Дисертації з теми "Circadian timing"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-35 дисертацій для дослідження на тему "Circadian timing".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Vujovic, Nina. "Functional organization of the circadian timing system." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11271.
Повний текст джерелаSorokina, Oxana. "Understanding biological timing by modelling simple circadian clocks." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/14456.
Повний текст джерелаRuby, Christina L. "Ethanol Disruption of the Mammalian Circadian Timing System." Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1270053064.
Повний текст джерелаEmerson, Kevin James 1980. "Evolutionary and physiological genetics of biological timing." Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10286.
Повний текст джерелаThere are two fundamental environmental rhythms that organisms in nature encounter: (1) the daily rhythm of light and dark that is due to the rotation of the earth about its axis and (2) the yearly seasonal rhythm due to the angle of the earth's rotation relative to the plane of its orbit around the sun. All eukaryotes have an endogenous circadian (daily) clock that allows for the timing of biological events within the context of the daily light:dark cycle. A wide diversity of plants and animals in temperate regions use photoperiodic (daylength) cues to time life history events, such as reproduction and diapause (insect dormancy) within the context of the yearly seasonal cycles. This dissertation focuses on the relationship between the circadian clock, photoperiodic time measurement and diapause. Chapter I serves as an introduction to biological timing and briefly summarizes the chapters that follow Chapter II outlines why Drosophila melanogaster , the workhorse of modern insect genetics, is not an appropriate system for the study of photoperiodism. Chapter III defines the Nanda-Hamner response, the circadian phenotype used in this dissertation, and proposes that the NH response is due to a rhythmic level of circadian disorganization in response to environmental cycle length. Chapters IV and V deal primarily with the long-held proposition that the circadian clock forms the causal basis of photoperiodic time measurement. I show that variation in the circadian clock does not covary with photoperiodic phenotypes among natural populations of Wyeomyia smithii , and thus these two processes are evolutionarily independent. Chapter VI describes the first forward genetic screen for candidate genes involved in photoperiodism and diapause termination in any animal. Chapter VII is a discussion of the complexity involved in studies of the genetics of photoperiodism and diapause and how historical inertia of scientific hypothesis acts to confound, rather than clarify, the relationship between genotypes and phenotypes. Chapter VIII is a concluding discussion of the implications of the work presented. This dissertation includes both previously published and co-authored material.
Committee in charge: William Cresko, Chairperson, Biology; William Bradshaw, Advisor, Biology; Patrick Phillips, Member, Biology; Eric Johnson, Member, Biology; Stephen Frost, Outside Member, Anthropology
Jenkins, H. A. "Circadian and ultradian rhythms in Chlamydomonas and Euglena." Thesis, Bucks New University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233011.
Повний текст джерелаChristou, Skevoulla P. "Meal timing as a synchroniser of the human circadian system." Thesis, University of Surrey, 2017. http://epubs.surrey.ac.uk/813215/.
Повний текст джерелаAmicarelli, Mario Joseph. "THE EFFECTS OF ORAL COCAINE ON THE CIRCADIAN TIMING SYSTEM." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1406227527.
Повний текст джерелаEmerson, Kevin James. "Evolutionary and physiological genetics of biological timing /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2009. http://hdl.handle.net/1794/10286.
Повний текст джерелаStowie, Adam Curtis. "COCAINE MODULATION OF CIRCADIAN TIMING: A PUTATIVE MECHANSIM FOR DRUG DEPENDENCE." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1427974849.
Повний текст джерелаSchmitt, Jaclyn L. "Understanding timing| Conservation between the circadian protein period and the C. elegans developmental timing protein lin-42." Thesis, University of California, Santa Cruz, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1551325.
