Добірка наукової літератури з теми "Chemometric approaches"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Chemometric approaches".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Chemometric approaches"
Roberto de Alvarenga Junior, Benedito, and Renato Lajarim Carneiro. "Chemometrics Approaches in Forced Degradation Studies of Pharmaceutical Drugs." Molecules 24, no. 20 (October 22, 2019): 3804. http://dx.doi.org/10.3390/molecules24203804.
Повний текст джерелаSohn, Soo-In, Subramani Pandian, Young-Ju Oh, John-Lewis Zinia Zaukuu, Yong-Ho Lee, and Eun-Kyoung Shin. "Discrimination of Brassica juncea Varieties Using Visible Near-Infrared (Vis-NIR) Spectroscopy and Chemometrics Methods." International Journal of Molecular Sciences 23, no. 21 (October 24, 2022): 12809. http://dx.doi.org/10.3390/ijms232112809.
Повний текст джерелаSingh, Inderbir, Prateek Juneja, Birender Kaur, and Pradeep Kumar. "Pharmaceutical Applications of Chemometric Techniques." ISRN Analytical Chemistry 2013 (October 30, 2013): 1–13. http://dx.doi.org/10.1155/2013/795178.
Повний текст джерелаBoyd, J. C. "Perspectives on the use of chemometrics in laboratory medicine." Clinical Chemistry 32, no. 9 (September 1, 1986): 1726–33. http://dx.doi.org/10.1093/clinchem/32.9.1726.
Повний текст джерелаMeade, A. D., H. J. Byrne, and F. M. Lyng. "Spectroscopic and chemometric approaches to radiobiological analyses." Mutation Research/Reviews in Mutation Research 704, no. 1-3 (April 2010): 108–14. http://dx.doi.org/10.1016/j.mrrev.2010.01.010.
Повний текст джерелаSauzier, Georgina, Wilhelm van Bronswijk, and Simon W. Lewis. "Chemometrics in forensic science: approaches and applications." Analyst 146, no. 8 (2021): 2415–48. http://dx.doi.org/10.1039/d1an00082a.
Повний текст джерелаDinç, Erdal, A. Hakan Aktaş, and Özgür Üstündağ. "New Liquid Chromatographic-Chemometric Approach for the Determination of Sunset Yellow and Tartrazine in Commercial Preparation." Journal of AOAC INTERNATIONAL 88, no. 6 (September 1, 2005): 1748–55. http://dx.doi.org/10.1093/jaoac/88.6.1748.
Повний текст джерелаRanaweera, Ranaweera K. R., Dimitra L. Capone, Susan E. P. Bastian, Daniel Cozzolino, and David W. Jeffery. "A Review of Wine Authentication Using Spectroscopic Approaches in Combination with Chemometrics." Molecules 26, no. 14 (July 17, 2021): 4334. http://dx.doi.org/10.3390/molecules26144334.
Повний текст джерелаStöckel, S., S. Meisel, M. Elschner, P. Rösch, and J. Popp. "Identification ofBacillus anthracisvia Raman Spectroscopy and Chemometric Approaches." Analytical Chemistry 84, no. 22 (November 6, 2012): 9873–80. http://dx.doi.org/10.1021/ac302250t.
Повний текст джерелаSilva, Carolina S., Maria Fernanda Pimentel, José Manuel Amigo, Carmen García-Ruiz, and Fernando Ortega-Ojeda. "Chemometric approaches for document dating: Handling paper variability." Analytica Chimica Acta 1031 (November 2018): 28–37. http://dx.doi.org/10.1016/j.aca.2018.06.031.
Повний текст джерелаДисертації з теми "Chemometric approaches"
Folch, Fortuny Abel. "Chemometric Approaches for Systems Biology." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/77148.
Повний текст джерелаEsta tesis doctoral se centra en el estudio, desarrollo y aplicación de técnicas quimiométricas en el emergente campo de la biología de sistemas. Procedimientos comúnmente utilizados y métodos nuevos se aplican para resolver preguntas de investigación en distintos equipos multidisciplinares, tanto del ámbito académico como del industrial. Las metodologías desarrolladas en este documento enriquecen la plétora de técnicas utilizadas en las ciencias ómicas para entender el funcionamiento de organismos biológicos y mejoran los procesos en la industria biotecnológica, integrando conocimiento biológico a diferentes niveles y explotando los paquetes de software derivados de esta tesis. Esta disertación se estructura en cuatro partes. El primer bloque describe el marco en el cual se articulan las contribuciones aquí presentadas. En él se esbozan los objetivos de los dos proyectos de investigación relacionados con esta tesis. Asimismo, se introducen los temas específicos desarrollados en este documento mediante presentaciones en conferencias y artículos de investigación. En esta parte figura una descripción exhaustiva de las ciencias ómicas y sus interrelaciones en el paradigma de la biología de sistemas, junto con una revisión de los métodos multivariantes más aplicados en quimiometría, que suponen las pilares sobre los que se asientan los nuevos procedimientos aquí propuestos. La segunda parte se centra en resolver problemas dentro de metabolómica, fluxómica, proteómica y genómica a partir del análisis de datos. Para ello se proponen varias alternativas para comprender a grandes rasgos los datos de flujos metabólicos en estado estacionario. Algunas de ellas están basadas en la aplicación de métodos multivariantes propuestos con anterioridad, mientras que otras son técnicas nuevas basadas en descomposiciones bilineales utilizando rutas metabólicas elementales. A partir de éstas se ha desarrollado software de libre acceso para la comunidad científica. A su vez, en esta tesis se propone un marco para analizar datos metabólicos en estado no estacionario. Para ello se adapta el enfoque tradicional para sistemas en estado estacionario, modelando las dinámicas de los experimentos empleando análisis de datos de dos y tres vías. En esta parte de la tesis también se establecen relaciones entre los distintos niveles ómicos, integrando diferentes fuentes de información en modelos de fusión de datos. Finalmente, se estudia la interacción entre organismos, como naranjas y hongos, mediante el análisis multivariante de imágenes, con futuras aplicaciones a la industria alimentaria. El tercer bloque de esta tesis representa un estudio a fondo de diferentes problemas relacionados con datos faltantes en quimiometría, biología de sistemas y en la industria de bioprocesos. En los capítulos más teóricos de esta parte, se proponen nuevos algoritmos para ajustar modelos multivariantes, tanto exploratorios como de regresión, en presencia de datos faltantes. Estos algoritmos sirven además como estrategias de preprocesado de los datos antes del uso de cualquier otro método. Respecto a las aplicaciones, en este bloque se explora la reconstrucción de redes en ciencias ómicas cuando aparecen valores faltantes o atípicos en las bases de datos. Una segunda aplicación de esta parte es la transferencia de modelos de calibración entre instrumentos de infrarrojo cercano, evitando así costosas re-calibraciones en bioindustrias y laboratorios de investigación. Finalmente, se propone un paquete software que incluye una interfaz amigable, disponible de forma gratuita para imputación de datos faltantes. En la última parte, se discuten los aspectos más relevantes de esta tesis para la investigación y la biotecnología, incluyendo líneas futuras de trabajo.
Aquesta tesi doctoral es centra en l'estudi, desenvolupament, i aplicació de tècniques quimiomètriques en l'emergent camp de la biologia de sistemes. Procediments comúnment utilizats i mètodes nous s'apliquen per a resoldre preguntes d'investigació en diferents equips multidisciplinars, tant en l'àmbit acadèmic com en l'industrial. Les metodologies desenvolupades en aquest document enriquixen la plétora de tècniques utilitzades en les ciències òmiques per a entendre el funcionament d'organismes biològics i milloren els processos en la indústria biotecnològica, integrant coneixement biològic a distints nivells i explotant els paquets de software derivats d'aquesta tesi. Aquesta dissertació s'estructura en quatre parts. El primer bloc descriu el marc en el qual s'articulen les contribucions ací presentades. En ell s'esbossen els objectius dels dos projectes d'investigació relacionats amb aquesta tesi. Així mateix, s'introduixen els temes específics desenvolupats en aquest document mitjançant presentacions en conferències i articles d'investigació. En aquesta part figura una descripació exhaustiva de les ciències òmiques i les seues interrelacions en el paradigma de la biologia de sistemes, junt amb una revisió dels mètodes multivariants més aplicats en quimiometria, que supossen els pilars sobre els quals s'assenten els nous procediments ací proposats. La segona part es centra en resoldre problemes dins de la metabolòmica, fluxòmica, proteòmica i genòmica a partir de l'anàlisi de dades. Per a això es proposen diverses alternatives per a compendre a grans trets les dades de fluxos metabòlics en estat estacionari. Algunes d'elles estàn basades en l'aplicació de mètodes multivariants propostos amb anterioritat, mentre que altres són tècniques noves basades en descomposicions bilineals utilizant rutes metabòliques elementals. A partir d'aquestes s'ha desenvolupat software de lliure accés per a la comunitat científica. Al seu torn, en aquesta tesi es proposa un marc per a analitzar dades metabòliques en estat no estacionari. Per a això s'adapta l'enfocament tradicional per a sistemes en estat estacionari, modelant les dinàmiques dels experiments utilizant anàlisi de dades de dues i tres vies. En aquesta part de la tesi també s'establixen relacions entre els distints nivells òmics, integrant diferents fonts d'informació en models de fusió de dades. Finalment, s'estudia la interacció entre organismes, com taronges i fongs, mitjançant l'anàlisi multivariant d'imatges, amb futures aplicacions a la indústria alimentària. El tercer bloc d'aquesta tesi representa un estudi a fons de diferents problemes relacionats amb dades faltants en quimiometria, biologia de sistemes i en la indústria de bioprocessos. En els capítols més teòrics d'aquesta part, es proposen nous algoritmes per a ajustar models multivariants, tant exploratoris com de regressió, en presencia de dades faltants. Aquests algoritmes servixen ademés com a estratègies de preprocessat de dades abans de l'ús de qualsevol altre mètode. Respecte a les aplicacions, en aquest bloc s'explora la reconstrucció de xarxes en ciències òmiques quan apareixen valors faltants o atípics en les bases de dades. Una segona aplicació d'aquesta part es la transferència de models de calibració entre instruments d'infrarroig proper, evitant així costoses re-calibracions en bioindústries i laboratoris d'investigació. Finalment, es proposa un paquet software que inclou una interfície amigable, disponible de forma gratuïta per a imputació de dades faltants. En l'última part, es discutixen els aspectes més rellevants d'aquesta tesi per a la investigació i la biotecnologia, incloent línies futures de treball.
Folch Fortuny, A. (2016). Chemometric Approaches for Systems Biology [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/77148
TESIS
Premiado
Guan, Pingping. "Class I HLA supertype and supermotif definition by chemometric approaches." Thesis, University College London (University of London), 2005. http://discovery.ucl.ac.uk/1445534/.
Повний текст джерелаStubbins, Frederick John. "Addressing the challenges of crude oil processing utilising chemometric approaches." Thesis, University of Newcastle upon Tyne, 2018. http://hdl.handle.net/10443/4047.
Повний текст джерелаTeague, Claire Rachel. "NMR spectroscopic and chemometric approaches to investigate metabolic variation in biofluids." Thesis, Imperial College London, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414749.
Повний текст джерелаHerranz-Trillo, Fatima. "Disentangling structural complexity in proteins by decomposing SAXS data with chemometric approaches." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT044/document.
Повний текст джерелаMany biological systems are inherently polydisperse, presenting multiple coexisting species differing in size, shape or conformation (i.e. oligomeric mixtures, weakly bound complexes, and species appearing along amyloidogenic processes). The study of such complex systems is challenging due to the instability of the species involved, their low and interdependent relative concentrations, and the difficulties to isolate the pure components. In this thesis, I have developed methodological approaches to apply Small-Angle X-ray Scattering (SAXS), a low-resolution structural biology technique, to the study of polydisperse systems. As an additive technique, the SAXS pattern measured for a polydisperse sample corresponds to the concentration-weighted sum of the contributions from each of the individual components. However, decomposition of SAXS data into species-specific spectra and relative concentrations is laborious and burdened by ambiguity. In this thesis, I present an approach to decompose SAXS datasets into the individual components. This approach adapts the chemometrics Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) method to the specificities of SAXS data. Our method enables the rigorous and robust decomposition of SAXS data by simultaneously introducing different representations of these data and, consequently, emphasizing molecular changes at different time and structural resolution ranges. We have applied this approach, which we name COSMiCS (Complex Objective Structural analysis of Multi-Component Systems), to study two polydisperse systems: amyloid fibrillation by analysing time-dependent SAXSdata, and conformational fluctuations through the analysis of data obtained using on-line size-exclusion chromatography coupled to SAXS (SEC-SAXS). The importance of studying fibrillation processes lies in their implication in amyloidogenic pathologies such as Parkinson’s or Alzheimer’s diseases. There exist strong indications that soluble oligomeric species, and not mature fibrils, are the main cause of cytotoxicity and neuronal damage emphasizing the importance of characterizing early stages of fibrillation. The first application of our COSMiCS approach has allowed the study of the amyloidogenic mechanisms of insulin and the familial mutant E46K of ↵-synuclein, a Parkinson’s disease related protein. The analysis enables the structural characterization of all the species present as well as their kinetic transformations. The second part of the thesis is dedicated to the use of COSMiCS to analyze on-line SEC-SAXS experiments. Using synthetic data, I demonstrate the capacity of chemometric approaches to decompose complex chromatographic profiles. Using this approach, I have studied the conformational fluctuations in prolyl oligopeptidase (POP), a protein related to synaptic functions and neuronal development. In summary, this thesis presents a novel chemometrics approach that can be generally applied to any macromolecular mixture with a tuneable equilibrium that is amenableto SAXS. Transient biomolecular complexes, folding processes, or ligand-dependent structural rearrangements can be probed structurally using COSMiCS
Vestner, Jochen. "New Chemometric Approaches to Non-targeted GCMS Fingerprinting Analysis of Wine Volatiles." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0141/document.
Повний текст джерелаIn contrast to targeted gas chromatography mass spectrometry (GC-MS) analysis of wine volatiles, non-targeted GC-MS approaches take information of known and unknown compounds into account, are faster, inherently more comprehensive and give a more holistic representation of the sample composition. Although several non-targeted approaches have been developed, there is still a great demand for automated data processing tools, especially for complex multi-way data such as chromatographic data obtained from multichannel detectors (e.g. GC-MS chromatograms of multiple samples). This work therefore aimed at the development of data processing procedures for non-targeted GC-MS analysis of volatile wine compounds. The two developed approaches use basic matrix manipulation of segmented GC-MS chromatograms and PCA or PARAFAC multi-way modelling. The approaches take retention time shifts between samples into account and avoid peak integration. A demonstration of the new fingerprinting approaches is presented using an artificial GC-MS data set and an experimental full-scan GC-MS data set obtained for a set of experimental wines. Results of the new approaches were also compared to a references method. Furthermore, the combination of one of the developed GC-MS fingerprinting approaches with the fast sensory screening technique projective mapping was exploited as a powerful approach to simultaneously study the volatile composition and the sensory characteristics of experimental wines. This methodology was used to study the impact of different malolactic fermentation scenarios on two different Pinotage wine styles and for a full factorial investigation of the impact of grape vine age, must turbidity and yeast strain on the aroma of Riesling experimental wines
BACCOLO, GIACOMO. "Chemometrics approaches for the automatic analysis of metabolomics GC-MS data." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/374731.
Повний текст джерелаMetabolomics, which consists of identifying all the metabolites present in the biological samples analysed, is an approach widely applied in various research fields such as biomarker identification, new drug development, food and environmental sciences. Metabolomics is closely linked to the ability of analytical techniques, one of the most widely applied being gas chromatography coupled to mass spectrometry. Modern analytical platforms can generate hundreds of thousands of spectra, detecting an impressive number of distinct molecules. Despite the technical progress achieved on the experimental side, the conversion of signals measured by instruments into useful information is not an obvious step in metabolomic studies. For each identified compound, the goal is to obtain the relative concentration among all analysed samples and the mass spectrum associated with the compound needed to identify the molecule itself. The software available for analysing experimental data has repeatedly been cited as a major source of uncertainty, severely limiting both the quantity and quality of the information extracted. The most applied tools are based on univariate data analysis, considering each sample separately from the others and requiring the operator to set several parameters, affecting the result of the analysis. In this thesis, a new approach, called AutoDise, for the analysis of GC-MS data is described. The processing of the experimental signals is based on PARAFAC2. PARAFAC2 is a model that decomposes multidimensional data, discriminating between different signals in the samples. Due to its properties, PARAFAC2 does not need the data to be pre-processed and does not require parameters to be set, whereas software used in this field requires several parameters to be defined and laborious pre-processing of the data, requiring the intervention of an expert user, and the reproducibility of the results is limited, depending on the parameters chosen by the user. However, fitting PARAFAC2 models involves several steps and an experienced analyst is needed to analyse and interpret the models. AutoDise is an expert system capable of handling all modelling steps and generating a peak table in which each compound is uniquely identified, with fully reproducible results. This is possible thanks to the combination of different diagnostic tools and the application of artificial intelligence models. The performance of the approach was tested on a complex dataset of olive oils obtained by GC-MS analysis. The data were analysed both manually, by experienced users, and automatically with the proposed AutoDise method and the resulting peak tables were compared. The results show that AutoDise outperforms manual analysis both in terms of the number of compounds identified and the quality of identification and quantification. In addition, a GUI was developed to make the algorithm more accessible to people not skilled in the programming language. The thesis includes a tutorial showing the main features and how to use the GUI. Another important part of the thesis was devoted to testing and developing new artificial neural networks to be implemented in the AutoDise software to detect which PARAFAC2 components are providing chemically useful information. To this end, more than 170,000 profiles were manually labelled in order to train, validate and test a convolutional neural network and a bilinear network with short-term memory and a k-nearest neighbour model. The results suggest that deep learning networks can be effectively applied for the automatic classification of chromatographic profiles.
Ryabchykov, Oleg [Verfasser], Jürgen [Gutachter] Popp, and Thomas Wilhelm [Gutachter] Bocklitz. "Investigations on chemometric approaches for diagnostic applications utilizing various combinations of spectral and image data types / Oleg Ryabchykov ; Gutachter: Jürgen Popp, Thomas Wilhelm Bocklitz." Jena : Friedrich-Schiller-Universität Jena, 2019. http://d-nb.info/1206604719/34.
Повний текст джерелаCeci, Adriana Teresa. "Measuring the nutritional quality of local plant-based EUREGIO foods." Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/355331.
Повний текст джерелаMörén, Lina. "Metabolomics and proteomics studies of brain tumors : a chemometric bioinformatics approach." Doctoral thesis, Umeå universitet, Kemiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-111309.
Повний текст джерелаКниги з теми "Chemometric approaches"
1949-, Morgan Stephen L., ed. Experimental design: A chemometric approach. Amsterdam: Elsevier, 1987.
Знайти повний текст джерелаDeming, Stanley N. Experimental design: A chemometric approach. Amsterdam: Elsevier, 1987.
Знайти повний текст джерелаDeming, Stanley N. Experimental design: A chemometric approach. 2nd ed. Amsterdam: Elsevier, 1993.
Знайти повний текст джерелаStructure and retention in chromatography: A chemometric approach. Amsterdam, Netherlands: Harwood Academic Publishers, 1997.
Знайти повний текст джерелаVladimír, Štěpánek, ed. Analytical measurement and information: Advances in the information theoretic approach to chemical analyses. Letchworth, Hertfordshire, England: Research Studies Press, 1985.
Знайти повний текст джерелаExperimental design: a chemometric approach. Elsevier, 1993. http://dx.doi.org/10.1016/s0922-3487(08)x7001-7.
Повний текст джерелаExperimental Design: A Chemometric Approach. Elsevier, 1987. http://dx.doi.org/10.1016/s0922-3487(08)x7012-1.
Повний текст джерелаMorgan, S. L., and S. N. Deming. Experimental Design: A Chemometric Approach. Elsevier Science & Technology Books, 1993.
Знайти повний текст джерелаMorgan, S. L., and S. N. Deming. Experimental Design: A Chemometric Approach. Elsevier Science & Technology Books, 1987.
Знайти повний текст джерелаЧастини книг з теми "Chemometric approaches"
Morita, Kae, and Tetsuo Aishima. "Sensometric and Chemometric Approaches to Seafood Flavour." In Handbook of Seafood Quality, Safety and Health Applications, 39–49. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9781444325546.ch4.
Повний текст джерелаBocklitz, Thomas, Michael Schmitt, and Jürgen Popp. "Image Processing-Chemometric Approaches to Analyze Optical Molecular Images." In Ex-vivo and In-vivo Optical Molecular Pathology, 215–48. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527681921.ch7.
Повний текст джерелаHalder, Amit Kumar, Ana S. Moura, and M. Natália D. S. Cordeiro. "Advanced Chemometric Modeling Approaches for the Design of Multitarget Drugs Against Neurodegenerative Diseases." In Methods in Pharmacology and Toxicology, 155–86. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/7653_2018_14.
Повний текст джерелаAdami, G., F. Aleffi, P. Barbieri, A. Favretto, S. Predonzani, and E. Reisenhofer. "Bivalves and Heavy Metals in Polluted Sediments: A Chemometric Approach." In The Interactions Between Sediments and Water, 615–22. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5552-6_62.
Повний текст джерелаVasić, Milica V., Zagorka Radojević, and Lato Pezo. "Application of Organic and Inorganic Wastes in Clay Brick Production: A Chemometric Approach." In Advanced Ceramic Materials, 300–335. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119242598.ch8.
Повний текст джерелаKookana, Rai S., Riaz Ahmad, and Annemieke Farenhorst. "Sorption of Pesticides and its Dependence on Soil Properties: Chemometrics Approach for Estimating Sorption." In ACS Symposium Series, 221–40. Washington, DC: American Chemical Society, 2014. http://dx.doi.org/10.1021/bk-2014-1174.ch012.
Повний текст джерелаTomassetti, Mauro, Federico Marini, Riccardo Angeloni, Mauro Castrucci, and Luigi Campanella. "New Chemometric Approach Using Data Obtained by a DMFC Device to Qualitatively and Quantitatively Determine Organic Molecules." In Lecture Notes in Electrical Engineering, 21–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37558-4_4.
Повний текст джерелаRutledge, D. N., C. Chararas, and C. J. Ducauze. "Investigating the Hypothesis of Primary Attraction in Conifer-Specific Scolytidae Using a Chemometrical Approach." In Mechanisms of Woody Plant Defenses Against Insects, 391–409. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/978-1-4612-3828-7_27.
Повний текст джерелаTong, Weida, Huixiao Hong, Hong Fang, Qian Xie, Roger Perkins, and John D. Walker. "From Decision Tree to Heterogeneous Decision Forest: A Novel Chemometrics Approach for Structure-Activity Relationship Modeling." In ACS Symposium Series, 173–85. Washington, DC: American Chemical Society, 2005. http://dx.doi.org/10.1021/bk-2005-0894.ch012.
Повний текст джерелаvan der Veer, Grishja, Saskia M. van Ruth, and Jos A. Hageman. "An integral approach to validation of analytical fingerprinting methods in combination with chemometric modelling for food quality assurance." In Mathematical and Statistical Methods in Food Science and Technology, 449–70. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118434635.ch23.
Повний текст джерелаТези доповідей конференцій з теми "Chemometric approaches"
Meade, A. D., C. Clarke, F. Bonnier, K. Poon, A. Garcia, P. Knief, K. Ostrowska, et al. "Functional and pathological analysis of biological systems using vibrational spectroscopy with chemometric and heuristic approaches." In 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2009. http://dx.doi.org/10.1109/whispers.2009.5288989.
Повний текст джерелаTzimas, P. S., E. A. Petrakis, A. Papadimitriou, S. Beteinakis, M. Halabalaki, and A. L. Skaltsounis. "Analytical and chemometric approaches for quality characterization of Cannabis sativa L. with focus on cannabinoids." In GA – 69th Annual Meeting 2021, Virtual conference. Georg Thieme Verlag, 2021. http://dx.doi.org/10.1055/s-0041-1736858.
Повний текст джерелаMarchesi, C., M. Rani, S. Federici, M. Lancini, and L. E. Depero. "COMPARATIVE STUDY OF CHEMOMETRIC APPROACHES AND MACHINE LEARNING FOR MINIATURIZED NEAR-INFRARED (MICRONIR) SPECTROSCOPY IN PLASTICWASTE SORTING." In Joint IMEKO TC11 and TC24 Hybrid Conference. Budapest: IMEKO, 2023. http://dx.doi.org/10.21014/tc24-2022.01.
Повний текст джерелаRoy, Kunal, and Kazi Hossain. "Chemometric modeling of toxicity of contaminants of emerging concern to Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and i-QSTTR approaches." In MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-04-05266.
Повний текст джерелаSikka, Raghav, Maths Halstensen, and Joachim Lundberg. "Spray drop size characterization in an external-mixing bluff-body atomizer based on acoustics and Multivariate Analysis." In 63rd International Conference of Scandinavian Simulation Society, SIMS 2022, Trondheim, Norway, September 20-21, 2022. Linköping University Electronic Press, 2022. http://dx.doi.org/10.3384/ecp192027.
Повний текст джерелаTogkalidou, T., M. Fujiwara, S. Patel, and R. D. Braatz. "A robust chemometrics approach to inferential estimation of supersaturation." In Proceedings of 2000 American Control Conference (ACC 2000). IEEE, 2000. http://dx.doi.org/10.1109/acc.2000.879498.
Повний текст джерелаSikorska, Celina. "Efficient Chemometric Approach Supporting the Design of Fullerene Derivatives for Solar Cells." In The 3rd World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2018. http://dx.doi.org/10.11159/icnnfc18.146.
Повний текст джерелаRoy, Kunal, Pathan Mohsin Khan, and Bakhtiyor Rasulev. "Chemometric modeling of refractive index of polymers using 2D descriptors: A QSPR approach." In MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/mol2net-04-05267.
Повний текст джерелаPaulus, C., S. Bonnet, L. Gerfault, E. Mery, G. Strubel, F. Ricoul, and P. Grangeat. "Chromatographic alignment combined with chemometrics profile reconstruction approaches applied to LC-MS data." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353711.
Повний текст джерелаSilva, Maria Fátima das Graças Fernandes. "Essential oil variation of twenty two genotypes ofCitrusin Brazil — chemometric approach and repellency againstDiaphorina citriKuwayama." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.110998.
Повний текст джерелаЗвіти організацій з теми "Chemometric approaches"
Ivanova, Miroslava, Lilko Dospatliev, and Penko Papazov. Application of ICP-OES Method of Determination of K, P, Mg, Na and Ca in Nine Wild Edible Mushrooms with a Chemometric Approach. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.02.06.
Повний текст джерела