Дисертації з теми "Classification of biomedical time series"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Classification of biomedical time series".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Rajan, Jebu Jacob. "Time series classification." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339538.
Повний текст джерелаMatam, Basava R. "Watermarking biomedical time series data." Thesis, Aston University, 2009. http://publications.aston.ac.uk/15351/.
Повний текст джерелаKhessiba, Souhir. "Stratégies d’optimisation des hyper-paramètres de réseaux de neurones appliqués aux signaux temporels biomédicaux." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAE003.
Повний текст джерелаThis thesis focuses on optimizing the hyperparameters of convolutional neural networks (CNNs) in the medical domain, proposing an innovative approach to improve the performance of decision-making models in the biomedical field. Through the use of a hybrid approach, GS-TPE, to effectively adjust the hyperparameters of complex neural network models, this research has demonstrated significant improvements in the classification of temporal biomedical signals, such as vigilance states, from physiological signals such as electroencephalogram (EEG). Furthermore, by introducing a new DNN architecture, STGCN, for the classification of gestures associated with pathologies such as knee osteoarthritis and Parkinson's disease from video gait analysis, these works offer new perspectives for enhancing medical diagnosis and management through advancements in artificial intelligence
Al-Wasel, Ibrahim A. "Spectral analysis for replicated biomedical time series." Thesis, Lancaster University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412585.
Повний текст джерелаEsling, Philippe. "Multiobjective time series matching and classification." Paris 6, 2012. http://www.theses.fr/2012PA066704.
Повний текст джерелаMillions of years of genetic evolution have shaped our auditory system, allowing to discriminate acoustic events in a flexible manner. We can perceptually process multiple de-correlated scales in a multidimensional way. In addition, humans have a natural ability to extract a coherent structure from temporal shapes. We show that emulating these mechanisms in our algorithmic choices, allow to create efficient approaches to perform matching and classification, with a scope beyond musical issues. We introduce the problem of multiobjective Time Series (MOTS) and propose an efficient algorithm to solve it. We introduce two innovative querying paradigms on audio files. We introduce a new classification paradigm based on the hypervolume dominated by different classes called hypervolume-MOTS (HV-MOTS). This system studies the behavior of the whole class by its distribution and spread over the optimization space. We show an improvement over the state of the art methods on a wide range of scientific problems. We present a biometric identification systems based on the sounds produced by heartbeats. This system is able to reach low error rates equivalent to other biometric features. These results are confirmed by the extensive cardiac data set of the Mars500 isolation study. Finally, we study the problem of generating orchestral mixtures that could best imitate a sound target. The search algorithm based on MOTS problem allows to obtain a set of solutions to approximate any audio source
Nunes, Neuza Filipa Martins. "Algorithms for time series clustering applied to biomedical signals." Master's thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/5666.
Повний текст джерелаThe increasing number of biomedical systems and applications for human body understanding creates a need for information extraction tools to use in biosignals. It’s important to comprehend the changes in the biosignal’s morphology over time, as they often contain critical information on the condition of the subject or the status of the experiment. The creation of tools that automatically analyze and extract relevant attributes from biosignals, providing important information to the user, has a significant value in the biosignal’s processing field. The present dissertation introduces new algorithms for time series clustering, where we are able to separate and organize unlabeled data into different groups whose signals are similar to each other. Signal processing algorithms were developed for the detection of a meanwave, which represents the signal’s morphology and behavior. The algorithm designed computes the meanwave by separating and averaging all cycles of a cyclic continuous signal. To increase the quality of information given by the meanwave, a set of wave-alignment techniques was also developed and its relevance was evaluated in a real database. To evaluate our algorithm’s applicability in time series clustering, a distance metric created with the information of the automatic meanwave was designed and its measurements were given as input to a K-Means clustering algorithm. With that purpose, we collected a series of data with two different modes in it. The produced algorithm successfully separates two modes in the collected data with 99.3% of efficiency. The results of this clustering procedure were compared to a mechanism widely used in this area, which models the data and uses the distance between its cepstral coefficients to measure the similarity between the time series.The algorithms were also validated in different study projects. These projects show the variety of contexts in which our algorithms have high applicability and are suitable answers to overcome the problems of exhaustive signal analysis and expert intervention. The algorithms produced are signal-independent, and therefore can be applied to any type of signal providing it is a cyclic signal. The fact that this approach doesn’t require any prior information and the preliminary good performance make these algorithms powerful tools for biosignals analysis and classification.
Lines, Jason. "Time Series classification through transformation and ensembles." Thesis, University of East Anglia, 2015. https://ueaeprints.uea.ac.uk/53360/.
Повний текст джерелаGhalwash, Mohamed. "Interpretable Early Classification of Multivariate Time Series." Diss., Temple University Libraries, 2013. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/239730.
Повний текст джерелаPh.D.
Recent advances in technology have led to an explosion in data collection over time rather than in a single snapshot. For example, microarray technology allows us to measure gene expression levels in different conditions over time. Such temporal data grants the opportunity for data miners to develop algorithms to address domain-related problems, e.g. a time series of several different classes can be created, by observing various patient attributes over time and the task is to classify unseen patient based on his temporal observations. In time-sensitive applications such as medical applications, some certain aspects have to be considered besides providing accurate classification. The first aspect is providing early classification. Accurate and timely diagnosis is essential for allowing physicians to design appropriate therapeutic strategies at early stages of diseases, when therapies are usually the most effective and the least costly. We propose a probabilistic hybrid method that allows for early, accurate, and patient-specific classification of multivariate time series that, by training on a full time series, offer classification at a very early time point during the diagnosis phase, while staying competitive in terms of accuracy with other models that use full time series both in training and testing. The method has attained very promising results and outperformed the baseline models on a dataset of response to drug therapy in Multiple Sclerosis patients and on a sepsis therapy dataset. Although attaining accurate classification is the primary goal of data mining task, in medical applications it is important to attain decisions that are not only accurate and obtained early, but can also be easily interpreted which is the second aspect of medical applications. Physicians tend to prefer interpretable methods rather than black-box methods. For that purpose, we propose interpretable methods for early classification by extracting interpretable patterns from the raw time series to help physicians in providing early diagnosis and to gain insights into and be convinced about the classification results. The proposed methods have been shown to be more accurate and provided classifications earlier than three alternative state-of-the-art methods when evaluated on human viral infection datasets and a larger myocardial infarction dataset. The third aspect has to be considered for medical applications is the need for predictions to be accompanied by a measure which allows physicians to judge about the uncertainty or belief in the prediction. Knowing the uncertainty associated with a given prediction is especially important in clinical diagnosis where data mining methods assist clinical experts in making decisions and optimizing therapy. We propose an effective method to provide uncertainty estimate for the proposed interpretable early classification methods. The method was evaluated on four challenging medical applications by characterizing decrease in uncertainty of prediction. We showed that our proposed method meets the requirements of uncertainty estimates (the proposed uncertainty measure takes values in the range [0,1] and propagates over time). To the best of our knowledge, this PhD thesis will have a great impact on the link between data mining community and medical domain experts and would give physicians sufficient confidence to put the proposed methods into real practice.
Temple University--Theses
Owsley, Lane M. D. "Classification of transient events in time series /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/5989.
Повний текст джерелаBotsch, Michael-Felix. "Machine learning techniques for time series classification." Göttingen Cuvillier, 2009. http://d-nb.info/994721455/04.
Повний текст джерелаHu, Wei Long. "Candlestick pattern classification in financial time series." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950658.
Повний текст джерелаZhang, Fuli. "Spectral classification of high-dimensional time series." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6531.
Повний текст джерелаDachraoui, Asma. "Cost-Sensitive Early classification of Time Series." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLA002/document.
Повний текст джерелаEarly classification of time series is becoming increasingly a valuable task for assisting in decision making process in many application domains. In this setting, information can be gained by waiting for more evidences to arrive, thus helping to make better decisions that incur lower misclassification costs, but, meanwhile, the cost associated with delaying the decision generally increases, rendering the decision less attractive. Making early predictions provided that are accurate requires then to solve an optimization problem combining two types of competing costs. This thesis introduces a new general framework for time series early classification problem. Unlike classical approaches that implicitly assume that misclassification errors are cost equally and the cost of delaying the decision is constant over time, we cast the the problem as a costsensitive online decision making problem when delaying the decision is costly. We then propose a new formal criterion, along with two approaches that estimate the optimal decision time for a new incoming yet incomplete time series. In particular, they capture the evolutions of typical complete time series in the training set thanks to a segmentation technique that forms meaningful groups, and leverage these complete information to estimate the costs for all future time steps where data points still missing. These approaches are interesting in two ways: (i) they estimate, online, the earliest time in the future where a minimization of the criterion can be expected. They thus go beyond the classical approaches that myopically decide at each time step whether to make a decision or to postpone the call one more time step, and (ii) they are adaptive, in that the properties of the incoming time series are taken into account to decide when is the optimal time to output a prediction. Results of extensive experiments on synthetic and real data sets show that both approaches successfully meet the behaviors expected from early classification systems
Omer, Mohamoud. "Estimation of regularity and synchronism in parallel biomedical time series." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=101879&source=NDLTD&language=en.
Повний текст джерелаCilj: Snimanje sopstvenih zdravstveih prametara je postalo deo koncepta mobilnog ‘crowdsensing-a’ prema kojem učesnici sa nakačenim senzorima skupljaju i dele informacije, na ličnu ili opštu dobrobit. Međutim, ograničenja u prenosu podataka dovela su do koncepta lokalne obrade (na licu mesta). To je pak nespojivo sa uobičajenim metodama za koje je potrebno da podaci koji se obrađuju budu stacionarni i bez artefakata. Ključni deo ove teze je opis procesorski nezahtevne binarizovane unakrsne aproksimativne entropije (X)BinEn koja omogućava analizu kardiovaskularnih podataka bez prethodne predobrade, u uslovima ograničenog napajanja i procesorskih resursa.Metoda: (X)BinEn je nastao razradom postojećeg postupka unakrsne entropije ((X)ApEn). Definisan je nad binarnim diferencijalno kodovanim vremenskim nizovima, razdeljenim u binarne vektore dužine m. Za procenu razmaka između vektora koristi se Hemingovo rastojanje, a sličnost vektora se ne procenjuje između svakog vektora pojedinačno, već između skupova vektora. Procedura je testirana nad laboratorijskim pacovima izloženim različitim vrstova stresova i upoređena sa postojećim rezultatima.Rezultati: Broj potrebnih procesorskih operacija je značajno smanjen. (X)BinEn registruje promene entropije slično (X)ApEn. Beskonačno klipovanje je gruba kvantizacija i za posledicu ima smanjenu osetljivost na promene, ali, sa druge strane, prigušuje binarnu asimetriju i nekonzistentnan uticaj parametara. Za određeni skup parametara (X)BinEn je ekvivalentna Šenonovoj entropiji. Uslovna binarna m=1 entropija automatski se dobija kao uzgredni product binarizovane entropije, i može da se iskoristi kao komplementarna dinamička mera.Zaključak: (X)BinEn može da se koristi za jedan vremenski niz, kao auto-entropija, ili, u opštem slučaju, za dva vremenska niza kao unakrsna entropija. Namenjena je mobilnim uređajima sa baterijskim napajanjem za individualne korisnike, to jest za korisnike sa ograničenim napajanjem i procesorskim resursima.
Santos, Rui Pedro Silvestre dos. "Time series morphological analysis applied to biomedical signals events detection." Master's thesis, Faculdade de Ciências e Tecnologia, 2011. http://hdl.handle.net/10362/10227.
Повний текст джерелаAutomated techniques for biosignal data acquisition and analysis have become increasingly powerful, particularly at the Biomedical Engineering research field. Nevertheless, it is verified the need to improve tools for signal pattern recognition and classification systems, in which the detection of specific events and the automatic signal segmentation are preliminary processing steps. The present dissertation introduces a signal-independent algorithm, which detects significant events in a biosignal. From a time series morphological analysis, the algorithm computes the instants when the most significant standard deviation discontinuities occur, segmenting the signal. An iterative optimization step is then applied. This assures that a minimal error is achieved when modeling these segments with polynomial regressions. The adjustment of a scale factor gives different detail levels of events detection. An accurate and objective algorithm performance evaluation procedure was designed. When applied on a set of synthetic signals, with known and quantitatively predefined events, an overall mean error of 20 samples between the detected and the actual events showed the high accuracy of the proposed algorithm. Its ability to perform the detection of signal activation onsets and transient waveshapes was also assessed, resulting in higher reliability than signal-specific standard methods. Some case studies, with signal processing requirements for which the developed algorithm can be suitably applied, were approached. The algorithm implementation in real-time, as part of an application developed during this research work, is also reported. The proposed algorithm detects significant signal events with accuracy and significant noise immunity. Its versatile design allows the application in different signals without previous knowledge on their statistical properties or specific preprocessing steps. It also brings added objectivity when compared with the exhaustive and time-consuming examiner analysis. The tool introduced in this dissertation represents a relevant contribution in events detection, a particularly important issue within the wide digital biosignal processing research field.
Gordon, Kerry. "Modelling and monitoring of medical time series." Thesis, University of Nottingham, 1986. http://eprints.nottingham.ac.uk/12369/.
Повний текст джерелаBostrom, Aaron. "Shapelet transforms for univariate and multivariate time series classification." Thesis, University of East Anglia, 2018. https://ueaeprints.uea.ac.uk/67270/.
Повний текст джерелаLintonen, T. (Timo). "Optimization in semi-supervised classification of multivariate time series." Master's thesis, University of Oulu, 2019. http://jultika.oulu.fi/Record/nbnfioulu-201902121196.
Повний текст джерелаБулах, В. А., Л. О. Кіріченко, and Т. А. Радівілова. "Classification of Multifractal Time Series by Decision Tree Methods." Thesis, КНУ, 2018. http://openarchive.nure.ua/handle/document/5840.
Повний текст джерелаLopez, Farias Rodrigo. "Time series forecasting based on classification of dynamic patterns." Thesis, IMT Alti Studi Lucca, 2015. http://e-theses.imtlucca.it/187/1/Farias_phdthesis.pdf.
Повний текст джерелаCABRI, ALBERTO. "Quantum inspired approach for early classification of time series." Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/991085.
Повний текст джерелаRenard, Xavier. "Time series representation for classification : a motif-based approach." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066593/document.
Повний текст джерелаOur research described in this thesis is about the learning of a motif-based representation from time series to perform automatic classification. Meaningful information in time series can be encoded across time through trends, shapes or subsequences usually with distortions. Approaches have been developed to overcome these issues often paying the price of high computational complexity. Among these techniques, it is worth pointing out distance measures and time series representations. We focus on the representation of the information contained in the time series. We propose a framework to generate a new time series representation to perform classical feature-based classification based on the discovery of discriminant sets of time series subsequences (motifs). This framework proposes to transform a set of time series into a feature space, using subsequences enumerated from the time series, distance measures and aggregation functions. One particular instance of this framework is the well-known shapelet approach. The potential drawback of such an approach is the large number of subsequences to enumerate, inducing a very large feature space and a very high computational complexity. We show that most subsequences in a time series dataset are redundant. Therefore, a random sampling can be used to generate a very small fraction of the exhaustive set of subsequences, preserving the necessary information for classification and thus generating a much smaller feature space compatible with common machine learning algorithms with tractable computations. We also demonstrate that the number of subsequences to draw is not linked to the number of instances in the training set, which guarantees the scalability of the approach. The combination of the latter in the context of our framework enables us to take advantage of advanced techniques (such as multivariate feature selection techniques) to discover richer motif-based time series representations for classification, for example by taking into account the relationships between the subsequences. These theoretical results have been extensively tested on more than one hundred classical benchmarks of the literature with univariate and multivariate time series. Moreover, since this research has been conducted in the context of an industrial research agreement (CIFRE) with Arcelormittal, our work has been applied to the detection of defective steel products based on production line's sensor measurements
Brooks, Daniel. "Deep Learning and Information Geometry for Time-Series Classification." Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS276.
Повний текст джерелаMachine Learning, and in particular Deep Learning, is a powerful tool to model and study the intrinsic statistical foundations of data, allowing the extraction of meaningful, human-interpretable information from otherwise unpalatable arrays of floating points. While it provides a generic solution to many problems, some particular data types exhibit strong underlying physical structure: images have spatial locality, audio has temporal sequentiality, radar has time-frequency structure. Both intuitively and formally, there can be much to gain in leveraging this structure by adapting the subsequent learning models. As convolutional architectures for images, signal properties can be encoded and harnessed within the network. Conceptually, this would allow for a more intrinsic handling of the data, potentially leading to more efficient learning models. Thus, we will aim to use known structures in the signals as model priors. Specifically, we build dedicated deep temporal architectures for time series classification, and explore the use of complex values in neural networks to further refine the analysis of structured data. Going even further, one may wish to directly study the signal’s underlying statistical process. As such, Gaussian families constitute a popular candidate. Formally, the covariance of the data fully characterizes such a distribution; developing Machine Learning algorithms on covariance matrices will thus be a central theme throughout this thesis. Statistical distributions inherently diverge from the Euclidean framework; as such, it is necessary to study them on the appropriate, curved Riemannian manifold, as opposed to a flat, Euclidean space. Specifically, we contribute to existing deep architectures by adding normalizations in the form of data-aware mappings, and a Riemannian Batch Normalization algorithm. We showcase empirical validation through a variety of different tasks, including emotion and action recognition from video and Motion Capture data, with a sharpened focus on micro-Doppler radar data for Non-Cooperative Target Recognition drone recognition. Finally, we develop a library for the Deep Learning framework PyTorch, to spur reproducibility and ease of use
Renard, Xavier. "Time series representation for classification : a motif-based approach." Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066593.
