Статті в журналах з теми "Charge air"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Charge air.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Charge air".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Eitel, Jochen, Wolfgang Kramer, and Eberhard Pantow. "Charge air cooling." ATZ worldwide 105, no. 9 (September 2003): 27–28. http://dx.doi.org/10.1007/bf03224627.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Changjun. "Charge with air." Nature Energy 5, no. 6 (June 2020): 422. http://dx.doi.org/10.1038/s41560-020-0642-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

STEVENS, MARSHA. "TAKING CHARGE IN THE AIR." Nursing 20, no. 10 (October 1990): 101. http://dx.doi.org/10.1097/00152193-199010000-00028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dingelstadt, René, Peter Wieske, Andreas Eilemann, and Jürgen Stehlig. "Refrigerant-based Charge Air Subcooling." MTZ worldwide 76, no. 10 (September 2, 2015): 36–41. http://dx.doi.org/10.1007/s38313-015-0044-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Stehlig, Jürgen, Rene Dingelstadt, Rolf Müller, and James Taylor. "Air intake modules with integrated cascaded charge air cooling." MTZ worldwide 74, no. 3 (February 3, 2013): 22–27. http://dx.doi.org/10.1007/s38313-013-0026-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Eilemann, Andreas, Peter Wieske, René Dingelstadt, and Jürgen Stehlig. "Interaction between Charge Air Cooling and Vehicle Air Conditioning." ATZ worldwide 118, no. 1 (December 19, 2015): 48–53. http://dx.doi.org/10.1007/s38311-015-0088-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wu, Liang. "Effect of Air Position to the Mechanism of Air-Decked Blasting." Advanced Materials Research 328-330 (September 2011): 1167–71. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.1167.

Повний текст джерела
Анотація:
Based on the JHC model of concrete damage evolution, the dynamic stress characteristics and failure mechanism of blast-hole near-field about different air-decked charge structures are studied by numerical simulation. Result shows that the failure mechanism of typical elements changes from compression-shear failure into shear-tensile failure gradually with the increase of their position in indirect initiation of both top-air-decked and bottom-air-decked charges, because of the affecting factors of the freedom and the loading from the hole. If middle-air-decked charges detonate from the top and bottom at the same time, loading and unloading waves in blasting hole are more influential to the damage of bottom elements than the surface freedom, because detonation waves of both top and bottom meet at the middle hole, so it is conducive to the media failure at the bottom hole, the elements of freedom surface have the same failure properties to top-air-decked charge.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tada, Yasufusa, and Yuji Murata. "Direct Charge Leakage through Humid Air." Japanese Journal of Applied Physics 34, Part 1, No. 4A (April 15, 1995): 1926–27. http://dx.doi.org/10.1143/jjap.34.1926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Cai, Jing Tao, Ting Tang, and Jin Bo Ma. "Influence of Charges Shape on a Closely Air Blast Loading." Applied Mechanics and Materials 217-219 (November 2012): 1411–15. http://dx.doi.org/10.4028/www.scientific.net/amm.217-219.1411.

Повний текст джерела
Анотація:
The purpose of the present paper is to investigate the influence of charge shape on the air blast loading near the explosive. By using MSC. DYTRAN, the air blast loading of spherical charge, cubical charge and cylindrical charge with the same weight were simulated. After the characters of shock wave, peak pressure and impulse of such three charges were compared, it can be seen that there are different decay law for peak pressure of cylindrical charge, cubical charge, spherical and experiment formula. There are also different magnitude relation for the impulse at different scaling distance.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yusof, Mohd Hazwan, Sulaiman Mohd Muslim, Muhammad Fadhli Suhaimi, Hassan Ibrahim, Azizuddin Abdul Aziz, and Mohamad Firdaus Basrawi. "The Effect of Refrigerant Charge on the Performance of a Split-Unit Type Air Conditioner Using R22 Refrigerant." MATEC Web of Conferences 225 (2018): 02011. http://dx.doi.org/10.1051/matecconf/201822502011.

