, no. 9 (August 30, 2017): 151. http://dx.doi.org/10.5539/mas.v11n9p151.
Повний текст джерелаPalaniappan, Shamala, Aida Mustapha, Cik Feresa Mohd Foozy, and Rodziah Atan. "Customer Profiling using Classification Approach for Bank Telemarketing." JOIV : International Journal on Informatics Visualization 1, no. 4-2 (November 15, 2017): 214. http://dx.doi.org/10.30630/joiv.1.4-2.68.
Повний текст джерелаFu, Ze, Bo Zhang, Lingjun Ou, Kaiyang Sun, Xinyi Sun, and Ningyan Chen. "Research on Enterprise Financial Customer Classification Method and Preference Based on Intelligent Algorithm." Wireless Communications and Mobile Computing 2021 (November 28, 2021): 1–11. http://dx.doi.org/10.1155/2021/6585486.
Повний текст джерелаThammaboosadee, Sotarat, Benjathip Chinomi, and Ehab Mohamed. "A Two-Stage Customer Journey Analytical Model in Single House Business." ECTI Transactions on Computer and Information Technology (ECTI-CIT) 14, no. 2 (September 8, 2020): 202–12. http://dx.doi.org/10.37936/ecti-cit.2020142.240239.
Повний текст джерелаNoura, Abdaoui, Hadj Khalifa Ismahène, and Faiz Sami. "Process of Personalizing the Ubiquitous Advertisements." International Journal of Knowledge Society Research 8, no. 2 (April 2017): 13–35. http://dx.doi.org/10.4018/ijksr.2017040102.
Повний текст джерелаДисертації з теми "Classification of customers"
CARVALHO, NORMA ALICE DA SILVA. "HYBRID INTELLIGENT SYSTEM FOR CLASSIFICATION OF NON-RESIDENTIAL ELECTRICITY CUSTOMERS PAYMENT PROFILES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33393@1.
Повний текст джерелаCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
O objetivo desta pesquisa é classificar o perfil de pagamento dos consumidores não-residenciais de energia elétrica, considerando conhecimento armazenado em base de dados de distribuidoras de energia elétrica. A motivação para desenvolvê-la surgiu da necessidade das distribuidoras por um modelo de suporte a formulação de estratégias capazes de reduzir o grau inadimplência. A metodologia proposta consiste em um sistema inteligente híbrido composto por módulos intercomunicativos que usam conhecimentos armazenados em base de dados para segmentar consumidores e, então, atingir o objetivo proposto. O sistema inicia-se com o módulo neural, que aloca as unidades consumidoras em grupos conforme similaridades (valor fatura, consumo, demanda medida/demanda contratada, intensidade energética e peso da conta no orçamento), em sequência, o módulo bayesiano, estabelece um escore entre 0 e 1 que permite predizer o perfil de pagamento das unidades considerando os grupos gerados e os atributos categóricos (atividade econômica, estrutura tarifária, mesorregião, natureza jurídica e porte empresarial) que caracterizam essas unidades. Os resultados revelaram que o sistema proposto estabelece razoável taxa de acerto na classificação do perfil de consumidores e, portanto, constitui uma importante ferramenta de suporte a formulação de estratégias para combate à inadimplência. Conclui-se que, o sistema híbrido proposto apresenta caráter generalista podendo ser adaptado e implementado em outros mercados.
The objective of this research is to classify the non-residential electricity customer payment profiles regarding the knowledge stored in electricity distribution utilities databases. The motivation for development of the work from the need of electricity distribution by a support model to formulate strategies for tackling non-payment and late payment. The proposed methodology consists of a hybrid intelligent system constituted by intercommunicating modules that use knowledge stored in database to customer segmentation and then achieve the proposed objective. The system begins with the neural module, which allocates the consuming units in groups according to similarities (bill amount, consumption, measured demand/contracted demand, energy intensity and share of the electricity bill in the customer s income), in sequence, the Bayesian module establishes a score between 0 and 1 that allows to predict what payment profile of the units considering the generated groups and categorical attributes (business activity, tariff type, business size, mesoregion and company s legal form) that characterize these units. The results showed that the proposed system provides a reasonable success rate when classifying customer profiles and thus constitutes an important tool in the formulation of strategies for tackling non-payment and late payment. In conclusion, the hybrid system proposed here is a generalist one and could usefully be adapted and implemented in other markets.
Kirkin, S., and K. V. Melnyk. "Intelligent Data Processing in Creating Targeted Advertising." Thesis, National Technical University "Kharkiv Polytechnic Institute", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44710.
Повний текст джерелаAndersson, Martin, and Marcus Mazouch. "Binary classification for predicting propensity to buy flight tickets. : A study on whether binary classification can be used to predict Scandinavian Airlines customers’ propensity to buy a flight ticket within the next seven days." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160855.