Повний текст джерелаOur research described in this thesis is about the learning of a motif-based representation from time series to perform automatic classification. Meaningful information in time series can be encoded across time through trends, shapes or subsequences usually with distortions. Approaches have been developed to overcome these issues often paying the price of high computational complexity. Among these techniques, it is worth pointing out distance measures and time series representations. We focus on the representation of the information contained in the time series. We propose a framework to generate a new time series representation to perform classical feature-based classification based on the discovery of discriminant sets of time series subsequences (motifs). This framework proposes to transform a set of time series into a feature space, using subsequences enumerated from the time series, distance measures and aggregation functions. One particular instance of this framework is the well-known shapelet approach. The potential drawback of such an approach is the large number of subsequences to enumerate, inducing a very large feature space and a very high computational complexity. We show that most subsequences in a time series dataset are redundant. Therefore, a random sampling can be used to generate a very small fraction of the exhaustive set of subsequences, preserving the necessary information for classification and thus generating a much smaller feature space compatible with common machine learning algorithms with tractable computations. We also demonstrate that the number of subsequences to draw is not linked to the number of instances in the training set, which guarantees the scalability of the approach. The combination of the latter in the context of our framework enables us to take advantage of advanced techniques (such as multivariate feature selection techniques) to discover richer motif-based time series representations for classification, for example by taking into account the relationships between the subsequences. These theoretical results have been extensively tested on more than one hundred classical benchmarks of the literature with univariate and multivariate time series. Moreover, since this research has been conducted in the context of an industrial research agreement (CIFRE) with Arcelormittal, our work has been applied to the detection of defective steel products based on production line's sensor measurements
Fulcher, Benjamin D. "Highly comparative time-series analysis." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:642b65cf-4686-4709-9f9d-135e73cfe12e.
Повний текст джерелаNilsson, Markus. "A case-based approach for classification of physiological time-series /." Västerås : Mälardalen University, 2004. http://www.mrtc.mdh.se/publications/0718.pdf.
Повний текст джерелаLundkvist, Emil. "Decision Tree Classification and Forecasting of Pricing Time Series Data." Thesis, KTH, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-151017.
Повний текст джерелаPhan, Thi-Thu-Hong. "Elastic matching for classification and modelisation of incomplete time series." Thesis, Littoral, 2018. http://www.theses.fr/2018DUNK0483/document.
Повний текст джерелаMissing data are a prevalent problem in many domains of pattern recognition and signal processing. Most of the existing techniques in the literature suffer from one major drawback, which is their inability to process incomplete datasets. Missing data produce a loss of information and thus yield inaccurate data interpretation, biased results or unreliable analysis, especially for large missing sub-sequence(s). So, this thesis focuses on dealing with large consecutive missing values in univariate and low/un-correlated multivariate time series. We begin by investigating an imputation method to overcome these issues in univariate time series. This approach is based on the combination of shape-feature extraction algorithm and Dynamic Time Warping method. A new R-package, namely DTWBI, is then developed. In the following work, the DTWBI approach is extended to complete large successive missing data in low/un-correlated multivariate time series (called DTWUMI) and a DTWUMI R-package is also established. The key of these two proposed methods is that using the elastic matching to retrieving similar values in the series before and/or after the missing values. This optimizes as much as possible the dynamics and shape of knowledge data, and while applying the shape-feature extraction algorithm allows to reduce the computing time. Successively, we introduce a new method for filling large successive missing values in low/un-correlated multivariate time series, namely FSMUMI, which enables to manage a high level of uncertainty. In this way, we propose to use a novel fuzzy grades of basic similarity measures and fuzzy logic rules. Finally, we employ the DTWBI to (i) complete the MAREL Carnot dataset and then we perform a detection of rare/extreme events in this database (ii) forecast various meteorological univariate time series collected in Vietnam
LI, YUANXUN. "SVM Object Based Classification Using Dense Satellite Imagery Time Series." Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233340.
Повний текст джерелаHartvigsen, Thomas. "Adaptively-Halting RNN for Tunable Early Classification of Time Series." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1257.
Повний текст джерелаCaiado, Aníbal Jorge da Costa Cristóvão. "Distance-based methods for classification and clustering of time series." Doctoral thesis, Instituto Superior de Economia e Gestão, 2006. http://hdl.handle.net/10400.5/3531.
Повний текст джерелаMao, Dong. "Biological time series classification via reproducing kernels and sample entropy." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2008. http://wwwlib.umi.com/cr/syr/main.
Повний текст джерелаZheng, Yue Chu. "Feature extraction for chart pattern classification in financial time series." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3950623.
Повний текст джерелаGranberg, Patrick. "Churn prediction using time series data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-294206.
Повний текст джерелаKundbortfall är problematiskt för företag som försöker expandera sin kundbas. Förvärvandet av nya kunder för att ersätta förlorade kunder är associerat med extra kostnader, medan vidtagandet av åtgärder för att behålla kunder kan visa sig mer lönsamt. Som så är det av intresse att för varje kund ha pålitliga tidsestimat till en potentiell uppsägning kan tänkas inträffa så att förebyggande åtgärder kan vidtas. Applicerandet av djupinlärning och maskininlärning på denna typ av problem som involverar tidsseriedata är relativt nytt och det finns mycket ny forskning kring ämnet. Denna uppsats är baserad på antagandet att tidiga tecken på kundbortfall kan upptäckas genom kunders användarmönster över tid. Reccurent neural networks och mer specifikt long short-term memory (LSTM) och gated recurrent unit (GRU) är lämpliga modellval eftersom de är designade att ta hänsyn till den sekventiella tidsaspekten i tidsseriedata. Random forest (RF) och stochastic vector machine (SVM) är maskininlärningsmodeller som ofta används i relaterad forskning. Problemet löses genom en klassificeringsapproach, och en jämförelse utförs med implementationer av LSTM, GRU, RF och SVM. Resultaten visar att LSTM och GRU presterar likvärdigt samtidigt som de presterar bättre än RF och SVM på problemet om att förutspå kunder som kommer att säga upp sig inom det kommande halvåret, och att samtliga modeller potentiellt kan leda till kostnadsbesparingar enligt simuleringar (som använder icke-officiella men rimliga kostnader associerat till varje utfall). Att förutspå tid till en kunduppsägning är ett svårare problem och ingen av de framtagna modellerna kan ge pålitliga tidsestimat, men alla är signifikant bättre än slumpvisa gissningar.
Ribeiro, Joana Patrícia Bordonhos. "Outlier identification in multivariate time series." Master's thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/22200.
Повний текст джерелаCom o desenvolvimento tecnológico, existe uma cada vez maior disponibilidade de dados. Geralmente representativos de situações do dia-a-dia, a existência de grandes quantidades de informação tem o seu interesse quando permite a extração de valor para o mercado. Além disso, surge importância em analisar não só os valores disponíveis mas também a sua associação com o tempo. A existência de valores anormais é inevitável. Geralmente denotados como outliers, a procura por estes valores é realizada comummente com o intuito de fazer a sua exclusão do estudo. No entanto, os outliers representam muitas vezes um objetivo de estudo. Por exemplo, no caso de deteção de fraudes bancárias ou no diagnóstico de doenças, o objetivo central é identificar situações anormais. Ao longo desta dissertação é apresentada uma metodologia que permite detetar outliers em séries temporais multivariadas, após aplicação de métodos de classificação. A abordagem escolhida é depois aplicada a um conjunto de dados real, representativo do funcionamento de caldeiras. O principal objetivo é identificar as suas falhas. Consequentemente, pretende-se melhorar os componentes do equipamento e portanto diminuir as suas falhas. Os algoritmos implementados permitem identificar não só as falhas do aparelho mas também o seu funcionamento normal. Pretende-se que as metodologias escolhidas sejam também aplicadas nos aparelhos futuros, permitindo melhorar a identificação em tempo real das falhas.
With the technological development, there is an increasing availability of data. Usually representative of day-to-day actions, the existence of large amounts of information has its own interest when it allows to extract value to the market. In addition, it is important to analyze not only the available values but also their association with time. The existence of abnormal values is inevitable. Usually denoted as outliers, the search for these values is commonly made in order to exclude them from the study. However, outliers often represent a goal of study. For example, in the case of bank fraud detection or disease diagnosis, the central objective is to identify the abnormal situations. Throughout this dissertation we present a methodology that allows the detection of outliers in multivariate time series, after application of classification methods. The chosen approach is then applied to a real data set, representative of boiler operation. The main goal is to identify faults. It is intended to improve boiler components and, hence, reduce the faults. The implemented algorithms allow to identify not only the boiler faults but also their normal operation cycles. We aim that the chosen methodologies will also be applied in future devices, allowing to improve real-time fault identification.
Leverger, Colin. "Investigation of a framework for seasonal time series forecasting." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S033.