Повний текст джерела
Анотація:
Numerous air conditioners are running without a proper refrigerant charge due to leakage and improper charging during installation. Therefore, there is a need to understand the performance of the air conditioner if it is not properly charged for the means of optimal operation and cost saving. This study is focusing on the usage of a used small capacity split-unit type air conditioner using R-22 refrigerant. The objective is to study the condenser performance over a variation of refrigerant charges. From the results, it is clear that the optimum refrigerant charge is 100%. The highest cooling capacity and COP were 3,330 J/s and 3.05 respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Crampsie, S. "Full charge ahead [compressed air energy storage]." Engineering & Technology 4, no. 6 (April 11, 2009): 52–55. http://dx.doi.org/10.1049/et.2009.0609.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Xu, Q. P., J. J. Su, Z. R. Li, Y. Liu, H. Y. Jiang, and F. L. Huang. "Air blast pressure characteristics of moving charge." Journal of Physics: Conference Series 1507 (March 2020): 032052. http://dx.doi.org/10.1088/1742-6596/1507/3/032052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

McCARTHY, JAMES E., and DWIGHT W. SENSER. "Specific Charge Measurements in Electrostatic Air Sprays." Particulate Science and Technology 23, no. 1 (March 16, 2005): 21–32. http://dx.doi.org/10.1080/02726350590902550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Wu, Liang, Dong Xiao Yu, and Wei Dong Duan. "The Dynamic Stress Characteristics of Air-Decked Bench Blasting under Soft Interlayer." Applied Mechanics and Materials 101-102 (September 2011): 400–404. http://dx.doi.org/10.4028/www.scientific.net/amm.101-102.400.

Повний текст джерела
Анотація:
In modern mining and project construction, how to make use of the explosion energy effectively is the key technology demanding prompt solution at present. The application of air-decked blasting technology has enabled the efficient use of explosion energy, which proves that the air-decked blasting technology can overcome many disadvantages caused by column charge effectively, getting ideal explosion effect. Based on the dynamic finite element analysis software with the material model of Mat-Plastic-Kinemetic, the dynamic stress characteristics and failure mechanism of blast-hole near-field with level soft interlayer are researched with different air-decked charge structures. There is significant effect on the rock at the middle of blast-hole if top-air-decked charge structure with indirect initiation and middle-air-decked charge structure with two ends initiation at the same time. If bottom-air-decked charge structure with indirect initiation, soft inter-layer don’t change the peek of compression and tensile stress curves of typical elements with distance from the bottom of hole, so there is not effect significantly of level soft interlayer on bottom-air-decked charge structure with indirect initiation.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Engkuah, Stannely, Henry Nasution, and Azhar Abdul Aziz. "Performance Characteristic Study on Air to Water Intercooler." Applied Mechanics and Materials 819 (January 2016): 42–45. http://dx.doi.org/10.4028/www.scientific.net/amm.819.42.

Повний текст джерела
Анотація:
The automotive vehicle with turbocharger engine will produce the high temperature charged air compared to the naturally aspirated engine. By increasing the pressure of the air, the temperature of the air will be increased while the air density will be decreased. The charged air needs to be cooled down to get the higher density of the charge air before flowing into the intake manifold. The charge air becomes denser when the temperature of the air is reduced and the denser air gives more advantages for the engine run efficiently. The intercooling system is one of the important devices in cooling process of the turbocharger engine. The function of the intercooler system is for cooling the temperature of the turbocharger outlet before the intake manifold. For this research, the water is used as the medium for cooling the temperature of the charge air before the intake manifold instead using of direct air that is the basic medium of intercooling system. The liquid cooled intercooler system type is constructed which wants to make it practically in daily life, such as for increasing the performance of the car and also for saving the fuel consumption of a vehicle.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Korohodskyi, Volodymyr, Andrii Rogovyi, Oleksandr Voronkov, Andrii Polivyanchuk, Pavlo Gakal, Oleksii Lysytsia, Igor Khudiakov, Tamara Makarova, Mariіa Hnyp, and Yevhen Haiek. "Development of a three-zone combustion model for stratified-charge spark-ignition engine." Eastern-European Journal of Enterprise Technologies 2, no. 5 (110) (April 30, 2021): 46–57. http://dx.doi.org/10.15587/1729-4061.2021.228812.