Повний текст джерелаEn kunds benägenhet att göra ett visst köp är ett allmänt undersökt område som applicerats i flera olika branscher. I den här studien visas det att statistiska binära klassificeringsmodeller kan användas för att prediktera Scandinavian Airlines kunders benägenhet att köpa en resa de kommande sju dagarna. En jämförelse är presenterad mellan logistisk regression och stödvektormaskin och logistisk regression med reducerat antal parametrar väljs som den slutgiltiga modellen tack vare sin enkelhet och träffsäkerhet. De förklarande variablerna är uteslutande bokningshistorik medan kundens demografi och sökdata visas vara insignifikant.
Mazouch, Marcus, and Martin Andersson. "Binary classification for predicting propensity to buy flight tickets : A study on whether binary classification can be used to predict Scandinavian Airlines customers' propensity to buy a flight ticket within the next seven days." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-162412.
Повний текст джерелаEriksson, Alexander, and Jacob Långström. "Comparison of Machine Learning Techniques when Estimating Probability of Impairment : Estimating Probability of Impairment through Identification of Defaulting Customers one year Ahead of Time." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160114.
Повний текст джерелаTiteln på denna rapport är En jämförelse av maskininlärningstekniker för uppskattning av Probability of Impairment. Uppskattningen av Probability of Impairment sker genom identifikation av låntagare som inte kommer fullfölja sina återbetalningsskyldigheter inom ett år. Probability of Impairment, eller Probability of Default, är andelen kunder som uppskattas att inte fullfölja sina skyldigheter som låntagare och återbetalning därmed uteblir. Detta är ett nyckelmått inom banksektorn för att beräkna nivån av kreditrisk, vilken enligt nuvarande regleringsstandard uppskattas genom Linjär Regression. I denna uppsats visar vi hur detta mått istället kan uppskattas genom klassifikation med maskininlärning. Genom användandet av modeller anpassade för att hitta vilka specifika kunder som inte kommer fullfölja sina återbetalningsskyldigheter inom det kommande året, baserade på Neurala Nätverk och Gradient Boosting, visas att Probability of Impairment bättre uppskattas än genom Linjär Regression. Dessutom medför dessa modeller även ett stort antal interna användningsområden inom banksektorn. De nya variabler av intresse vi hittat kan användas för att stärka de modeller som idag används, samt förmågan att identifiera kunder som riskerar inte kunna fullfölja sina skyldigheter låter banker utföra nödvändiga åtgärder i god tid för att hantera annars oväntade risker.
Axén, Maja, and Jennifer Karlberg. "Binary Classification for Predicting Customer Churn." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-171892.
Повний текст джерелаAtt prediktera när en kund är påväg att vända sig till en konkurrent kan vara svårt, dock kan det visa sig extremt värdefullt ur ett affärsperspektiv. När en kund slutar vara kund benäms det ofta som kundbortfall eller ”churn”. Detta är ett ämne som är brett forskat på i flertalet olika industrier, men då ofta i situationer med prenumenationstjänster. När man inte har en prenumerationstjänst försvåras uppgiften att definera churn och existerande studier brister i att analysera detta. Denna uppsats kan därför ses som ett bidrag till nuvarande litteratur, i synnerhet i fall där ingen tydlig definition för churn existerar. En definition för churn, anpassad efter DIAKRIT och deras affärsstruktur har skapats i det här projektet. DIAKRIT är verksamma i fastighetsbranschen, en industri som har flera utmaningar, bland annat en extrem säsongsvariaton. För att genomföra prediktionerna användes tre olika maskininlärningamodeller: Logistisk Regression, Random Forest och Support Vector Machine. De variabler som användes är mestadels aktivitetsdata. Med relativt hög noggranhet och AUC-värde anses Random Forest vara mest pålitlig. Modellen kan dock inte separera mellan de två klasserna perfekt. Random Forest modellen visade sig också genera en hög precision. Därför kan slutsatsen dras att även om modellen inte är felfri verkar det som att kunderna predikterade som churn mest sannolikt kommer churna.
Vallaud, Thierry. "Estimating potential customer value using customer data : using a classification technique to determine customer value /." Abstract and full text available, 2009. http://149.152.10.1/record=b3077978~S16.
Повний текст джерелаThesis advisor: Daniel Larose. "... in partial fulfillment of the requirements for the degree of Master of Science in Data Mining." Includes bibliographical references (leaves 37-39). Also available via the World Wide Web.
Koch-Falkenberg, Carolyn. "Kundenloyalität in Dienstleistungsbeziehungen: untersucht am Beispiel der Deutschen Bahn AG." Universitätsverlag der Technischen Universität Chemnitz, 2018. https://monarch.qucosa.de/id/qucosa%3A35451.
Повний текст джерелаWhy are travel customers of DB AG special customers with a comparatively less resilient loyalty which is particularly easy to be violated? What undermines their passion for going by train? Why is even the promotion of the unlimited loyalty of travel customers relevant to the quasimonopolist DB AG? What characterizes the attachment of the old fashioned loyalty type? And what characterizes the development and specific functioning of the binding of the ‚new‘ loyalty type? The author seizes the interdisciplinary topic of the interface theme 'customer loyalty in service relationships', which ocupy many science disciplines, but has so far been primarily researched quantitatively from a marketing perspective. Carolyn Koch-Falkenberg asks when and why clients are emotionally attached to their loyality for a company, how their loyalty is revealed, how it counteracts and illustrates the consequences of their natural loyalty form. The focus is on a specific form of attachment orientation. The author is using socially and scientifically qualitative methods in order to research consistently the subject perspective of the customer at the example of the service relationship between travel customers and the company DB AG.
Colesky, Theo. "A Comparative Study on Customs Tariff Classification." Thesis, University of Pretoria, 2014. http://hdl.handle.net/2263/42838.
Повний текст джерелаThesis (LLD)--University of Pretoria, 2015.
Mercantile Law
Unrestricted
Pettersson, Anders. "High-Dimensional Classification Models with Applications to Email Targeting." Thesis, KTH, Matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168203.
Повний текст джерелаFöretag kan använda e-mejl för att på ett enkelt sätt sprida viktig information, göra reklam för nya produkter eller erbjudanden och mycket mer, men för många e-mejl kan göra att kunder slutar intressera sig för innehållet, genererar badwill och omöjliggöra framtida kommunikation. Att kunna urskilja vilka kunder som är intresserade av det specifika innehållet skulle vara en möjlighet att signifikant förbättra ett företags användning av e-mejl som kommunikationskanal. Denna studie fokuserar på att urskilja kunder med hjälp av statistisk inlärning applicerad på historisk data tillhandahållen av musikstreaming-företaget Spotify. En binärklassificeringsmodell valdes, där responsvariabeln beskrev huruvida kunden öppnade e-mejlet eller inte. Två olika metoder användes för att försöka identifiera de kunder som troligtvis skulle öppna e-mejlen, logistisk regression, både med och utan regularisering, samt random forest klassificerare, tack vare deras förmåga att hantera högdimensionella data. Metoderna blev sedan utvärderade på både ett träningsset och ett testset, med hjälp av flera olika statistiska valideringsmetoder så som korsvalidering och ROC kurvor. Modellerna studerades under både scenarios med stora stickprov och högdimensionella data. Där scenarion med högdimensionella data representeras av att antalet observationer, N, är av liknande storlek som antalet förklarande variabler, p, och scenarion med stora stickprov representeras av att N ≫ p. Lasso-baserad variabelselektion utfördes för båda dessa scenarion för att studera informationsvärdet av förklaringsvariablerna. Denna studie visar att det är möjligt att signifikant förbättra öppningsfrekvensen av e-mejl genom att selektera kunder, även när man endast använder små mängder av data. Resultaten visar att en enorm ökning i antalet träningsobservationer endast kommer förbättra modellernas förmåga att urskilja kunder marginellt.
Книги з теми "Classification of customers"
Werro, Nicolas. Fuzzy Classification of Online Customers. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15970-6.
Повний текст джерелаUnited States. Patent and Trademark Office. Working for our customers: A Patent and Trademark Office review. Washington, D.C: U.S. Dept. of Commerce, U.S. Patent and Trademark Office, 1995.
Знайти повний текст джерелаAuthority, Financial Services. Customer classification. London: Financial Services Authority, 2000.
Знайти повний текст джерелаCustoms tariff and trade classification. Belmopan, Belize: Ministry of Finance, 2010.
Знайти повний текст джерелаExcise, Canada Customs and. Customs commercial system - Classification in the harmonized system. [Ottawa, Ont.?: Customs Canada?, 1987.
Знайти повний текст джерелаCanada. Customs tariff : schedule =: Tarif des douanes : annexe. Ottawa, Ont: Dept. of Finance = Ministère des finances, 1997.
Знайти повний текст джерелаExcise, Canada Customs and. Customs commercial system. [Ottawa, Ont.?: Customs Canada?, 1987.
Знайти повний текст джерелаLaurent, Donzé, ed. Fuzzy methods for customer relationship management and marketing: Applications and classifications. Hershey PA: Business Science Reference, 2012.
Знайти повний текст джерелаPanova, Anna. Commodity science in customs. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1134545.
Повний текст джерелаBelize. Customs tariff and trade classification: Laws of Belize, chapter 38. Belize: [Ministry of Finance], 1998.