Повний текст джерелаTo deploy web applications, using web servers is paramount. If there is too few of them, applications performances can quickly deteriorate. However, if they are too numerous, the resources are wasted and the cost increased. In this context, engineers use capacity planning tools to follow the performances of the servers, to collect time series data and to anticipate future needs. The necessity to create reliable forecasts seems clear. Data generated by the infrastructure often exhibit seasonality. The activity cycle followed by the infrastructure is determined by some seasonal cycles (for example, the user’s daily rhythms). This thesis introduces a framework for seasonal time series forecasting. This framework is composed of two machine learning models (e.g. clustering and classification) and aims at producing reliable midterm forecasts with a limited number of parameters. Three instantiations of the framework are presented: one baseline, one deterministic and one probabilistic. The baseline is composed of K-means clustering algorithms and Markov Models. The deterministic version is composed of several clustering algorithms (K-means, K-shape, GAK and MODL) and of several classifiers (naive-bayes, decision trees, random forests and logistic regression). The probabilistic version relies on coclustering to create time series probabilistic grids, that are used to describe the data in an unsupervised way. The performances of the various implementations are compared with several state-of-the-art models, including the autoregressive models, ARIMA and SARIMA, Holt Winters, or even Prophet for the probabilistic paradigm. The results of the baseline are encouraging and confirm the interest for the framework proposed. Good results are observed for the deterministic implementation, and correct results for the probabilistic version. One Orange use case is studied, and the interest and limits of the methodology are discussed
Sengupta, Shreeya. "Multidimensional time series classification and its application to video activity recognition." Thesis, Ulster University, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.673808.
Повний текст джерелаWheeler, Brandon Myles. "Evaluating time-series smoothing algorithms for multi-temporal land cover classification." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/74313.
Повний текст джерелаMaster of Science
Rezvanizaniani, Seyed Mohammad. "Probabilistic Based Classification Techniques for Improved Prognostics Using Time Series Data." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1428048932.
Повний текст джерелаPienaar, Marc. "On the classification of time series and cross wavelet phase variance." Doctoral thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/22869.
Повний текст джерелаKaffashi, Farhad. "Variability analysis & its applications to physiological time series data." online version, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1181072302.
Повний текст джерелаDietrich, Christian R. [Verfasser]. "Temporal sensorfusion for the classification of bioacoustic time series / Christian R. Dietrich." Ulm : Universität Ulm. Fakultät für Informatik, 2004. http://d-nb.info/1015438903/34.
Повний текст джерелаRidnert, Carl. "Machine Learning for Sparse Time-Series Classification - An Application in Smart Metering." Thesis, KTH, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243925.
Повний текст джерелаSmarta Mätare är maskiner kapabla att automatiskt sända data från sub-mätare mätandes förbrukningar av nyttigheter(utility) mellan kunden och företag som producerar nyttigheterna. Detta har inneburit att en marknad har öppnats upp för företag som tar förbrukningsdata och erbjuder tjänster så som appar där kunden kan se sin förbrukning samt rensning eller interpolering av data. Denna kommunikation har inneburit vissa problem, ett identifierat sådant är att det händer att information om vilken nyttighet som har mätts går förlorat. Denna information är viktig och har tidigare behövt hämtas manuellt på ett eller annat sätt, något som är ineffektivt. I detta examensarbete undersöks huruvida den informationen går att få tag på med enbart rådatan och klassificeringsalgoritmer. Datan kommer från Metry AB och innehåller tusentals tidsserier från fem olika klasser. Uppgiften försvåras av att datan uppvisar en stor obalans i klasserna, innehåller många saknade datapunkter och att tidsserierna varierar stort i längd. Metoden som föreslås baseras på en uppstyckning av tidsserierna i så kallade ”slices” av samma storlek och att träna Djupa Neurala Nätverk (DNN) och Bayesiska Neurala Nätverk (BNN) på dessa. Klassificering av nya tidsserier sker genom att låta modellerna rösta på slices från dem och välja den klass som får flest röster. Arbetet innehåller en teoretisk analys av röstningsprocessen baserat på en multinomial fördelning kombinerat med olika antaganden om processen som genererar dessa slices, denna syftar till att motivera valet av metod. Resultaten visar att modellerna kan tränas och korrekt klassificera mätarna till en viss grad samt att röstningsprocessen tenderar till att ge bättre resultat än att bara använda en slice per mätare. Det påvisas att prestandan är mycket sämre för en specifik klass, genom att exkludera den klassen så lyckas modellerna prestera slutgiltiga noggrannheter på mellan 70 − 80%. Det påvisas vissa skillnader mellan BNN modellen och DNN modellen i termer av noggrannhet, dock så är skillnaderna för små för att det ska gå att dra några generella slutsatser om vilken klassificeringsalgoritm som är bäst. Slutsatserna är att metoden verkar fungera rimligt väl på denna typ av data men att det behövs mer arbete för att förstå när den fungerar och hur man kan göra den bättre, detta är framtida arbete. Den största möjligheten till förbättring för just denna tillämpning identifieras vara att samla in mer data.
Wang, Zhihao. "Land Cover Classification on Satellite Image Time Series Using Deep Learning Models." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu159559249009195.