Повний текст джерела
Анотація:
A thermodynamic model for calculating the operating process in the cylinder of a spark-ignition engine with internal mixture formation and stratified air-fuel charge based on the volume balance method was developed. The model takes into account the change in the working fluid volume during the piston movement in the cylinder. The equation of volume balance of internal mixture formation processes during direct fuel injection into the engine cylinder was compiled. The equation takes into account the adiabatic change in the volume of the stratified air-fuel charge, consisting of fuel-air mixture volume and air volume. From the heat balance equation, the change in the fuel-air mixture volume during gasoline evaporation in the fuel stream and from the surface of the fuel film due to external heat transfer was determined. Basic equations of combustion-expansion processes of the stratified air-fuel charge were derived, taking into account three zones corresponding to combustion products, fuel-air mixture and air volumes. The equation takes into account the change in the working fluid volume due to heat transfer and heat exchange between the zones and the walls of the above-piston volume. Dependences for determining the temperature in the three considered zones and pressure in the cylinder were obtained. Graphs of changes in the volumes of the combustion products, fuel-air mixture and air zones with the change of the above-piston volume in partial load modes (n=3,000 rpm) were plotted. With increasing load from bmep=0.144 MPa to bmep=0.322 MPa, at the moment of fuel ignition, the volume of the fuel-air mixture increases from 70 % to 92 % of the above-piston volume. At the same time, the air volume decreases from 30 % to 8 %. Analysis of theoretical and experimental indicator diagrams showed that discrepancies in the maximum combustion pressure do not exceed 5 %
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mohottige, Nimasha Weerasingha, Chengqing Wu, and Hong Hao. "Characteristics of Free Air Blast Loading Due to Simultaneously Detonated Multiple Charges." International Journal of Structural Stability and Dynamics 14, no. 04 (April 2, 2014): 1450002. http://dx.doi.org/10.1142/s0219455414500023.

Повний текст джерела
Анотація:
Extensive research has been conducted to investigate the characteristics of blast load due to single charge explosion, including numerical simulations and experimental blast tests in both unconfined and confined environments. Further, available guidelines for blast resistant design such as UFC-3-340-02 (2008) and ASCE 59-11 (2011) provide details to predict blast loads on a structure subjected to single charge explosion. However, blast load characteristics due to multiple charge explosions are poorly discussed in available literature. In this paper, commercially available Hydrocode, AUTODYN is calibrated for single charge explosions. Based on a comparison between numerical simulation and UFC prediction, correction factors for peak reflected pressure and positive reflected impulse as a function of charge weight, scaled distance and mesh size of the numerical model are proposed to minimize the errors in simulations. The calibrated AUTODYN model is then used to conduct parametric studies to investigate the effects of charge weight, scaled distance, number of charges and distance between the charges on the characteristics of free air blast load due to simultaneous detonated multiple charges. Numerical simulation results are used to derive analytical formulas for predictions of peak reflected pressure ratio and positive reflected impulse ratio between single and multiple explosions. The discussion is made on characteristics of free air blast load due to simultaneous detonated multiple charges.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Yang, Guo Liang, Ren Shu Yang, Chuan Huo, and Y. L. Che. "Numerical Simulation of Air-Deck Slotted Charge Blasting." Advanced Materials Research 143-144 (October 2010): 787–91. http://dx.doi.org/10.4028/www.scientific.net/amr.143-144.787.

Повний текст джерела
Анотація:
Air-deck ratio plays a decisive role in blasting engineering. Researchers have conducted extensive work to study the optimal air-deck ratio. But consensus has not been achieved. Especially slotted charge blasting, the study on it just starts. For its complicated physical process in blasting, it is difficult to perform theoretical analysis to obtain the law between blasting result and air-deck ratio. The numerical simulation method is adopted to study the effect of different air-deck ratio on stress distribution at first. And then laboratory tests are carried out to validate the simulation results. The conclusion may be drawn that good directional fracture could be obtained with air-deck ratio 33.3% ~ 50%. The achievement could provide reference for blasting engineering.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Baltrėnas, Pranas, and Alvydas Zagorskis. "INVESTIGATION INTO DETERMINING THE HUMIDITY OF CHARGE USED FOR BIOLOGICAL AIR TREATMENT." JOURNAL OF ENVIRONMENTAL ENGINEERING AND LANDSCAPE MANAGEMENT 15, no. 4 (December 31, 2007): 193–99. http://dx.doi.org/10.3846/16486897.2007.9636929.