Повний текст джерелаTiming of development, metabolic regulation, and longevity are crucial elements in optimizing physiological functions to, and within, our environment. The synchronization of our internal clocks to the twenty-four hour day of our environment aids in anticipatory and protective measures on the molecular level. Dysregulation of this internal clock, known as the circadian clock, has been linked to various cancers, diabetes and heart failure. Mental ailments such as alcoholism and bipolarism can be magnified through dysregulation of our circadian rhythms. The output of circadian time keeping is still being explored, including the link to longevity. To further our understanding of clock functions through molecular structure, comparisons between biological time keeping methods are vital. On the molecular level of the circadian clock, one of the core negative feedback loop proteins is PERIOD. The complex timing of PERIOD transcription and protein accumulation directly contributes to setting the circadian clock. Within PERIOD protein, the functions of the homo- and heterodimerizing PERIOD-ARNT-SIM (PAS) domain to facilitate nuclear localization, and possibly many of the PERIOD output functions, are still being understood. Another protein that contains this canonical PAS domain is the nematode C. elegans development timing protein LIN-42. Although C. elegans are not known to have circadian rhythms, LIN-42 shares many motif and functional similarities to PERIOD. The development of C. elegans larva is repressively regulated, or gated, by LIN-42. Additionally, LIN-42 regulates entry into quiescent states during larval devolvement when environmental conditions are stressful. Considering the functions of LIN-42 within development of specialized stem cells, known as seam cells, and the recent discovery of the functions of PERIOD within the development of our own stem cells; a molecular comparison of LIN-42 and PERIOD will facilitate our understanding of the associated output functions of these proteins. Specifically the N-terminal regions of PER and LIN-42 share well-folded structural domains, and are the focus of this thesis. The forms of PERIOD and LIN-42 that share the most sequence and functional homology are PER2 and LIN-42b. Direct comparison of the similarities and differences between these two proteins on the molecular level will shed light on biological time keeping.
Gon?alves, Bruno da Silva Brand?o. "Estudo da organiza??o funcional do sistema circadiano por meio de ferramentas computacionais e matem?ticas." Universidade Federal do Rio Grande do Norte, 2013. http://repositorio.ufrn.br:8080/jspui/handle/123456789/17232.
Повний текст джерелаConselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
Circadian rhythms are variations in physiological processes that help living beings to adapt to environmental cycles. These rhythms are generated and are synchronized to the dark light cycle through the suprachiasmatic nucleus. The integrity of circadian rhythmicity has great implication on human health. Currently it is known that disturbances in circadian rhythms are related to some problems of today such as obesity, propensity for certain types of cancer and mental disorders for example. The circadian rhythmicity can be studied through experiments with animal models and in humans directly. In this work we use computational models to gather experimental results from the literature and explain the results of our laboratory. Another focus of this study was to analyze data rhythms of activity and rest obtained experimentally. Here we made a review on the use of variables used to analyze these data and finally propose an update on how to calculate these variables. Our models were able to reproduce the main experimental results in the literature and provided explanations for the results of experiments performed in our laboratory. The new variables used to analyze the rhythm of activity and rest in humans were more efficient to describe the fragmentation and synchronization of this rhythm. Therefore, the work contributed improving existing tools for the study of circadian rhythms in mammals
Os ritmos circadianos s?o varia??es em processos fisiol?gicos que auxiliam os seres vivos na adapta??o aos ciclos ambientais. Esses ritmos s?o gerados e se sincronizam ao ciclo claro escuro por meio do n?cleo supraquiasm?tico. A integridade da ritmicidade circadiana tem grande implica??o na sa?de dos seres humanos. Atualmente sabe-se que dist?rbios nos ritmos circadianos est?o relacionados com alguns problemas da atualidade como a obesidade, propens?o a determinados tipos de c?ncer e transtornos mentais por exemplo. A ritmicidade circadiana pode ser estudada por meio de experimentos com modelos animais e diretamente nos seres humanos. Nesse trabalho utilizamos modelos computacionais para reunir resultados experimentais da literatura e explicar resultados de nosso laborat?rio. Outro foco desse trabalho foi na an?lise de dados de ritmos de atividade e repouso obtidos experimentalmente. Aqui fizemos uma revis?o sobre o uso de vari?veis utilizadas para analisar esses dados e por ?ltimo propomos uma atualiza??o na forma de calcular essas vari?veis. Os nossos modelos foram capazes de reproduzir os principais resultados experimentais da literatura e nos forneceram explica??es para resultados de experimentos realizados em nosso laborat?rio. As novas vari?veis utilizadas para analisar o ritmo de atividade e repouso em humanos se mostraram mais eficiente para descrever a fragmenta??o e sincroniza??o desse ritmo. Assim esse trabalho contribuiu aperfei?oando as ferramentas existentes para o estudo da ritmicidade circadiana nos mam?feros
Hammer, Steven Berlin. "Interactions between Exercise, Aging and Ethanol and the Mammalian Circadian Timing System." Kent State University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=kent1247872024.
Повний текст джерелаSarma, Ashapurna. "Circadian Timing of Curcumin Efficacy and Nuclear Transport Properties of Cancer Cells." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1447971823.
Повний текст джерелаFifel, Karim. "Alterations of the circadian timing system in rodent and non human primate models of Parkinson’s disease." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10031/document.
Повний текст джерелаSince the first description by James Parkinson in his essay on the shaking palsy, Parkinson’s disease (PD) was recognized as a motor disease identified by a tetrad of symptoms, namely; akinesia, muscular rigidity, resting tremor and postural instability. These symptoms are known to be related to loss of dopamine (DA) in the striatum following neural degeneration in the substantia nigra (SN). It is increasingly recognized that non-motor and perhaps non-dopaminergic related symptoms inevitably emerge and worsen during disease progression. Sleep disruption is one of the major non-motor symptoms and has been suggested as a preclinical marker of the disease. Models of sleep regulation have emphasized two distinct processes: a sleep-control mechanism, or sleep homeostat, and a circadian oscillator. The circadian oscillator, based in the suprachiasmatic nucleus (SCN), is responsible for the tendency to sleep during certain phases of the 24-hour cycle and the consolidation of sleep and wake into distinct episodes. The sleep homeostat is responsible for monitoring and reacting to the need for sleep, causing the urge to sleep to depend on prior amounts of sleep or wakefulness. While disruptions in the circuitry and the homeostatic processes involved in the regulation of sleep-wake behaviour is will documented in PD, the potential involvement of alterations of the circadian system have not been studied in detail. The aim of my thesis is to investigate alterations in the circadian timing system using two animal models of PD: the mouse and the non-human primate. Taken together, the studies show that disturbances of circadian functions occur after MPTP treatment in the non-human primate but not in the mouse model of PD. These results emphasize the limitations of the MPTP-treated mouse model of PD for the study of non-motor symptoms, and reinforce previous studies that question the adequacy of this model to replicate cardinal motor features of the disease. In contrast, results in the non-human primate model stress the importance of dopaminergic degeneration in the circadian organisation of behavioral sleep wake cycle in PD
Guinn, Jessie Jr. "Assessment of the Integrative Roles of the Intergeniculate Leaflet in Circadian Timing and Reward Pathways." Kent State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=kent1320094118.
Повний текст джерелаHerwig, Annika. "Torpor and timing impact of endogenously controlled hypothermia on the circadian system of two hamster species /." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=985254033.
Повний текст джерелаSchweizer, Justine. "Investigation of the Decision-Making and Time-Keeping Abilities of SIFamide Signalling in Drosophila Melanogaster." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36849.
Повний текст джерелаSmith, Patrick M. "Bipolar Spectrum Traits in Day-to-Day Life: Ecological Momentary Assessment of Reward Sensitivity, Circadian Timing, and Experience of Reward in the Environment." Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1538648/.
Повний текст джерелаCortès, Llorca Lucas [Verfasser], Günter [Gutachter] Theißen, Ian T. [Gutachter] Baldwin, and Maria [Gutachter] Eriksson. "The circadian timing system in Nicotiana attenuata : a functional connection between the circadian clock and hormone signaling in plant-insect interactions / Lucas Cortès Llorca ; Gutachter: Günter Theißen, Ian T. Baldwin, Maria Eriksson." Jena : Friedrich-Schiller-Universität Jena, 2021. http://nbn-resolving.de/urn:nbn:de:gbv:27-dbt-20210917-141158-003.
Повний текст джерелаZerón, Rugerio Maria Fernanda. "Living against the biological clock: The role of sleep, meal timing and circadian patterns in adiposity and dietary intake in young adults." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/671452.
Повний текст джерелаBartlang, Manuela [Verfasser], and Charlotte [Gutachter] Förster. "Timing is everything: The interaction of psychosocial stress and the circadian clock in male C57BL/6 mice / Manuela Bartlang ; Gutachter: Charlotte Förster." Würzburg : Universität Würzburg, 2014. http://d-nb.info/1122020775/34.
Повний текст джерелаMalik, Astha. "Circadian Clocks in Neural Stem Cells and their Modulation of Adult Neurogenesis, Fate Commitment, and Cell Death." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1434986257.
Повний текст джерелаKarlgren, Anna, Niclas Gyllenstrand, Thomas Källman, and Ulf Lagercrantz. "Conserved function of core clock proteins in the gymnosperm Norway spruce (Picea abies L. Karst)." Uppsala universitet, Växtekologi och evolution, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-192151.
Повний текст джерелаYon, Torres Felipe Carlos [Verfasser], Ian T. [Akademischer Betreuer] Baldwin, Maria [Akademischer Betreuer] Mittag, and Mark van [Akademischer Betreuer] Kleunen. "Timing for outcrossing : circadian clock regulates floral rhythms with large fitness consequences / Felipe Carlos Yon Torres. Gutachter: Ian Thomas Baldwin ; Maria Mittag ; Mark van Kleunen." Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2014. http://d-nb.info/1050977467/34.
Повний текст джерелаRhoden, Chad Allen. "Circadian variation and the benefits of exercise on arterial blood pressure : should timing of exercise be considered when prescribing exercise for prevention or treatment of hypertension? /." Full text available from ProQuest UM Digital Dissertations, 2007. http://0-proquest.umi.com.umiss.lib.olemiss.edu/pqdweb?index=0&did=1409506111&SrchMode=1&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1221060403&clientId=22256.
Повний текст джерелаHassan, Soha Abdelaliem Hassan [Verfasser], Gall Charlotte [Gutachter] von, and Horst-Werner [Gutachter] Korf. "Is timing essential in cancer chronotherapy? Circadian molecular and behavioral studies on radiotherapy of hepatocellular carcinoma in mice / Soha Abdelaliem Hassan Hassan ; Gutachter: Charlotte von Gall, Horst-Werner Korf." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2021. http://d-nb.info/1229191674/34.
Повний текст джерелаFrazão, Renata. "Análise citoarquitetônica e imunoistoquímica de estruturas do sistema visual de macacos-prego (Cebus apella)." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/42/42131/tde-08092008-105313/.
Повний текст джерелаThe diurnal habits and its complex SNC, make the tufted capuchin monkey an important subject for the study of the visual system. In the present study, five tufted capuchins received a single intraocular neuronal tracer subunit B of cholera toxin (CTb) injection and perfused 15 days later. The retina and brain were removed from the animals and processed with immunohistochemical techniques. The CTb analysis showed that the retina send projections to several structures, such as primary visual, optical accessory and circadian control systems. The immunohistochemical characterization also showed two different types of bipolar cells in the retina. These cells, differently from other species, were co-localized with gabaergic receptors. Overall our results showed several interspecies differences suggesting that comparison of the visual system between species must be undertaken with great caution.
Husse, Jana [Verfasser], Gregor [Akademischer Betreuer] Eichele, and Erik [Akademischer Betreuer] Maronde. "Genetic disruption of the master pacemaker in the suprachiasmatic nucleus sheds light on the hierarchical organization of the mammalian circadian timing system / Jana Husse. Gutachter: Gregor Eichele ; Erik Maronde. Betreuer: Gregor Eichele." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2011. http://d-nb.info/1044045795/34.
Повний текст джерелаWeidenauer, Corina [Verfasser], and Christoph [Akademischer Betreuer] Randler. "Circadian Preference and Amplitude - “Under Consideration of Physiological Markers, Activity and Sleep/Wake Timing as well as References to Attention, Mood and Motivation in Everyday School Life” / Corina Weidenauer ; Akademischer Betreuer: Christoph Randler." Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1203726201/34.
Повний текст джерелаTeasdale, Michael. "The timing of benthic copepod emergence--a laboratory flume study." 2003. http://etd.lib.fsu.edu/theses/available/etd-08102004-142637.
Повний текст джерелаAdvisor: Dr. David Thistle, Florida State University, College of Arts and Sciences, Dept. of Oceanography. Title and description from dissertation home page (Aug. 27, 2004). Includes bibliographical references.
Qu, Xiaoyu. "Timing Matters: The Role of Circadian Clock Genes In Development and Toxin Responses." Thesis, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2886.
Повний текст джерелаBartlang, Manuela Slavica. "Timing is everything: The interaction of psychosocial stress and the circadian clock in male C57BL/6 mice." Doctoral thesis, 2014. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-106486.
Повний текст джерелаAufgrund der Bewegung der Erde in unserem Sonnensystem sind alle Lebewesen auf unserem Planeten seit mehr als 3,5 Milliarden Jahren tagesperiodischen Veränderungen der Umweltbedingungen ausgesetzt. In Anpassung an diese zeitlichen Abläufe haben sich im Laufe der Evolution bei fast allen Organismen – vom Bakterium bis hin zum Menschen – und auf verschiedenen Ebenen – von der Zellebene bis zum Verhalten – biologische Rhythmen entwickelt, die von endogenen Uhren im Körper und äußeren Zeitgebern gesteuert werden. Bei vielzelligen Organismen besitzen nahezu alle Zelltypen ihren eigenen Oszillator. In Säugetieren ist das zirkadiane System hierarchisch strukturiert. Der zentrale Schrittmacher der inneren Uhr befindet sich im bilateralen suprachiasmatischen Nukleus (SCN) des Hypothalamus, während untergeordnete periphere Taktgeber in beinahe jedem Gewebe und Organ oszillieren. Im Gegensatz zu den oben erwähnten regelmäßig wiederkehrenden Veränderungen der Umweltbedingungen sind die meisten Lebewesen ebenso unvorhersehbaren und raschen Umweltveränderungen ausgesetzt. In Anpassung an derartig plötzlich wechselnde Reizbedingungen ist die kurzfristige Aktivierung des Stress-Systems, bestehend aus der Hypothalamus-Hypophysen-Nebennieren-Achse (hypothalamic-pituitary-adrenal axis, HPA axis) und dem sympathischen Nervensystem, für eine adaptive Reaktion essentiell und sogar lebensnotwendig. Im Gegensatz dazu zählt eine andauernde/chronische Aktivierung des Stress-Systems zu den Risikofaktoren für eine Reihe von somatischen und affektiven Erkrankungen. Obwohl das zirkadiane System und das Stress-System auf den ersten Blick zwei verschiedene körperliche Anpassungssysteme darstellen, kommt es auf mehreren Ebenen zum wechselseitigen Einfluss. Es wurde bereits in früheren Arbeiten gezeigt, dass eine Stressorexposition zu unterschiedlichen Tageszeiten verschiedene Effekte hervorruft, wobei die Natur des Stressors dabei eine entscheidende Rolle spielt. Des Weiteren konnten Veränderungen im SCN und peripheren zirkadianen Uhren als Folge einer Stressorexposition aufgezeigt werden. In Zusammenarbeit mit verschiedenen Kollegen wurde im Rahmen dieser Doktorarbeit untersucht, ob die endogene Uhr die Stressempfindlichkeit tageszeitabhängig moduliert und ob wiederholter psychosozialer Stress die innere Uhr in Abhängigkeit von der Tageszeit der Stressorexposition beeinflusst. Männliche C57BL/6 Mäuse wurden daher entweder zu Beginn der inaktiven/Licht-Phase (SDL Mäuse) oder der aktiven/Dunkel-Phase (SDD Mäuse) wiederholt einem psycho-sozialem Stressor ausgesetzt. Im Anschluss wurden verschiedene Verhaltensweisen sowie physio¬logische/endo-krine und immunologische/inflammatorische Konsequenzen untersucht. Es konnte gezeigt werden, dass die Effekte wiederholter Stressorexposition auf das Verhalten, die Physiologie und die Immunologie deutlich von der Tageszeit der Stressorexposition abhängt. Die gewonnenen Ergebnisse zeigen, dass wiederholte Stressor¬exposition während der aktiven/Dunkel-Phase negativere Konsequenzen nach sich zieht als die Stressorexposition während der inaktiven/Licht-Phase. Wurden C57BL/6 Mäuse dem psychosozialen Stressor während ihrer aktiven Phase ausgesetzt, führte dies zu typischen Symptomen von depressiven Patienten wie z.B. einer Verringerung der Aktivität und des sozialen Erkundungsverhaltens, Entzündungserscheinungen, sowie Veränderungen in hormonalen Rhythmen im Plasma. Im Gegensatz dazu wiesen C57BL/6 Mäuse, die dem Stressor in ihrer inaktiven Phase begegneten, geringfügige physiologische Veränderungen auf, welche die Entstehung der oben genannten negativen Konsequenzen verhindern und somit positive Adaptationen darstellen könnten. Des Weiteren wurden in dieser Arbeit die Effekte wiederholter Stressorexposition zu unterschiedlichen Tageszeiten auf verschiedene Ebenen des zirkadianen Systems untersucht. Es konnte eine erhöhte Expression des PERIOD2 (PER2) Proteins, das einen essentiellen Bestandteil des zirkadianen Uhrenmechanismus darstellt, im SCN nach wiederholter Stressorexposition während der aktiven Phase festgestellt werden. Die Veränderung im zentralen Schrittmacher spiegelte sich auch in der Tagesrhythmik verschiedener Hormone sowie im rhythmischen Verhalten der Tiere wider. SDD Mäuse zeigten dabei einen verschobenen oder fehlenden Rhythmus in den Hormonen Corticosteron und Leptin. Des Weiteren war die Aktivität nach 19-tägiger Stressorexposition zu Beginn der aktiven Phase deutlich nach hinten verschoben. Dabei kommt dem Period (Per) Gen eine zentrale Bedeutung zu, da SDD Per1/Per2 Doppelmutanten keinen veränderten Aktivitätsrhythmus aufwiesen. Eine verfrühte Phasenlage der peripheren Uhr in der Nebenniere zeigte sich hingegen in C57BL/6 Mäusen, die dem Stressor während ihrer inaktiven Tageszeit ausgesetzt wurden. Diese Phasenverschiebung nach vorne könnte für die Aufrechterhaltung der Rhythmik im Verhalten und in der Hormonausschüttung eine Rolle spielen. Vorangehende Arbeiten wiesen bereits darauf hin, dass die HPA-Achsen-Aktivierung infolge einer Stressorexposition zu unterschiedlichen Tageszeiten davon abhängt, ob der Stressor von physischer oder psychologischer Natur ist. Die Ergebnisse der vorliegenden Arbeit erweitern die bestehenden Erkenntnisse insofern, als dass die HPA-Achsen-Antwort auch von psychosozialen Stressoren tageszeitabhängig beeinflusst wird. Die HPA-Achsen-Analyse dieser Arbeit zeigte eine verringerte Aktivität der Stressachse nach wiederholter Stressorexposition zu Beginn der aktiven Phase. Mit großer Wahrscheinlichkeit stellt diese Verringerung der basalen HPA-Achsen-Aktivität eine dysfunktionale Überadjustierung dar, die zu den negativen Konsequenzen in Folge der Stressorexposition während der aktiven Phase beitragen könnte. Zusammenfassend lässt sich sagen, dass die endogene Uhr in Mäusen die Stressempfindlichkeit tageszeitabhängig moduliert und dass wiederholter psychosozialer Stress die innere Uhr in Abhängigkeit von der Tageszeit der Stressorexposition beeinflusst. Dabei zieht die Stressorexposition während der aktiven Phase weitaus negativere Konsequenzen nach sich als die Stressor¬exposition in der inaktiven Phase. Aus den Daten kann geschlossen werden, dass die Wechselwirkung von der inneren Uhr und dem Stress-System einen komplexen Sachverhalt darstellt, der gewährleisten soll, dass die innere Uhr nicht beliebig aus dem Takt geraten kann
Husse, Jana. "Genetic disruption of the master pacemaker in the suprachiasmatic nucleus sheds light on the hierarchical organization of the mammalian circadian timing system." Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-000D-F1DF-F.
Повний текст джерелаHerwig, Annika [Verfasser]. "Torpor and timing : impact of endogenously controlled hypothermia on the circadian system of two hamster species / by Annika Herwig." 2007. http://d-nb.info/985254033/34.
Повний текст джерелаRaimundo, Diogo Matos Canha. "Cronoterapia e ritmos circadianos: timing is important in medication administration." Master's thesis, 2013. http://hdl.handle.net/10451/46020.
Повний текст джерелаA Cronoterapia, um conceito emergente no campo da Farmacoterapia, remete para a alteração dos horários de administração dos fármacos, com o intuito de otimizar o tratamento e minimizar os eventuais efeitos secundários deste. Neste trabalho, será feita uma primeira abordagem a conceitos como Cronoterapia, Cronofarmacologia, Cronofarmacocinética, Cronofarmacodinamia e ainda ao Ritmo Circadiano e aos genes associados à Cronobiologia. Serão também apresentados alguns grupos de fármacos em que tem sido estudada a Cronoterapia, como anti-hipertensores, estatinas e antineoplásicos. O uso da Cronoterapia na utilização de fármacos tem vindo a ser cada vez mais estudado, apresentando ainda uma elevada margem de progressão. Contudo, estudos futuros deverão explorar também mais diferenças relacionas com o genoma, o género e a idade dos indivíduos, assim como outras variáveis intra e inter-individuais.
Chronotherapy, an emerging concept in the Pharmacotherapy area, refers to the modification of drugs administration time, aiming for the therapeutic optimization and the minimization of its side effects. In this work, it will be explained some of the concepts associated with Chronotherapy, like Chronopharmacology, Chronopharmacokinetics, Chronopharmacodynamics, the Circadian Rhythms and its associated genes. It will be presented some drug groups in which Chronotherapy has been investigated, like anti-hypertension drugs, statins and cytotoxic drugs. The usage of Chronotherapy has been increasingly studied, however it still has a great progression margin. Future studies should explore more the differences related to the genome, gender and age of individuals, as well as other intra and inter-individual variables.