Добірка наукової літератури з теми "Classification of customers"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Classification of customers".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Дисертації з теми "Classification of customers"

1

CARVALHO, NORMA ALICE DA SILVA. "HYBRID INTELLIGENT SYSTEM FOR CLASSIFICATION OF NON-RESIDENTIAL ELECTRICITY CUSTOMERS PAYMENT PROFILES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33393@1.

Повний текст джерела
Анотація:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO<br>COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO<br>O objetivo desta pesquisa é classificar o perfil de pagamento dos consumidores não-residenciais de energia elétrica, considerando conhecimento armazenado em base de dados de distribuidoras de energia elétrica. A motivação para desenvolvê-la surgiu da necessidade das distribuidoras por um modelo de suporte a formulação de estratégias capazes de reduzir o grau inadimplência. A metodologia proposta consiste em um sistema inteligente híbrido composto por módulos intercomunicativos que usam conhecimentos armazenados em base de dados para segmentar consumidores e, então, atingir o objetivo proposto. O sistema inicia-se com o módulo neural, que aloca as unidades consumidoras em grupos conforme similaridades (valor fatura, consumo, demanda medida/demanda contratada, intensidade energética e peso da conta no orçamento), em sequência, o módulo bayesiano, estabelece um escore entre 0 e 1 que permite predizer o perfil de pagamento das unidades considerando os grupos gerados e os atributos categóricos (atividade econômica, estrutura tarifária, mesorregião, natureza jurídica e porte empresarial) que caracterizam essas unidades. Os resultados revelaram que o sistema proposto estabelece razoável taxa de acerto na classificação do perfil de consumidores e, portanto, constitui uma importante ferramenta de suporte a formulação de estratégias para combate à inadimplência. Conclui-se que, o sistema híbrido proposto apresenta caráter generalista podendo ser adaptado e implementado em outros mercados.<br>The objective of this research is to classify the non-residential electricity customer payment profiles regarding the knowledge stored in electricity distribution utilities databases. The motivation for development of the work from the need of electricity distribution by a support model to formulate strategies for tackling non-payment and late payment. The proposed methodology consists of a hybrid intelligent system constituted by intercommunicating modules that use knowledge stored in database to customer segmentation and then achieve the proposed objective. The system begins with the neural module, which allocates the consuming units in groups according to similarities (bill amount, consumption, measured demand/contracted demand, energy intensity and share of the electricity bill in the customer s income), in sequence, the Bayesian module establishes a score between 0 and 1 that allows to predict what payment profile of the units considering the generated groups and categorical attributes (business activity, tariff type, business size, mesoregion and company s legal form) that characterize these units. The results showed that the proposed system provides a reasonable success rate when classifying customer profiles and thus constitutes an important tool in the formulation of strategies for tackling non-payment and late payment. In conclusion, the hybrid system proposed here is a generalist one and could usefully be adapted and implemented in other markets.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kirkin, S., and K. V. Melnyk. "Intelligent Data Processing in Creating Targeted Advertising." Thesis, National Technical University "Kharkiv Polytechnic Institute", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/44710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Andersson, Martin, and Marcus Mazouch. "Binary classification for predicting propensity to buy flight tickets. : A study on whether binary classification can be used to predict Scandinavian Airlines customers’ propensity to buy a flight ticket within the next seven days." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160855.

Повний текст джерела
Анотація:
A customers propensity to buy a certain product is a widely researched field and is applied in multiple industries. In this thesis it is showed that using binary classification on data from Scandinavian Airlines can predict their customers propensity to book a flight within the next coming seven days. A comparison between logistic regression and support vector machine is presented and logistic regression with reduced number of variables is chosen as the final model, due to it’s simplicity and accuracy. The explanatory variables contains exclusively booking history, whilst customer demographics and search history is showed to be insignificant.<br>En kunds benägenhet att göra ett visst köp är ett allmänt undersökt område som applicerats i flera olika branscher. I den här studien visas det att statistiska binära klassificeringsmodeller kan användas för att prediktera Scandinavian Airlines kunders benägenhet att köpa en resa de kommande sju dagarna. En jämförelse är presenterad mellan logistisk regression och stödvektormaskin och logistisk regression med reducerat antal parametrar väljs som den slutgiltiga modellen tack vare sin enkelhet och träffsäkerhet. De förklarande variablerna är uteslutande bokningshistorik medan kundens demografi och sökdata visas vara insignifikant.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mazouch, Marcus, and Martin Andersson. "Binary classification for predicting propensity to buy flight tickets : A study on whether binary classification can be used to predict Scandinavian Airlines customers' propensity to buy a flight ticket within the next seven days." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-162412.