Повний текст джерела
Анотація:
Microorganisms can reproduce only in such substrata which contain a certain amount of water and dissolved nutritious substances. Therefore, it is necessary to search for such charges that are distinguished by a large filtering surface and good humidity‐retaining properties. In experiments three types of materials ‐ wood, zeolite and foam ‐ were used as a charge for the biological air‐cleaning process. The charges were mixed up to maintain humidity necessary for the microorganisms in the biofilter as long as possible. The charges were placed into three different cassettes in the biofilter. The wood charge consisted of wood chips of 10–15 mm and that of zeolite contained 10–12 mm of zeolite granules. The foam rubber was cut into separate cubes each having the dimensions of 30×30×20 mm. Dependence of the charge humidity on the airflow rate, temperature, time and charge thickness was determined in the work. During the experiments the airflow rate reached 0.1–0.6 m/sec., and the temperature ranged from 15 to 35 °C. Foam showed the best sorption properties, but a better distribution of humidity was found in the wood‐chip charge.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zigmontienë, Aušra, and Pranas Baltrënas. "BIOLOGICAL PURIFICATION OF AIR POLLUTED WITH VOLATILE ORGANIC COMPOUNDS BY USING ACTIVE SLUDGE RECIRCULATION." JOURNAL OF ENVIRONMENTAL ENGINEERING AND LANDSCAPE MANAGEMENT 12, no. 2 (June 30, 2004): 45–52. http://dx.doi.org/10.3846/16486897.2004.9636816.

Повний текст джерела
Анотація:
Various methods for removal of volatile organic compounds (VOC) from the air are applied in the world. Their selection is determined by the efficiency and costs of the method. Biofiltration is a new technology to control environmental pollutants helping to regulate emissions of VOC with unpleasant odours in to the air and working environment. When VOC are to be removed from large volumes of air, equipment of biological purification charged with active sludge is used. Such an equipment has a rather simple structure and efficiency of to 98–99 %. Active sludge as a biocharge has both a high concentration of microorganisms compared to stationary charges and good sorption features. Sorptive capacity changes when a load to active sludge is changed, and this has a negative impact on biochemical decomposition of organic substances and, at the same time, on purification efficiency. Calculation and evaluation of an optimal working mode of the equipment enable to avoid desorption of VOC in the system or to diminish it to a minimal value. In the biological air‐purification equipment sorption of an organic substance on the surface of active sludge is running at the initial stage. An organic substance is decomposed biologically only in the second stage, and oxygen dissolved in the system (in the charge) is used and VOC desorption from the system is blocked. One of the main parameters determining the biological air‐purification process and its intensity is change of the concentration of oxygen dissolved (CDO) in water phase and maintenance of its minimal value after termination of aeration (when the equipment is out of operation for some time). In operating equipment with a biocharge one more important problem is encountered ‐ the lifetime of the charge and its renewal in the equipment to maintain required concentration of the active sludge. The goal of the investigation is evaluation of purification efficiency of the equipment and the sorptive capacity of active sludge (depending on a load), selection of the working mode, uninterrupted biochemical decomposition of organic substances (based on the concentration of dissolved oxygen) when the charge is in its still state, and investigation of its biooxidating properties when a biofilter works with a biologically active charge and with an inactive charge having only sorptive properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Wilson, Safwat A. "MODELING AIR CHARGE IN VARIABLE VALVE TIMING ENGINES." ERJ. Engineering Research Journal 30, no. 2 (April 1, 2007): 177–87. http://dx.doi.org/10.21608/erjm.2007.70052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Schneider, Simon, Jürgen Stehlig, and Andreas Eilemann. "Cascaded Charge Air Cooling for PC Diesel Engines." Auto Tech Review 3, no. 9 (September 2014): 46–51. http://dx.doi.org/10.1365/s40112-014-0737-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Harms, Todd, Eckhard Groll, and James Braun. "Accurate Charge Inventory Modeling for Unitary Air Conditioners." HVAC&R Research 9, no. 1 (January 1, 2003): 55–78. http://dx.doi.org/10.1080/10789669.2003.10391056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Grindstaff, T. H. "Improved Staple Processing Performance Through Air Charge Control." Textile Research Journal 55, no. 5 (May 1985): 266–70. http://dx.doi.org/10.1177/004051758505500502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Hummel, Karl-Ernst, Bernhard Huurdeman, Johannes Diem, and Christian Saumweber. "Intake module with indirect integrated charge air cooler." MTZ worldwide 71, no. 11 (November 2010): 28–32. http://dx.doi.org/10.1007/bf03227998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Burgold, Sven, Jean-Pierre Galland, Benjamin Ferlay, and Laurent Odillard. "Modular Water Charge Air Cooling for Combustion Engines." MTZ worldwide 73, no. 11 (October 10, 2012): 26–31. http://dx.doi.org/10.1007/s38313-012-0237-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Schneider, Simon, Jürgen Stehlig, and Andreas Eilemann. "Cascaded Charge Air Cooling for PC Diesel Engines." MTZ worldwide 75, no. 6 (April 25, 2014): 4–9. http://dx.doi.org/10.1007/s38313-014-0155-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Akiyama, Tetsuo, Taketoshi Marui, and Motomi Kono. "Efficient methods of inducing air suction by means of secondary rotational air charge." Industrial & Engineering Chemistry Research 26, no. 12 (December 1987): 2505–8. http://dx.doi.org/10.1021/ie00072a021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Xu, Zheng, and Shou Ci Lu. "A New Electrostatic Dispersion Method for Fine Powder in Air." Advanced Materials Research 58 (October 2008): 1–13. http://dx.doi.org/10.4028/www.scientific.net/amr.58.1.

