Добірка наукової літератури з теми "Citrus fruits Physiology"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Citrus fruits Physiology".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Citrus fruits Physiology"
Lu, Suwen, Junli Ye, Kaijie Zhu, Yin Zhang, Mengwei Zhang, Qiang Xu, and Xiuxin Deng. "A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus." Journal of Experimental Botany 72, no. 8 (February 5, 2021): 3028–43. http://dx.doi.org/10.1093/jxb/erab045.
Повний текст джерелаSaini, Ramesh Kumar, Arina Ranjit, Kavita Sharma, Parchuri Prasad, Xiaomin Shang, Karekal Girinur Mallikarjuna Gowda, and Young-Soo Keum. "Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes." Antioxidants 11, no. 2 (January 26, 2022): 239. http://dx.doi.org/10.3390/antiox11020239.
Повний текст джерелаSetyadjit and D. A. Setyabudi. "Postharvest Physiology and Technology of Tropical Fruits (Indonesia)." IOP Conference Series: Earth and Environmental Science 1024, no. 1 (May 1, 2022): 012052. http://dx.doi.org/10.1088/1755-1315/1024/1/012052.
Повний текст джерелаCostanzo, Giulia, Ermenegilda Vitale, Maria Rosaria Iesce, Daniele Naviglio, Angela Amoresano, Carolina Fontanarosa, Michele Spinelli, Martina Ciaravolo, and Carmen Arena. "Antioxidant Properties of Pulp, Peel and Seeds of Phlegrean Mandarin (Citrus reticulata Blanco) at Different Stages of Fruit Ripening." Antioxidants 11, no. 2 (January 19, 2022): 187. http://dx.doi.org/10.3390/antiox11020187.
Повний текст джерелаHussain, Syed Bilal, Cai-Yun Shi, Ling-Xia Guo, Wei Du, Ying-Xing Bai, Hafiz Muhammad Kamran, Alisdair R. Fernie, and Yong-Zhong Liu. "Type I H+-pyrophosphatase regulates the vacuolar storage of sucrose in citrus fruit." Journal of Experimental Botany 71, no. 19 (June 26, 2020): 5935–47. http://dx.doi.org/10.1093/jxb/eraa298.
Повний текст джерелаCONSTANTINIDOU, H. A., and O. MENKISSOGLU. "Characteristics and Importance of Heterogeneous ice Nuclei Associated With Citrus Fruits." Journal of Experimental Botany 43, no. 4 (1992): 585–91. http://dx.doi.org/10.1093/jxb/43.4.585.
Повний текст джерелаZhu, Kaijie, Quan Sun, Hongyan Chen, Xuehan Mei, Suwen Lu, Junli Ye, Lijun Chai, Qiang Xu, and Xiuxin Deng. "Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061." Journal of Experimental Botany 72, no. 8 (February 5, 2021): 3137–54. http://dx.doi.org/10.1093/jxb/erab047.
Повний текст джерелаAlva, A. K., S. Paramasivam, K. H. Hostler, G. W. Easterwood, and J. E. Southwell. "EFFECTS OF NITROGEN RATES ON DRY MATTER AND NITROGEN ACCUMULATION IN CITRUS FRUITS AND FRUIT YIELD." Journal of Plant Nutrition 24, no. 3 (February 28, 2001): 561–72. http://dx.doi.org/10.1081/pln-100104980.
Повний текст джерелаSRILAONG, Varit, and Yasuo TATSUMI. "Effects of various oxygen atmospheres on physiology and quality in Cavendish banana and 'Hebezu' citrus fruits." food preservation science 28, no. 6 (2002): 307–15. http://dx.doi.org/10.5891/jafps.28.307.
Повний текст джерелаAlas, T., A. Akın, and İ. Kahramanoğlu. "Symptomological identification of Citrus Psorosis Virus (CPsV) in citrus orchards of Northern Cyprus." Proceedings on applied botany, genetics and breeding 183, no. 2 (June 24, 2022): 149–58. http://dx.doi.org/10.30901/2227-8834-2022-2-149-158.