Повний текст джерела
Анотація:
A customers propensity to buy a certain product is a widely researched field and is applied in multiple industries. In this thesis it is showed that using binary classification on data from Scandinavian Airlines can predict their customers propensity to book a flight within the next coming seven days. A comparison between logistic regression and support vector machine is presented and logistic regression with reduced number of variables is chosen as the final model, due to it's simplicity and accuracy. The explanatory variables contains exclusively booking history, whilst customer demographics and search history is showed to be insignificant.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Eriksson, Alexander, and Jacob Långström. "Comparison of Machine Learning Techniques when Estimating Probability of Impairment : Estimating Probability of Impairment through Identification of Defaulting Customers one year Ahead of Time." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160114.

Повний текст джерела
Анотація:
Probability of Impairment, or Probability of Default, is the ratio of how many customers within a segment are expected to not fulfil their debt obligations and instead go into Default. This is a key metric within banking to estimate the level of credit risk, where the current standard is to estimate Probability of Impairment using Linear Regression. In this paper we show how this metric instead can be estimated through a classification approach with machine learning. By using models trained to find which specific customers will go into Default within the upcoming year, based on Neural Networks and Gradient Boosting, the Probability of Impairment is shown to be more accurately estimated than when using Linear Regression. Additionally, these models provide numerous real-life implementations internally within the banking sector. The new features of importance we found can be used to strengthen the models currently in use, and the ability to identify customers about to go into Default let banks take necessary actions ahead of time to cover otherwise unexpected risks.<br>Titeln på denna rapport är En jämförelse av maskininlärningstekniker för uppskattning av Probability of Impairment. Uppskattningen av Probability of Impairment sker genom identifikation av låntagare som inte kommer fullfölja sina återbetalningsskyldigheter inom ett år. Probability of Impairment, eller Probability of Default, är andelen kunder som uppskattas att inte fullfölja sina skyldigheter som låntagare och återbetalning därmed uteblir. Detta är ett nyckelmått inom banksektorn för att beräkna nivån av kreditrisk, vilken enligt nuvarande regleringsstandard uppskattas genom Linjär Regression. I denna uppsats visar vi hur detta mått istället kan uppskattas genom klassifikation med maskininlärning. Genom användandet av modeller anpassade för att hitta vilka specifika kunder som inte kommer fullfölja sina återbetalningsskyldigheter inom det kommande året, baserade på Neurala Nätverk och Gradient Boosting, visas att Probability of Impairment bättre uppskattas än genom Linjär Regression. Dessutom medför dessa modeller även ett stort antal interna användningsområden inom banksektorn. De nya variabler av intresse vi hittat kan användas för att stärka de modeller som idag används, samt förmågan att identifiera kunder som riskerar inte kunna fullfölja sina skyldigheter låter banker utföra nödvändiga åtgärder i god tid för att hantera annars oväntade risker.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Axén, Maja, and Jennifer Karlberg. "Binary Classification for Predicting Customer Churn." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-171892.

Повний текст джерела
Анотація:
Predicting when a customer is about to turn to a competitor can be difficult, yet extremely valuable from a business perspective. The moment a customer stops being considered a customer is known as churn, a widely researched topic in several industries when dealing with subscription-services. However, in industries with non-subscription services and products, defining churn can be a daunting task and the existing literature does not fully cover this field. Therefore, this thesis can be seen as a contribution to current research, specially when not having a set definition for churn. A definition for churn, adjusted to DIAKRIT’s business, is created. DIAKRIT is a company working in the real estate industry, which faces many challenges, such as a huge seasonality. The prediction was approached as a supervised problem, where three different Machine Learning methods were used: Logistic Regression, Random Forest and Support Vector Machine. The variables used in the predictions are predominantly activity data. With a relatively high accuracy and AUC-score, Random Forest was concluded to be the most reliable model. It is however clear that the model cannot separate between the classes perfectly. It was also visible that the Random Forest model produces a relatively high precision. Thereby, it can be settled that even though the model is not flawless the customers predicted to churn are very likely to churn.<br>Att prediktera när en kund är påväg att vända sig till en konkurrent kan vara svårt, dock kan det visa sig extremt värdefullt ur ett affärsperspektiv. När en kund slutar vara kund benäms det ofta som kundbortfall eller ”churn”. Detta är ett ämne som är brett forskat på i flertalet olika industrier, men då ofta i situationer med prenumenationstjänster. När man inte har en prenumerationstjänst försvåras uppgiften att definera churn och existerande studier brister i att analysera detta. Denna uppsats kan därför ses som ett bidrag till nuvarande litteratur, i synnerhet i fall där ingen tydlig definition för churn existerar. En definition för churn, anpassad efter DIAKRIT och deras affärsstruktur har skapats i det här projektet. DIAKRIT är verksamma i fastighetsbranschen, en industri som har flera utmaningar, bland annat en extrem säsongsvariaton. För att genomföra prediktionerna användes tre olika maskininlärningamodeller: Logistisk Regression, Random Forest och Support Vector Machine. De variabler som användes är mestadels aktivitetsdata. Med relativt hög noggranhet och AUC-värde anses Random Forest vara mest pålitlig. Modellen kan dock inte separera mellan de två klasserna perfekt. Random Forest modellen visade sig också genera en hög precision. Därför kan slutsatsen dras att även om modellen inte är felfri verkar det som att kunderna predikterade som churn mest sannolikt kommer churna.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vallaud, Thierry. "Estimating potential customer value using customer data : using a classification technique to determine customer value /." Abstract and full text available, 2009. http://149.152.10.1/record=b3077978~S16.