Знайти повний текст джерелаЧастини книг з теми "Classification of customers"
Werro, Nicolas. "Relational Databases & Fuzzy Classification." In Fuzzy Classification of Online Customers, 27–48. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15970-6_3.
Повний текст джерелаWerro, Nicolas. "Customer Relationship Management." In Fuzzy Classification of Online Customers, 51–65. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15970-6_4.
Повний текст джерелаWerro, Nicolas. "Fuzzy Customer Classes." In Fuzzy Classification of Online Customers, 67–86. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15970-6_5.
Повний текст джерелаWerro, Nicolas. "Introduction." In Fuzzy Classification of Online Customers, 1–4. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15970-6_1.
Повний текст джерелаWerro, Nicolas. "Fuzzy Set Theory." In Fuzzy Classification of Online Customers, 7–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15970-6_2.
Повний текст джерелаWerro, Nicolas. "Fuzzy Classification Applied to Online Shops." In Fuzzy Classification of Online Customers, 89–105. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15970-6_6.
Повний текст джерелаWerro, Nicolas. "fCQL Toolkit." In Fuzzy Classification of Online Customers, 107–26. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15970-6_7.
Повний текст джерелаWerro, Nicolas. "Conclusion." In Fuzzy Classification of Online Customers, 127–30. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15970-6_8.
Повний текст джерелаBrijs, Tom, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. "Comparing Complete and Partial Classification for Identifying Latently Dissatisfied Customers." In Machine Learning: ECML 2000, 88–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-45164-1_10.
Повний текст джерелаYang, Ping, Dan Wang, Xiao-Lin Du, and Meng Wang. "Evolutionary DBN for the Customers’ Sentiment Classification with Incremental Rules." In Advances in Data Mining. Applications and Theoretical Aspects, 119–34. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95786-9_9.
Повний текст джерелаТези доповідей конференцій з теми "Classification of customers"
Bertsimas, Dimitris J., Adam J. Mersereau, and Nitin R. Patel. "Dynamic Classification of Online Customers." In Proceedings of the 2003 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2003. http://dx.doi.org/10.1137/1.9781611972733.10.
Повний текст джерелаShahrokhi, Nazanin, Roxana Dehzad, and Soheila Sahami. "Targeting customers with data mining techniques: Classification." In 2011 International Conference on User Science and Engineering (i-USEr 2011). IEEE, 2011. http://dx.doi.org/10.1109/iuser.2011.6150567.
Повний текст джерелаWerro, Nicolas, Henrik Stormer, and Andreas Meier. "A Hierarchical Fuzzy Classification of Online Customers." In Proceedings. IEEE International Conference on e-Business Engineering. IEEE, 2006. http://dx.doi.org/10.1109/icebe.2006.4.
Повний текст джерелаJyostna, J. V. S. L., B. Jameema, N. Anusha, and P. Ramva. "A Classification Model For Mall Customers Data." In 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA). IEEE, 2021. http://dx.doi.org/10.1109/icirca51532.2021.9544515.
Повний текст джерелаBen Ayed, Alaidine, and S. Selouani. "Market customers classification using Hidden Markov Models toolkit." In 2013 International Conference on Computer Applications Technology (ICCAT 2013). IEEE, 2013. http://dx.doi.org/10.1109/iccat.2013.6521974.
Повний текст джерелаWamundson, Mikael, Johan Hoglund, Math H. J. Bollen, Anders Holm, and Eva Pending Wiberg. "Classification of industrial customers regarding sensitivity towards interruptions." In 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe). IEEE, 2010. http://dx.doi.org/10.1109/isgteurope.2010.5638993.
Повний текст джерелаAdeoye, A. O. M., and T. Sze´csi. "The Use of Hybrid System of Classification for the Retrieval and Modification of Mechanical Products." In ASME 2011 International Manufacturing Science and Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/msec2011-50157.
Повний текст джерелаBi, Bin, Lei Ji, and Qian Hu. "Comparative Study on Classification Techniques to Identify Potential Customers." In 2008 International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2008. http://dx.doi.org/10.1109/iscid.2008.153.
Повний текст джерелаZheng, Rui-ying, Tieying Zou, Hong-fang Li, and Yinghuan Wu. "Customers' Classification Based on Attributes Reduction of Rough Set." In 2010 International Conference on Biomedical Engineering and Computer Science (ICBECS). IEEE, 2010. http://dx.doi.org/10.1109/icbecs.2010.5462345.
Повний текст джерелаRamos, Sergio, and Zita Vale. "Data Mining techniques to support the classification of MV electricity customers." In Energy Society General Meeting. IEEE, 2008. http://dx.doi.org/10.1109/pes.2008.4596669.
Повний текст джерела