Повний текст джерелаThungtong, Anurak. "Synchronization, Variability, and Nonlinearity Analysis: Applications to Physiological Time Series." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1364316597.
Повний текст джерелаZoltan, Geler. "Role of Similarity Measures in Time Series Analysis." Phd thesis, Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, 2015. https://www.cris.uns.ac.rs/record.jsf?recordId=94848&source=NDLTD&language=en.
Повний текст джерелаPredmet istraživanja ove disertacije obuhvata detaljan pregled i analizu uticaja Sakoe-Chiba globalnog ograničenja na najčešće korišćene elastične mere sličnosti u oblasti data mining-a vremenskih serija sa naglaskom na tačnost klasifikacije. Izbor mere sličnosti jedan je od najvažnijih aspekata analize vremenskih serija - ona treba verno reflektovati sličnost između podataka prikazanih u obliku vremenskih serija. Mera sličnosti predstavlјa kritičnu komponentu mnogih zadataka mining-a vremenskih serija, uklјučujući klasifikaciju, grupisanje (eng. clustering), predviđanje, otkrivanje anomalija i drugih.Istraživanje obuhvaćeno ovom disertacijom usmereno je na nekoliko pravaca:1. pregled efekata globalnih ograničenja na performanse računanja mera sličnosti,2. detalјna analiza posledice ograničenja elastičnih mera sličnosti na tačnost klasifikacije klasičnih tehnika klasifikacije,3. opsežna studija uticaj različitih načina računanja težina (eng. weighting scheme) na klasifikaciju vremenskih serija,4. razvoj biblioteke otvorenog koda (Framework for Analysis and Prediction - FAP) koja će integrisati glavne tehnike i metode potrebne za analizu i mining vremenskih serija i koja je korišćena za realizaciju ovih eksperimenata.
Predmet istraživanja ove disertacije obuhvata detaljan pregled i analizu uticaja Sakoe-Chiba globalnog ograničenja na najčešće korišćene elastične mere sličnosti u oblasti data mining-a vremenskih serija sa naglaskom na tačnost klasifikacije. Izbor mere sličnosti jedan je od najvažnijih aspekata analize vremenskih serija - ona treba verno reflektovati sličnost između podataka prikazanih u obliku vremenskih serija. Mera sličnosti predstavlja kritičnu komponentu mnogih zadataka mining-a vremenskih serija, uključujući klasifikaciju, grupisanje (eng. clustering), predviđanje, otkrivanje anomalija i drugih.Istraživanje obuhvaćeno ovom disertacijom usmereno je na nekoliko pravaca:1. pregled efekata globalnih ograničenja na performanse računanja mera sličnosti,2. detaljna analiza posledice ograničenja elastičnih mera sličnosti na tačnost klasifikacije klasičnih tehnika klasifikacije,3. opsežna studija uticaj različitih načina računanja težina (eng. weighting scheme) na klasifikaciju vremenskih serija,4. razvoj biblioteke otvorenog koda (Framework for Analysis and Prediction - FAP) koja će integrisati glavne tehnike i metode potrebne za analizu i mining vremenskih serija i koja je korišćena za realizaciju ovih eksperimenata.
Herbst, Gernot. "Online Recognition of Fuzzy Time Series Patterns." Universitätsbibliothek Chemnitz, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901287.
Повний текст джерелаGuo, Zhenyu 1963. "Time-frequency representation and pattern recognition of doppler blood flow signal for stenosis classification." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41252.
Повний текст джерелаA realistic model of the Doppler blood flow signal of the femoral artery was proposed and used to simulate signals for comparing five TFR techniques: the short-time Fourier transform, AR modeling, the Bessel distribution, the Choi-Williams distribution, and the Choi-Williams Reduced Interference Distribution. The results showed that the Bessel distribution is the best, but the Choi-Williams distribution and AR modeling are also good techniques to compute Doppler TFRs. The short-time Fourier transform, AR modeling, and the Bessel distribution were then applied to clinical data to derive diagnostic features for a pattern recognition system to assess lower limb arterial stenoses in 37 patients. A total of 379 arterial segments were classified into three stenotic classes. The results were in agreement with those based on computer-simulated signals, and confirmed that the Bessel distribution and AR modeling improve the Doppler spectral estimates and thus provide better classification of arterial stenosis.
Herbst, Gernot. "Short-Time Prediction Based on Recognition of Fuzzy Time Series Patterns." Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001012.
Повний текст джерелаPradhan, Shameer Kumar. "Investigation of Event-Prediction in Time-Series Data : How to organize and process time-series data for event prediction?" Thesis, Högskolan Kristianstad, Fakulteten för naturvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-19416.
Повний текст джерела