Повний текст джерела
Анотація:
Thesis (M.S.) -- Central Connecticut State University, 2009.<br>Thesis advisor: Daniel Larose. "... in partial fulfillment of the requirements for the degree of Master of Science in Data Mining." Includes bibliographical references (leaves 37-39). Also available via the World Wide Web.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Koch-Falkenberg, Carolyn. "Kundenloyalität in Dienstleistungsbeziehungen: untersucht am Beispiel der Deutschen Bahn AG." Universitätsverlag der Technischen Universität Chemnitz, 2018. https://monarch.qucosa.de/id/qucosa%3A35451.

Повний текст джерела
Анотація:
Warum sind Reisekunden der DB AG spezielle Kunden, deren Loyalität vergleichsweise wenig belastbar und besonders leicht zu verletzen ist? Was unterminiert ihre Leidenschaft für das Bahnfahren? Warum ist selbst für den Quasimonopolisten DB AG die Förderung einer uneingeschränkten Loyalität seiner Reisekunden relevant? Was charakterisiert die Bindung des Loyalitätstypus alter Art? Und was kennzeichnet die Entwicklung und spezifische Funktionsweise der Bindung des Loyalitätstypus neuer Art? Mit diesen Fragen greift die Autorin das Schnittstellenthema ‚Kundenloyalität in Dienstleistungsbeziehungen‘ auf, das viele Disziplinen bewegt, jedoch bislang in erster Linie quantitativ und aus Marketingsicht beforscht wurde. Carolyn Koch-Falkenberg fragt danach, wann und warum sich Kunden emotional an ein Unternehmen binden und diesem loyal sind, in welcher Form ihre Loyalität zu Tage tritt, was diese konterkariert und welche Folgen die Art ihrer Loyalitätsform nach sich zieht. Im Mittelpunkt steht damit eine spezifische Form der Bindungsorientierung, welche die Autorin explorativ mittels qualitativer Methoden konsequent aus der Subjektperspektive der Kunden am Beispiel der Dienstleistungsbeziehung zwischen Reisekunden und dem Unternehmen DB AG sozialwissenschaftlich untersucht.<br>Why are travel customers of DB AG special customers with a comparatively less resilient loyalty which is particularly easy to be violated? What undermines their passion for going by train? Why is even the promotion of the unlimited loyalty of travel customers relevant to the quasimonopolist DB AG? What characterizes the attachment of the old fashioned loyalty type? And what characterizes the development and specific functioning of the binding of the ‚new‘ loyalty type? The author seizes the interdisciplinary topic of the interface theme 'customer loyalty in service relationships', which ocupy many science disciplines, but has so far been primarily researched quantitatively from a marketing perspective. Carolyn Koch-Falkenberg asks when and why clients are emotionally attached to their loyality for a company, how their loyalty is revealed, how it counteracts and illustrates the consequences of their natural loyalty form. The focus is on a specific form of attachment orientation. The author is using socially and scientifically qualitative methods in order to research consistently the subject perspective of the customer at the example of the service relationship between travel customers and the company DB AG.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Colesky, Theo. "A Comparative Study on Customs Tariff Classification." Thesis, University of Pretoria, 2014. http://hdl.handle.net/2263/42838.

Повний текст джерела
Анотація:
The field of customs is commonly referred to as that of imports and exports. It is perceived as a maze of processes, procedures, and forms required to enable a customs administration to perform their wide range of responsibilities. One of the responsibilities of a customs administration is the collection of duties, which necessitates classification of the goods in question. This study sets out to determine the extent of customs control in relation to tariff classification in South Africa. The starting point is the establishment of the foundations of customs, both internationally and in South Africa. After origin and valuation, tariff classification is the third technical customs-related focus area. An analysis of the responsibilities of the customs administration in South Africa confirms the importance of revenue collection and, subsequently, tariff classification. As a result of South Africa’s membership of the World Customs Organization, specific obligations in relation to tariff classification are incurred. The implementation and application of the international provisions are considered and compared in South Africa, Australia, and Canada. Not only is South Africa’s existing legislation considered, but also two new Acts. It is found that despite similarities in the implementation of the Harmonized System Convention into the legislation of the three countries, South Africa’s existing legislation makes the most detailed provision for the Harmonized System and its aids. This is based on the finding that the legislation in Australia and Canada, as well as the two new Acts in South Africa, do not have the same comprehensive provisions. A critical review of the varying processes of classification in the three countries suggests that more suitable and effective processes could be implemented in South Africa. In addition, a synopsis of some of the principles developed in case law is provided and compared. In relation to facilitation, the access to relevant information and the adequacy thereof, as well as the availability of rulings, are considered. Differences in the approach to dispute resolution in the three countries are furthermore provided. Proposals are made to address the discrepancies in the implementation and application of the legislation, the process of classification, the principles developed in case law, the enhancement of related guides, the publication of tariff classification rulings, and the extent of facilitation and dispute resolution. Finally it is recommended that an independent and expert tribunal is established to adjudicate technical customs matters.<br>Thesis (LLD)--University of Pretoria, 2015.<br>Mercantile Law<br>Unrestricted
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pettersson, Anders. "High-Dimensional Classification Models with Applications to Email Targeting." Thesis, KTH, Matematisk statistik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168203.

Повний текст джерела
Анотація:
Email communication is valuable for any modern company, since it offers an easy mean for spreading important information or advertising new products, features or offers and much more. To be able to identify which customers that would be interested in certain information would make it possible to significantly improve a company's email communication and as such avoiding that customers start ignoring messages and creating unnecessary badwill. This thesis focuses on trying to target customers by applying statistical learning methods to historical data provided by the music streaming company Spotify. An important aspect was the high-dimensionality of the data, creating certain demands on the applied methods. A binary classification model was created, where the target was whether a customer will open the email or not. Two approaches were used for trying to target the costumers, logistic regression, both with and without regularization, and random forest classifier, for their ability to handle the high-dimensionality of the data. Performance accuracy of the suggested models were then evaluated on both a training set and a test set using statistical validation methods, such as cross-validation, ROC curves and lift charts. The models were studied under both large-sample and high-dimensional scenarios. The high-dimensional scenario represents when the number of observations, N, is of the same order as the number of features, p and the large sample scenario represents when N ≫ p. Lasso-based variable selection was performed for both these scenarios, to study the informative value of the features. This study demonstrates that it is possible to greatly improve the opening rate of emails by targeting users, even in the high dimensional scenario. The results show that increasing the amount of training data over a thousand fold will only improve the performance marginally. Rather efficient customer targeting can be achieved by using a few highly informative variables selected by the Lasso regularization.<br>Företag kan använda e-mejl för att på ett enkelt sätt sprida viktig information, göra reklam för nya produkter eller erbjudanden och mycket mer, men för många e-mejl kan göra att kunder slutar intressera sig för innehållet, genererar badwill och omöjliggöra framtida kommunikation. Att kunna urskilja vilka kunder som är intresserade av det specifika innehållet skulle vara en möjlighet att signifikant förbättra ett företags användning av e-mejl som kommunikationskanal. Denna studie fokuserar på att urskilja kunder med hjälp av statistisk inlärning applicerad på historisk data tillhandahållen av musikstreaming-företaget Spotify. En binärklassificeringsmodell valdes, där responsvariabeln beskrev huruvida kunden öppnade e-mejlet eller inte. Två olika metoder användes för att försöka identifiera de kunder som troligtvis skulle öppna e-mejlen, logistisk regression, både med och utan regularisering, samt random forest klassificerare, tack vare deras förmåga att hantera högdimensionella data. Metoderna blev sedan utvärderade på både ett träningsset och ett testset, med hjälp av flera olika statistiska valideringsmetoder så som korsvalidering och ROC kurvor. Modellerna studerades under både scenarios med stora stickprov och högdimensionella data. Där scenarion med högdimensionella data representeras av att antalet observationer, N, är av liknande storlek som antalet förklarande variabler, p, och scenarion med stora stickprov representeras av att N ≫ p. Lasso-baserad variabelselektion utfördes för båda dessa scenarion för att studera informationsvärdet av förklaringsvariablerna. Denna studie visar att det är möjligt att signifikant förbättra öppningsfrekvensen av e-mejl genom att selektera kunder, även när man endast använder små mängder av data. Resultaten visar att en enorm ökning i antalet träningsobservationer endast kommer förbättra modellernas förmåga att urskilja kunder marginellt.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії