Добірка наукової літератури з теми "Chemical bonds research"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Chemical bonds research".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Chemical bonds research"
Liu, Runzhan, Guoyong Mao, and Ning Zhang. "Research of chemical elements and chemical bonds from the view of complex network." Foundations of Chemistry 21, no. 2 (June 11, 2018): 193–206. http://dx.doi.org/10.1007/s10698-018-9318-7.
Повний текст джерелаMorawetz, Herbert. "History of Rubber Research." Rubber Chemistry and Technology 73, no. 3 (July 1, 2000): 405–26. http://dx.doi.org/10.5254/1.3547599.
Повний текст джерелаLi, Pei Yi, Mei Yun Zhang, Zhi Jie Wang, and Chun Tao Lin. "A Research on Modification of Paper-Based Functional Polyurethane Material." Advanced Materials Research 311-313 (August 2011): 1186–89. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.1186.
Повний текст джерелаAbed, Heba F., Waad H. Abuwatfa, and Ghaleb A. Husseini. "Redox-Responsive Drug Delivery Systems: A Chemical Perspective." Nanomaterials 12, no. 18 (September 14, 2022): 3183. http://dx.doi.org/10.3390/nano12183183.
Повний текст джерелаWu, Shao Gui, Ya Ru Fan, and Jun Zhou. "Research Progress on Preparation Methods of PMIA Fiber." Advanced Materials Research 463-464 (February 2012): 769–72. http://dx.doi.org/10.4028/www.scientific.net/amr.463-464.769.
Повний текст джерелаSantoso, Agus Muji, Bayu Guruh Binangkit, Mohamad Amin, Sutiman Bambang Sumitro, Betty Lukiati, Mumun Nurmilawati, Poppy Rahmatika Primandiri, Ida Rahmawati, S. Sulistiono, and Yayoi Kodama. "Anticancer mechanism of Pisangulin angulata through in silico and development as teaching material." Biosfer 12, no. 1 (April 29, 2019): 45–57. http://dx.doi.org/10.21009/biosferjpb.v12n1.45-57.
Повний текст джерелаYang, Dong Bo, Xing Kai Meng, Xia Zhang, and Jing Jing Tian. "Research on the Correlation between Biodiesel's Composition and Physical & Chemical Properties." Applied Mechanics and Materials 737 (March 2015): 65–70. http://dx.doi.org/10.4028/www.scientific.net/amm.737.65.
Повний текст джерелаSari, Novieta, Suandi Sidauruk, Ruli Meiliawati, and Anggi Ristiyana Puspita Sari. "The Difficulties of X Grade High School Students in Palangka Raya City Academic Year of 2018/2019 in Understanding Chemical Bond Concept using Two-Tier Multiple Choice." GAMAPROIONUKLEUS 1, no. 2 (November 30, 2020): 135–48. http://dx.doi.org/10.37304/jpmipa.v1i2.3686.
Повний текст джерелаPumera, Martin, and Zdeněk Sofer. "Towards stoichiometric analogues of graphene: graphane, fluorographene, graphol, graphene acid and others." Chemical Society Reviews 46, no. 15 (2017): 4450–63. http://dx.doi.org/10.1039/c7cs00215g.
Повний текст джерелаInaltekin, Tufan, Hakan Akcay, and Mehmet Kürşat Duru. "Examination of Pre-Service Science Teachers' Model Based-Content Knowledge and Knowledge of Students’ Understanding on Chemical Bonds." International Journal of Research in Education and Science 9, no. 1 (February 13, 2023): 17–54. http://dx.doi.org/10.46328/ijres.3084.
Повний текст джерелаДисертації з теми "Chemical bonds research"
Emseis, Paul, University of Western Sydney, of Science Technology and Environment College, and of Science Food and Horticulture School. "Non-classical bonding in chiral metal complexes." THESIS_CSTE_SFH_Emseis_P.xml, 2003. http://handle.uws.edu.au:8081/1959.7/557.
Повний текст джерелаDoctor of Philosophy (PhD)
Emseis, Paul. "Non-classical bonding in chiral metal complexes." Thesis, View thesis, 2003. http://handle.uws.edu.au:8081/1959.7/557.
Повний текст джерелаNguyen, Thi Ai Nhung, Thi Phuong Loan Huynh, and Van Tat Pham. "Quantum chemical investigation for structures and bonding analysis of molybdenum tetracarbonyl complexes with N-heterocyclic carbene and analogues: helpful information for plant biology research: Research article." Technische Universität Dresden, 2014. https://tud.qucosa.de/id/qucosa%3A29085.
Повний текст джерелаTính toán hóa lượng tử sử dụng lý thuyết phiếm hàm mật độ kết hợp điều chỉnh gradient (BP86) từ các bộ hàm cơ sở khác nhau (SVP, TZVPP) được thực hiện cho việc tính toán lý thuyết của phức giữa Mo(CO)4 và phối tử N-heterocyclic carbene và các phức tương tự NHEMe (gọi là tetrylenes) với E = C, Si, Ge, Sn, Pb. Cấu trúc của phức [Mo(CO)4-NHEMe] (Mo4-NHEMe) thể hiện sự khác biệt khá thú vị từ Mo4-NHCMe đến Mo4-NHPbMe, phức Mo4-NHCMe có cấu trúc phối trí lưỡng tháp tam giác trong đó phối tử NHCMe chiếm ở vị trí xích đạo. Ngược lại, những phức có phân tử khối lớn hơn từ Mo4-NHSiMe đến Mo4-NHPbMe lại có cấu trúc tháp vuông và các phối tử từ NHSiMe đến NHPbMe chiếm vị trí cạnh (basal – cạnh hướng về bốn đỉnh của đáy vuông). Các cấu trúc của phức Mo4-NHEMe cho thấy các phối tử NHEMe với E = C-Ge tạo với phân tử Mo(CO)4 một góc thẳng α =180.0°, ngược lại, các phức nặng hơn Mo4-NHEMe thì phối tử NHEMe với E = Sn, Pb liên kết với phân tử Mo(CO)4 tạo góc cong và góc cong, α, càng trở nên nhọn hơn khi nguyên tử khối của E càng lớn. Năng lượng phân ly liên kết của liên kết Mo- E giảm dần: Mo4-NHCMe > Mo4-NHSiMe > Mo4-NHGeMe > Mo4-NHSnMe > Mo4-NHPbMe. Phân tích liên kết Mo-E cho thấy có sự đóng góp đáng kể của sự cho liên kết π (CO)4Mo ← NHEMe. Điều này có thể do mức năng lượng của orbital π-cho của Mo4-NHCMe − Mo4-NHPbMe nằm cao hơn orbital σ-cho. Từ kết quả tính toán có thể kết luận rằng phối tử NHEMe trong phức Mo4- NHEMe là chất cho điện tử mạnh. Kết quả nghiên cứu lý thuyết về hệ phức Mo4-NHEMe lần đầu tiên cung cấp một cơ sở dữ liệu hoàn chỉnh cho các nghiên cứu về sinh học thực vật trong tương lai.
Nguyen, Thi Ai Nhung, Thi Phuong Loan Huynh, and Van Tat Pham. "Quantum chemical investigation for structures and bonding analysis of molybdenum tetracarbonyl complexes with N-heterocyclic carbene and analogues: helpful information for plant biology research." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-190465.
Повний текст джерелаTính toán hóa lượng tử sử dụng lý thuyết phiếm hàm mật độ kết hợp điều chỉnh gradient (BP86) từ các bộ hàm cơ sở khác nhau (SVP, TZVPP) được thực hiện cho việc tính toán lý thuyết của phức giữa Mo(CO)4 và phối tử N-heterocyclic carbene và các phức tương tự NHEMe (gọi là tetrylenes) với E = C, Si, Ge, Sn, Pb. Cấu trúc của phức [Mo(CO)4-NHEMe] (Mo4-NHEMe) thể hiện sự khác biệt khá thú vị từ Mo4-NHCMe đến Mo4-NHPbMe, phức Mo4-NHCMe có cấu trúc phối trí lưỡng tháp tam giác trong đó phối tử NHCMe chiếm ở vị trí xích đạo. Ngược lại, những phức có phân tử khối lớn hơn từ Mo4-NHSiMe đến Mo4-NHPbMe lại có cấu trúc tháp vuông và các phối tử từ NHSiMe đến NHPbMe chiếm vị trí cạnh (basal – cạnh hướng về bốn đỉnh của đáy vuông). Các cấu trúc của phức Mo4-NHEMe cho thấy các phối tử NHEMe với E = C-Ge tạo với phân tử Mo(CO)4 một góc thẳng α =180.0°, ngược lại, các phức nặng hơn Mo4-NHEMe thì phối tử NHEMe với E = Sn, Pb liên kết với phân tử Mo(CO)4 tạo góc cong và góc cong, α, càng trở nên nhọn hơn khi nguyên tử khối của E càng lớn. Năng lượng phân ly liên kết của liên kết Mo- E giảm dần: Mo4-NHCMe > Mo4-NHSiMe > Mo4-NHGeMe > Mo4-NHSnMe > Mo4-NHPbMe. Phân tích liên kết Mo-E cho thấy có sự đóng góp đáng kể của sự cho liên kết π (CO)4Mo ← NHEMe. Điều này có thể do mức năng lượng của orbital π-cho của Mo4-NHCMe − Mo4-NHPbMe nằm cao hơn orbital σ-cho. Từ kết quả tính toán có thể kết luận rằng phối tử NHEMe trong phức Mo4- NHEMe là chất cho điện tử mạnh. Kết quả nghiên cứu lý thuyết về hệ phức Mo4-NHEMe lần đầu tiên cung cấp một cơ sở dữ liệu hoàn chỉnh cho các nghiên cứu về sinh học thực vật trong tương lai
Ransdell, Anthony S. "Investigating the Biosynthetic Pathways to Polyacetylenic Natural Products in Fistulina hepatica and Echinacea purpurea." 2013. http://hdl.handle.net/1805/3442.
Повний текст джерелаPolyacetylenic natural products, compounds containing multiple carbon-carbon triple bonds, have been found in a large collection of organisms. Radiochemical tracer studies have indicated that these bioactive metabolites are synthesized from fatty acid precursors through a series of uncharacterized desaturation and acetylenation steps. To date, there are three main pathways believed to be involved in acetylenic natural product biosynthesis. However, it is apparent that the crepenynic acid pathway is the origin of a vast majority of the known plant and fungal acetylenic products. This investigation provides concrete evidence that the polyacetylenic natural products found in the fungus Fistulina hepatica and the medicinal plant species Echinacea purpurea are biosynthesized from crepenynic acid. Through heterologous expression in Yarrowia lipolytica, two acetylenases capable of producing crepenynic acid were identified from E. purpurea. Furthermore, heterologous expression of two diverged desaturases isolated from F. hepatica, uncovered a ∆12-acetylenase and the first multifunctional enzyme capable of ∆14-/∆16- desaturation and ∆14-acetylenation.
Curtis, Courtney Lee. "Wnt signaling in zebrafish fin regeneration : chemical biology using a GSK3β inhibitor". Thesis, 2014. http://hdl.handle.net/1805/4835.
Повний текст джерелаBone growth can be impaired due to disease, such as osteoporosis. Currently, intermittent parathyroid hormone (PTH) treatment is the only approved therapy in the United States for anabolic bone growth in osteoporosis patients. The anabolic effects of PTH treatment are due, at least in part, to modulation of the Wnt/β-catenin pathway. Activation of the Wnt/ β-catenin pathway using a small molecule inhibitor of GSK3β was previously shown to increase markers of bone formation in vitro. Our study utilized a zebrafish model system to study Wnt activated fin regeneration and bone growth. Wnt signaling is the first genetically identified step in fin regeneration, and bony rays are the main structure in zebrafish fins. Thus, zebrafish fin regeneration may be a useful model to study Wnt signaling mediated bone growth. Fin regeneration experiments were conducted using various concentrations of a GSK3β inhibitor compound, LSN 2105786, for different treatment periods and regenerative outgrowth was measured at 4 and 7 days post amputation. Experiments revealed continuous low concentration (4-5 nM) treatment to be most effective at increasing regeneration. Higher concentrations inhibited fin growth, perhaps by excessive stimulation of differentiation programs. In situ hybridization experiments were performed to examine effects of GSK3β inhibitor on Wnt responsive gene expression. Experiments showed temporal and spatial changes on individual gene markers following GSK3β inhibitor treatment. Additionally, confocal microscopy and immunofluorescence labeling data indicated that the Wnt signaling intracellular signal transducer, β-catenin, accumulates throughout GSK3β inhibitor treated tissues. Finally, experiments revealed increased cell proliferation in fin regenerates following LSN 2105786 treatment. Together, these data indicate that bone growth in zebrafish fin regeneration is improved by activating Wnt signaling. Zebrafish Wnt signaling experiments provide a good model to study bone growth and bone repair mechanisms, and may provide an efficient drug discovery platform.
Книги з теми "Chemical bonds research"
Campbell, J. N. Bonds That Tie: Chemical Heritage and the Rise of Cannabis Research. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60023-5.
Повний текст джерелаP, Desvergne J., and Czarnik Anthony W, eds. Chemosensors of ion and molecule recognition: [proceedings of the NATO Advanced Research Workshop on Chemosensors of Ion and Molecule Recognition, Bonas, France, August 31-September 4, 1996]. Dordrecht: Kluwer Academic, 1997.
Знайти повний текст джерелаBonds That Tie: Chemical Heritage and the Rise of Cannabis Research. Springer International Publishing AG, 2020.
Знайти повний текст джерелаPacheco, Leonardo Lessa, and Ivoni Freitas-Reis. Gilbert Lewis e a delicada tessitura da teoria do par compartilhado. Brazil Publishing, 2020. http://dx.doi.org/10.31012/978-65-5861-092-2.
Повний текст джерелаBond Orders And Energy Components Extracting Chemical Information From Molecular Wave Functions. CRC Press, 2010.
Знайти повний текст джерелаSkiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.
Повний текст джерелаJancura, Daniel, and Erik Sedlák. Bioenergetika. Univerzita Pavla Jozefa Šafárika, Vydavateľstvo ŠafárikPress, 2021. http://dx.doi.org/10.33542/be2021-0022-6.
Повний текст джерелаЧастини книг з теми "Chemical bonds research"
Liang, Kaixiang, Jinyu Wei, Song Wang, Mohan Chen, and Siyuan Zhang. "Organic chemistry retrosynthesis strategies, research on basic rules of breaking bonds and fine tuning." In Energy Revolution and Chemical Research, 302–13. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003332657-44.
Повний текст джерелаSaidin, Nor Farhah, Noor Dayana Abd Halim, and Noraffandy Yahaya. "Designing Mobile Augmented Reality (MAR) for Learning Chemical Bonds." In Proceedings of the 2nd International Colloquium of Art and Design Education Research (i-CADER 2015), 367–77. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0237-3_37.
Повний текст джерелаTang, Ao-Qing, and Ji-Qing Xu. "A Chemical Bond Theory of Transition-Metal-Dinitrogen Complexes." In The Nitrogen Fixation and its Research in China, 31–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-10385-2_2.
Повний текст джерелаR. Chandraratne, Meegalla, and Asfaw G. Daful. "Recent Advances in Thermochemical Conversion of Biomass." In Recent Perspectives in Pyrolysis Research. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.100060.
Повний текст джерелаChatterjee, Shaona. "Effects of Oriented External Field in Organic Reaction." In Modern Approaches in Chemical and Biological Sciences, 43–50. Lincoln University College, Malaysia, 2022. http://dx.doi.org/10.31674/book.2022macbs.006.
Повний текст джерелаGanghoffer, Jean-François. "Mechanical Models of Cell Adhesion Incorporating Nonlinear Behavior and Stochastic Rupture of the Bonds." In Handbook of Research on Computational and Systems Biology, 599–627. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-60960-491-2.ch027.
Повний текст джерелаRajamanickam, Karthika, Jayanthi Balakrishnan, Selvankumar Thangaswamy, and Govarthanan Muthusamy. "Microbial Enzymes and Their Mechanisms in the Bioremediation of Pollutants." In Research Anthology on Emerging Techniques in Environmental Remediation, 91–108. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-3714-8.ch005.
Повний текст джерелаAli, Nagia Farag. "Green Strategy for Production of Antimicrobial Textiles." In Handbook of Research on Uncovering New Methods for Ecosystem Management through Bioremediation, 346–66. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8682-3.ch014.
Повний текст джерелаDewangan, Y. "Polysaccharide as Green Corrosion Inhibitor." In Sustainable Corrosion Inhibitors, 70–100. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901496-4.
Повний текст джерелаYuzevych, Volodymyr, and Bohdan Koman. "MATHEMATICAL AND COMPUTER MODELING OF INTERPHASE INTERACTION IN HETEROGENEOUS SOLID STRUCTURES." In Theoretical and practical aspects of the development of modern scientific research. Publishing House “Baltija Publishing”, 2022. http://dx.doi.org/10.30525/978-9934-26-195-4-14.
Повний текст джерелаТези доповідей конференцій з теми "Chemical bonds research"
Ahliha, A. H., F. Nurosyid, and A. Supriyanto. "The chemical bonds effect of Amaranthus hybridus L. and Dracaena Angustifolia on TiO2 as photo-sensitizer for dye-sensitized solar Cells (DSSC)." In THE 4TH INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION, AND EDUCATION OF MATHEMATICS AND SCIENCE (4TH ICRIEMS): Research and Education for Developing Scientific Attitude in Sciences And Mathematics. Author(s), 2017. http://dx.doi.org/10.1063/1.4995165.
Повний текст джерелаMathew, Shilu M., Fatiha Benslimane, Asmaa A. Althani, and Hadi M. Yassine. "Virtual Screening of Anti-Viral Drugs and Natural Compounds for Potential Inhibition of the Novel SARS-Cov-2 Spike Receptor-Binding Domain." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0281.
Повний текст джерелаWaller, Michael G., and Thomas A. Trabold. "Review of Microbial Fuel Cells for Wastewater Treatment: Large-Scale Applications, Future Needs and Current Research Gaps." In ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 7th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fuelcell2013-18185.
Повний текст джерелаFujiwara, Kenichi, Tomozou Sasaki, Yuzou Saita, A. Kamei, and T. Fukui. "Development of Fluorination Decontamination Technique for Uranium Bearing Wastes." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4527.
Повний текст джерелаNascimento, Marcelo Gouveia, Gabriel Nicolas Garcia Alves, Marco Antonio Bueno Filho, and Rodrigo Luiz Oliveira Rodrigues Cunha. "A FLASH OF CONSTRUCTION SCHEMES COLLECTIVE IN THE CLASSROOM INVOLVING THE FIELD STRUCTURAL MOLECULAR." In 1st International Baltic Symposium on Science and Technology Education. Scientia Socialis Ltd., 2015. http://dx.doi.org/10.33225/balticste/2015.74.
Повний текст джерелаSugiyama, Takeshi, Alison J. Hobro, Takayuki Umakoshi, Prabhat Verma, and Nicholas I. Smith. "Raman spectroscopy of macrophage uptake and cellular response during exposure to dietary lipids." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2019. http://dx.doi.org/10.1364/jsap.2019.18p_e208_8.
Повний текст джерелаXinglei, Hu. "Experiment and Mechanism Study on the Effect of Coal Ash on the Capture of Alkali Metals in Zhundong Coal." In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3570.
Повний текст джерелаTaheri, B., A. Munoz F., R. C. Powell, D. H. Blackburn, and D. C. Cranmer. "Effect of structure and composition of the thermal lensing and permanent laser-induced refractive-index changes in glasses." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.mc3.
Повний текст джерелаSNYDER, ALEXANDER D., ZACHARY J. PHILLIPS, and JASON F. PATRICK. "SELF-HEALING OF WOVEN COMPOSITE LAMINATES VIA IN SITU THERMAL REMENDING." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35785.
Повний текст джерелаJia, Zhanzhan, Ravish Rawal, Jon Isaacs, and Sia Nemat-Nasser. "Tailored Polyurea-Glass Interfaces and the Characterization by the Single-Fiber Fragmentation." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63736.
Повний текст джерелаЗвіти організацій з теми "Chemical bonds research"
Rafaeli, Ada, Wendell Roelofs, and Anat Zada Byers. Identification and gene regulation of the desaturase enzymes involved in sex-pheromone biosynthesis of pest moths infesting grain. United States Department of Agriculture, March 2008. http://dx.doi.org/10.32747/2008.7613880.bard.
Повний текст джерела