Повний текст джерела
Анотація:
A new electrostatic dispersion device was designed to reduce the agglomeration of fine powder in the air. This device is using the repulse force between particles which charged the same charge to prevent the particles from reuniting. The effects of charge voltage, particle size, the distant between electrode, and moisture content on the dispersion degree of the powder are discussed. The invalidation time of the electrostatic dispersion is also highlighted in the paper. The results show that the electrostatic dispersion is an effective method for the fine powders in the air. The charge voltage is the most important parameter for the dispersion. Middle size particle got best dispersion. When the distance between the electrodes is 24cm, the dispersion degree reaches the maximum. The humidity of the powder not only affects the charge of the powder, but also affects the dispersion degree of the powder.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

., J. N. Devi Sankar. "THERMAL ANALYSIS OF WATER COOLED CHARGE AIR COOLER IN TURBO CHARGED DIESEL ENGINE." International Journal of Research in Engineering and Technology 05, no. 02 (February 25, 2016): 193–97. http://dx.doi.org/10.15623/ijret.2016.0502033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Held, Manfred. "Shaped Charge Jet Initiation Tests with Covered High Explosive Charges with Air Gaps." Propellants, Explosives, Pyrotechnics 26, no. 1 (January 2001): 38–42. http://dx.doi.org/10.1002/1521-4087(200101)26:1<38::aid-prep38>3.0.co;2-q.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Onogi, Yoshihiko, Naoko Sugiura, and Chikako Matsuda. "Temperature Effect on Dissipation of Triboelectric Charge into Air from Textile Surfaces." Textile Research Journal 67, no. 1 (January 1997): 45–49. http://dx.doi.org/10.1177/004051759706700110.

Повний текст джерела
Анотація:
Triboelectric charges on textiles dissipate through a charge conduction mechanism and also by accompanying water molecules evaporating into air. The latter dissipation is less extensive than the former, but can be measured quantitatively under highly insulated experimental conditions. Rate constants of charge dissipation into the air at 20°C have been reported as a function of the ambient humidity and water content of fabrics. In this study, the rate constants are analyzed at temperatures above or below 20°C. Two kinds of water molecules, free and bound, are known to be present in the textile surface from charge dissipation analysis. Though free water is involved in atmospheric charge dissipation, the condition of water molecules in the fibers cannot be classified so simply. Rate constants of charge dissipation depend on the ambient absolute humidity and water content of sample fabrics for all the temperatures of these experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Zhang, Rong, Peng Fei Yin, Qian Liu, Ting Zhou, Jiang Chang Hu, and Yi Bing Li. "A Developing Method to Prepare Micro-Nanopowder by Incorporating Jet Milling and Electrostatic Dispersion." Materials Science Forum 750 (March 2013): 324–27. http://dx.doi.org/10.4028/www.scientific.net/msf.750.324.