Повний текст джерелаДисертації з теми "Citrus fruits Physiology"
Knight, Toby George. "Investigation of the physiological basis of the rind disorder oleocellosis in Washington navel orange (Citrus sinensis [L.] Osbeck)." Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09AHP/09ahpk71.pdf.
Повний текст джерелаVan, Wyk Angelique A. (Angelique Ann). "Time-temperature interaction on postharvest rind colour development of Citrus." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16456.
Повний текст джерелаENGLISH ABSTRACT: Rind colour is one of the most important external quality characteristics of citrus fruit and plays an important role in purchasing decisions by consumers. Consumers perceive brightlycoloured fruit to be sweet and mature, whereas citrus with a green rind is perceived to be sour and immature. However, there is a poor correlation between rind colour and internal quality, contradicting what is generally assumed by the fruit-buying public. In general, a bright orange rind colour improves consumer acceptance. Thus, it is important to ensure that the rind of citrus fruit is well-coloured on arrival at the market. Various pre-harvest cultural practices and postharvest techniques can be applied to improve rind colour. Degreening with ethylene gas is the most commonly used postharvest technology to improve rind colour, but has various negative side-effects. Degreened fruit are more prone to decay, have rinds which appear dull and flaccid, have been reported to develop off-flavours and have a shorter shelf-life period. Therefore, it is necessary to find alternatives to ethylene degreening and to extend shelf-life of citrus fruit. Under normal orchard conditions, rind colour development is associated with low night temperatures, usually experienced during autumn or following the passing of a cold front. To simulate cold front conditions, a hydrocooler and cold room were used to rapidly drop fruit temperature to 4 ºC for 6 hours, and then fruit were incubated at 20 to 22 ºC for 72 hours. This “cold shock” treatment of ‘Nules Clementine’ mandarin improved rind colour to a level similar to that of degreened fruit in the 2002 season due to a decrease in chlorophyll content and increase in carotenoid content. However, this result could not be repeated. Storage temperature is one of the most important postharvest factors affecting rind colour. Citrus fruit shipped to export markets requiring low temperatures (-0.6 ºC) for pest disinfestations purposes have been reported to arrive with poor rind colour. Shipping under low temperatures results in poor rind colour of fruit on arrival in the market. To comply with the USA’s phytosanitary requirement for imported citrus, fruit is held at -0.6 ºC for a minimum of 22 days. The effect of shipping at various temperatures (-0.6 ºC or 4.5 ºC), durations and the influence of initial rind colour, “orange” or “yellow”, on fruit colour upon arrival in the market was evaluated. Fruit shipped at a higher temperature (4.5 ºC) had a marginally better rind colour than fruit shipped at -0.6 ºC. The perceived loss of rind colour following shipping at sub-zero temperatures is probably due to carotenoid degradation. Therefore, initial rind colour plays a critical role in final product quality. Depending on market destination and shipping temperature, pale-coloured fruit should not be packed for markets sensitive to rind colour. Holding temperature after shipping can be effectively used to improve the rind colour of fruit arriving in the market with undesirable rind colour. An intermediate holding temperature of between 11 and 15 ºC resulted in the greatest improvement in rind colour after 2 weeks. A high holding temperature (20 ºC) caused colour degradation, whereas a low holding temperature (4.5 ºC) resulted in the maintenance of rind colour. By selecting the correct holding temperature, even after shipping at sub-zero temperatures, final colour can be improved.