Повний текст джерела
Анотація:
A new method to prepare micro-nanopowder with incorporating jet milling and electrostatic dispersion was presented in this study. The dispersivity of the powder could be improved during the process of jet milling by having the particles charged with identical charge. Both micro-nanopowders with high dispersion, calcium carbonate (CaCO3) and magnesium zinc ferrite (MgZnF) were prepared respectively. The theoretic studies on this method and the analyses on the effects of preparation parameters on dispersivity, showed that jet milling /electrostatic dispersion (J/E) method to prepare micro-nanopowder in the air without any additive is achievable. The charge voltage and air current pressure would strongly affect the characters of the powder. The charge to mass ratio (q/m) of both powders reached its peak under the charge voltage at 50 kV and air current pressure at 0.3MPa.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Lee, Donggue, Hansol Lee, Ohhun Gwon, Ohhun Kwon, Hu Young Jeong, Guntae Kim, and Sang-Young Lee. "Monolithic heteronanomat paper air cathodes toward origami-foldable/rechargeable Zn–air batteries." Journal of Materials Chemistry A 7, no. 42 (2019): 24231–38. http://dx.doi.org/10.1039/c9ta07681f.

Повний текст джерела
Анотація:
Monolithic heteronanomat (MH) paper air cathodes were demonstrated as a new electrode platform to enable origami-foldable Zn–air batteries with reliable rechargeability, highly efficient discharge/charge performance and exceptional foldability.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Carryer, J. E., R. H. Roy, and J. D. Powell. "Estimating In-Cylinder Precombustion Mixture Temperatures Using Acoustic Resonances." Journal of Dynamic Systems, Measurement, and Control 118, no. 1 (March 1, 1996): 106–12. http://dx.doi.org/10.1115/1.2801129.

Повний текст джерела
Анотація:
The air-fuel ratio of automotive engines during the warm-up period is difficult to control and contributes a substantial portion of the emissions on the EPA test cycle. High bandwidth estimation of the in-cylinder charge temperature provides opportunities for improvement in spark ignition (SI) engine control algorithms. Pressure sensor based algorithms for estimating air-fuel ratio (AFR) have been shown to be improved by bulk temperature information. This paper explores the suitability of using acoustic resonances to estimate charge temperature in the presence of an unknown AFR and without the ‘sharp’ excitation of diesel or knocking SI combustion. A technique that allows for the estimation of the precombustion average bulk charge temperature during a 1-2 ms interval based on acoustic resonance data gathered from a pressure transducer is described. A parameter estimation algorithm suitable for extracting the required frequency information from short data sets is identified. The variation in temperature estimates as a function of AFR has been explored using a computer simulation that accounts for the change in the ratio of specific heats with changing mixture strength. The performance of the acoustic resonance based temperature estimates has been evaluated by comparing them to predictions based on a polytropic compression.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Meshcheryakov, Oleg. "Charge-Dipole Acceleration of Polar Gas Molecules towards Charged Nanoparticles: Involvement in Powerful Charge-Induced Catalysis of Heterophase Chemical Reactions and Ball Lightning Phenomenon." Journal of Nanomaterials 2010 (2010): 1–38. http://dx.doi.org/10.1155/2010/654389.