AFRIKAANSE OPSOMMING: Tyd-temperatuur interaksie op na-oes skilkleur ontwikkeling by sitrus Skilkleur is een van die belangrikste eksterne kwaliteitseienskappe van die sitrusvrug en spëel ʼn belangrikke rol in wat verbruikers koop. Verbruikers verwag dat heldergekleurde vrugte soet en ryp sal wees, terwyl sitrus met ʼn groen skil geassosieer word met onrypheid en ʼn suur smaak. In teenstelling hiermee is daar egter ʼn swak korrelasie tussen skilkleur en interne kwaliteit. Aangesien ʼn heldergekleurde oranje skil verbruikersaanvaarding verbeter, is dit dus belangrik om te verseker dat die sitrusvrug ʼn goeie skilkleur het teen die tyd wat dit die mark bereik. Verskeie voor-oes bestuurspraktyke en na-oes tegnieke kan toegepas word om die skilkleur te verbeter. Ontgroening met etileen gas is die tegnologie wat mees algemeen gebruik word om skilkleur na oes te verbeter, maar dit het egter verskeie newe effekte tot gevolg. Ontgroende vrugte is meer vatbaar vir bederf en verwelkde skille met ʼn dowwe voorkoms. Afsmaake kan voorkom en ʼn verkorte rakleeftyd is al gerapporteer. Dit is dus noodsaaklik om ʼn alternatief vir etileen ontgroening te ontwikkel en die rakleeftyd van sitrusvrugte te verleng. Onder normale boordomstandighede word skilkleur ontwikkeling geassosieer met lae nag temperature wat gewoonlik in die herfs of na ʼn kouefront ondervind word. Om soortgelyke omstandighede na te boots, was ʼn “hydrocooler” en koelkamers gebruik om die temperatuur vinnig te laat daal tot by 4 °C en dit vir 6 uur daar te hou. Die vrugte was dan by 20 tot 22 °C geinkubeer vir 72 uur. Hierdie “koueskok” behandeling van ‘Nules Clementine’ mandaryn het skilkleur verbeter tot ʼn vlak vergelykbaar met ontgroende vrugte in die 2002 seisoen wat ontstaan het weens ʼn verlaging in chlorofil en ʼn toename in die karotinoïed inhoud van die skil. Opbergingstemperatuur is een van die belangrikste na-oes faktore wat skilkleur beinvloed. Sitrusvrugte wat verskeep word na uitvoermarkte wat lae temperature (-0.6 °C) vir disinfestasie vereis arriveer soms by die mark met ʼn swak skilkleur. Om die fitosanitêre vereistes vir die invoer van sitrus deur die VSA na tekom, was vrugte vir ʼn minimum van 22 dae by -0.6 °C gehou. Die effek van verskeping by verskeie temperature (-0.6 °C of 4.5 °C), tydperke en die invloed van aanvanklike skilkleur, “oranje” of “geel” was geevalueer by aankoms in die mark. Vrugte wat by hoër temperature (4.5 °C) verskeep was het ʼn effens beter skilkleur as vrugte by -0.6 °C getoon. Die verlies in skilkleur wat waargeneem word na verskeping onder vriespunt kan moontlik toegeskryf word aan karotenoiëd afbraak. Daarom speel aanvanklike skilkleur ʼn kritieke rol in finale produk kwaliteit. Die finale mark bestemming en verskepingstemperatuur sal bepaal of swakgekleurde vrugte verpak kan word. Opbergingstemperatuur na verskeping kan effektief gebruik word om die skilkleur van vrugte wat swak gekleur was met aankoms by die mark te verbeter. Matige temperature tussen 11 en 15 °C het na 2 weke die beste verbetering in skilkleur gelewer. Hoër temperature (20 °C) het skilkleur nadelig beinvloed, terwyl lae temperature skilkleur behou het. Deur die korrekte temperatuur te kies, selfs na verskeping by temperature onder vriespunt, kan uiteindelike skilkleur steeds verbeter word.
McCloskey, William B., and Glenn C. Wright. "Preliminary Results Regarding the Effects of Foliar Applied Roundup on Lemon Physiology and Yield." College of Agriculture, University of Arizona (Tucson, AZ), 1997. http://hdl.handle.net/10150/220567.
Повний текст джерелаGirardi, Eduardo Augusto. "Fisiologia da produção de mudas cítricas sob deficiência hídrica." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/11/11136/tde-18112008-104441/.
Повний текст джерелаPhysiological aspects of citrus nursery tree production submitted to water deficit are necessary to support irrigation management in screen houses. This work evaluated water stress induced either by polyethylene glycol (PEG) or irrigation suspending on growth and physiological traits of Valencia sweet orange (Citrus sinensis L. Osbeck) budded on Rangpur lime (Citrus limonia Osbeck) and Swingle citrumelo (Poncirus trifoliata (L.) Raf x Citrus paradisi Macf). Nursery trees were produced in 4.5L containers filled with composted pine bark, and submitted to water stress in three phenological phases in two seasons (autumn-winter and spring-summer). Experimental works were divided in two trials. In the first one, evaluation was carried on plants submitted to container capacity, irrigation suspending when substrate water potential dropped to -15kPa, and two PEG concentrations in water equivalents to substrate water potential of -15 and -25kPa. In the second trial, evaluation was carried on plants submitted to container capacity and irrigation suspending when substrate water potential dropped to -15 and -25kPa. Data collected included biometric variables, leaf concentrations of nutrients, proline and chlorophyll, carbohydrates concentrations in roots, stems and leaves, commercial feasibility of nursery trees, CO2 assimilation rate, stomatal conductance, leaf transpiration and temperature, and water use efficiency. Experimental design was randomized blocks with a 2 x 3 x 4 factorial (rootstock x phenological phase x water stress), performing 24 treatments and five replicates for the first experiment, and a 2 x 3 x 3 factorial with 18 treatments and six replicates for the second experiment. Experimental unit consisted of six nursery plants aligned on concrete benches. Valencia sweet orange budded on Rangpur lime and Swingle citrumelo had different growth and physiological behavior, with the first rootstock inducing higher vigor. PEG should not be used for in vivo water stress studies in containerized citrus, as a result of toxicity and physiological effects distinct from those observed in plants submitted to suspended irrigation. Nursery trees on both materials are affected by suspended irrigation from unwrapping to the maturation of scion second growth flush. Damages to plant development due to water deficit are proportional to stress duration. However, temporary drought is more harmful when partially induced after the scion first growth flush, probably because of higher plant size and container restriction. Substrate water potential of -15kPa can be used as adequate irrigation threshold for Valencia sweet orange nursery production on Rangpur lime and Swingle citrumelo rootstocks regardless of phenological phase. On the other hand, substrate water potential of -25kPa significantly reduces horticultural value of citrus nursery trees. Rangpur lime induces higher morphological and physiological acclimation to the scion due to irrigation suspending, and it also has great plasticity and recovery of growth and physiological performance after successive suspending / restoring irrigation cycles.
Moreira, Raquel Capistrano. "Processamento mínimo de tangor 'Murcott': caracterização fisiológica e recobrimentos comestíveis." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/11/11136/tde-10052005-162518/.
Повний текст джерелаThe objectives of this work were to determine the effect of minimally processing and the storage temperature on the physiology of fresh-cut tangor Murcott and to determine the edible coatings that maintain the microbiological, sensorial and physico-chemical qualities of fresh-cut tangor Murcott. In the first experiment two processing levels (peeled fruits and segments) and five storage temperatures (1º, 6º, 11º, 21º and 31ºC) were tested. Whole fruits were used as control. In the second experiment the segments were treated with several edible coatings and stored under two temperatures (6º and 12ºC). The edible coatings were: gelatin 4% w/w, gelatin 8% w/w, whey protein 8% w/w and paraffin wax emulsion. Segments without recovering were used as control. In the first experiment the respiratory rate and the ethylene production were determined every hour for 10 hours and then, every day for 7 days. The temperature quotients (Q10) were also determined. In the second experiment were determined: the physico-chemical properties every two day for six days; the respiratory rate daily for eight days; the microbiological analysis on the fourth and seventh days of storage; and the sensorial analysis on the fourth day of storage. The storage temperature and the processing level did influence the respiratory rate. The ethylene levels were low and inconstant during the study. The edible coatings were little effective on reducing the respiratory rate and on maintaining the physico-chemical, microbiological and sensorial properties of fresh-cut tangor Murcott.
Knight, Toby George. "Investigation of the physiological basis of the rind disorder oleocellosis in Washington navel orange (Citrus sinensis [L.] Osbeck) / Toby George Knight." Thesis, 2002. http://hdl.handle.net/2440/22440.
Повний текст джерелаx, 165 leaves : ill. (chiefly col.), plates ; 30 cm.
Microscopy investigations into the oil glands, localisation of the rind oils and the development of oleocellosis have been carried out in Washington navel orange (Citrus sinensis [L.] Osbeck). Aims to develop an improved understanding of the physiological basis of the rind disorder.
Thesis (Ph.D.)--University of Adelaide, Dept. of Horticulture, Viticulture and Oenology, 2002
Mditshwa, Asanda. "The potential of post-harvest potassium silicate dips to mitigate chilling injury on citrus fruit." Thesis, 2012. http://hdl.handle.net/10413/7892.
Повний текст джерелаThesis (M.Sc.Agric.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
Mathaba, Nhlanhla. "The cascade of physiological events leading to chilling injury : the effect of post-harvest hot water and molybdenum applications to lemon (citrus limon) fruit." Thesis, 2012. http://hdl.handle.net/10413/9859.
Повний текст джерелаThesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
Siboza, Xolani Irvin. "Methyl jasmonate and salicylic acid enhance chilling tolerance in lemon (citrus limon) fruit." Thesis, 2013. http://hdl.handle.net/10413/10872.
Повний текст джерелаThesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2013.
Magwaza, Lembe Samukelo. "A preliminary study on the effect of climatic conditions and fruit mineral concentration on the development of lenticel damage in 'Tommy Atkins' and 'Keitt' mangos (Mangifera indica L.) and rind pitting in 'Benny Valencia' oranges (Citrus sinensis)." Thesis, 2008. http://hdl.handle.net/10413/5012.
Повний текст джерелаThesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2008.
Книги з теми "Citrus fruits Physiology"
Brakke, Mary P. Gas exchange and growth responses of citrus trees to partial irrigation, soil water, and atmospheric conditions. 1989.
Знайти повний текст джерелаCitrus (Crop Production Science in Horticulture, Vol 2). CABI, 1996.
Знайти повний текст джерелаЧастини книг з теми "Citrus fruits Physiology"
Soule, James, and William Grierson. "Anatomy and Physiology." In Fresh Citrus Fruits, 1–22. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-8792-3_1.
Повний текст джерелаKhan, Ahmad Sattar, Sajid Ali, Mahmood Ul Hasan, Aman Ullah Malik, and Zora Singh. "Postharvest Physiology of Citrus Fruit." In Citrus Production, 345–70. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003119852-23.
Повний текст джерелаLadaniya, Milind S. "FRUIT MORPHOLOGY, ANATOMY, AND PHYSIOLOGY." In Citrus Fruit, 103–24. Elsevier, 2008. http://dx.doi.org/10.1016/b978-012374130-1.50007-3.
Повний текст джерелаLadaniya, Milind. "Fruit morphology, anatomy and physiology." In Citrus Fruit, 145–71. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-99306-7.00001-3.
Повний текст джерелаТези доповідей конференцій з теми "Citrus fruits Physiology"
Brlansky, R. H. "Update on Huanglongbing Progression and Current Research in Florida." In ASME 2009 Citrus Engineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/cec2009-5501.
Повний текст джерелаЗвіти організацій з теми "Citrus fruits Physiology"
Eyal, Yoram, Gloria Moore, and Efraim Lewinsohn. Study and Manipulation of the Flavanoid Biosynthetic Pathway in Citrus for Flavor Engineering and Seedless Fruit. United States Department of Agriculture, October 2003. http://dx.doi.org/10.32747/2003.7570547.bard.
Повний текст джерела