Повний текст джерела
Анотація:
In humid air, the substantial charge-dipole attraction and electrostatic acceleration of surrounding water vapour molecules towards charged combustible nanoparticles cause intense electrostatic hydration and preferential oxidation of these nanoparticles by electrostatically accelerated polar water vapour molecules rather than nonaccelerated nonpolar oxygen gas molecules. Intense electrostatic hydration of charged combustible nanoparticles converts the nanoparticle's oxide-based shells into the hydroxide-based electrolyte shells, transforming these nanoparticles into reductant/air core-shell nanobatteries, periodically short-circuited by intraparticle field and thermionic emission. Partially synchronized electron emission breakdowns within trillions of nanoparticles-nanobatteries turn a cloud of charged nanoparticles-nanobatteries into a powerful radiofrequency aerosol generator. Electrostatic oxidative hydration and charge-catalyzed oxidation of charged combustible nanoparticles also contribute to a self-oscillating thermocycling process of evolution and periodic autoignition of inflammable gases near to the nanoparticle's surface. The described effects might be of interest for the improvement of certain nanotechnological heterophase processes and to better understand ball lightning phenomenon.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Gadewar, S. P., S. H. Gawande, and S. A. Barhate. "Performance Estimation of Charge Air Cooler for Passenger Car." International Review of Mechanical Engineering (IREME) 11, no. 6 (June 30, 2017): 414. http://dx.doi.org/10.15866/ireme.v11i6.13135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Stan, Gheorghe, Cristian V. Ciobanu, Sri Ranga Jai Likith, Asha Rani, Siyuan Zhang, Christina A. Hacker, Sergiy Krylyuk, and Albert V. Davydov. "Doping of MoTe2 via Surface Charge Transfer in Air." ACS Applied Materials & Interfaces 12, no. 15 (March 19, 2020): 18182–93. http://dx.doi.org/10.1021/acsami.0c04339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Paiva, Victor T. C., Leandra P. Santos, Douglas S. da Silva, Thiago A. L. Burgo, and Fernando Galembeck. "Conduction and Excess Charge in Silicate Glass/Air Interfaces." Langmuir 35, no. 24 (May 24, 2019): 7703–12. http://dx.doi.org/10.1021/acs.langmuir.9b00606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Morariu, C., C. Manailescu, H. Rebel, O. Sima, A. Haungs, and B. Mitrica. "The muon charge ratio in cosmic ray air showers." Nuclear Physics B - Proceedings Supplements 196 (December 2009): 414–17. http://dx.doi.org/10.1016/j.nuclphysbps.2009.09.080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Carnie, Steven L., Lorena Del Castillo, and Roger G. Horn. "Mobile Surface Charge Can Immobilize the Air/Water Interface." Langmuir 35, no. 48 (July 16, 2019): 16043–52. http://dx.doi.org/10.1021/acs.langmuir.9b01691.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Vasarevicius, Saulius, Pranas Baltrenas, Petras Vaitiekunas, Raimondas Leopoldas Idzelis, and Alvydas Zagorskis. "BIOLOGICAL AIR TREATMENT EFFICIENCY OF A STRAW BIO-CHARGE." Environmental Engineering and Management Journal 10, no. 10 (2011): 1573–78. http://dx.doi.org/10.30638/eemj.2011.218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Rebel, H., O. Sima, A. Haungs, C. Manailescu, B. Mitrica, and C. Morariu. "The muon charge ratio in cosmic ray air showers." Journal of Physics G: Nuclear and Particle Physics 35, no. 8 (July 16, 2008): 085203. http://dx.doi.org/10.1088/0954-3899/35/8/085203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Wick, Collin D., Alexis J. Lee, and Steven W. Rick. "How intermolecular charge transfer influences the air-water interface." Journal of Chemical Physics 137, no. 15 (October 21, 2012): 154701. http://dx.doi.org/10.1063/1.4758457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Paul, Subhra, Dheeraj Bobba, Nirmal Paudel, and Jonathan Z. Bird. "Source Field Modeling in Air Using Magnetic Charge Sheets." IEEE Transactions on Magnetics 48, no. 11 (November 2012): 3879–82. http://dx.doi.org/10.1109/tmag.2012.2201927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Onogi, Yoshihiko, Naoko Sugiura, and Yasue Nakaoka. "Dissipation of Triboelectric Charge into Air from Textile Surfaces." Textile Research Journal 66, no. 5 (May 1996): 337–42. http://dx.doi.org/10.1177/004051759606600508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Beloqui Redondo, Amaia, Inga Jordan, Ibrahim Ziazadeh, Armin Kleibert, Javier B. Giorgi, Hans Jakob Wörner, Sylvio May, Zareen Abbas, and Matthew A. Brown. "Nanoparticle-Induced Charge Redistribution of the Air–Water Interface." Journal of Physical Chemistry C 119, no. 5 (February 5, 2015): 2661–68. http://dx.doi.org/10.1021/jp511915b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ashratov, �. A., U. G. Pirumov, and V. V. Surkov. "Blast wave propagation in air from a gaseous charge." Fluid Dynamics 21, no. 3 (May 1986): 431–37. http://dx.doi.org/10.1007/bf01409730.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Kramer, Wolfgang. "Indirect charge air cooling in diesel and gasoline engines." MTZ worldwide 67, no. 2 (February 2006): 13–15. http://dx.doi.org/10.1007/bf03227822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Guhr, Carsten, and Hans Zellbeck. "Turbocharging with Low Temperature Charge Air Cooling and EGR." MTZ worldwide 73, no. 10 (September 6, 2012): 44–52. http://dx.doi.org/10.1007/s38313-012-0226-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії