Дисертації з теми "CHARACTER THEORY, FINITE GROUPS"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "CHARACTER THEORY, FINITE GROUPS".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
McHugh, John. "Monomial Characters of Finite Groups." ScholarWorks @ UVM, 2016. http://scholarworks.uvm.edu/graddis/572.
Повний текст джерелаDoyle, Michael Patrick. "Partitioning the Set of Subgroups of a Finite Group Using Thompson's Generalized Characters." Kent State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1428594171.
Повний текст джерелаBaccari, Charles. "Investigation of Finite Groups Through Progenitors." CSUSB ScholarWorks, 2017. https://scholarworks.lib.csusb.edu/etd/600.
Повний текст джерелаWard, David Charles. "Topics in finite groups : homology groups, pi-product graphs, wreath products and cuspidal characters." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/topics-in-finite-groups-homology-groups-piproduct-graphs-wreath-products-and-cuspidal-characters(7e90d219-fba7-4ff0-9071-c624acab7aaf).html.
Повний текст джерелаPrins, A. L. "Fischer-clifford matrices and character tables of inertia groups of maximal subgroups of finite simple groups of extension type." University of the Western Cape, 2011. http://hdl.handle.net/11394/5430.
Повний текст джерелаThe aim of this dissertation is to calculate character tables of group extensions. There are several well–developed methods for calculating the character tables of group extensions. In this dissertation we study the method developed by Bernd Fischer, the so–called Fischer–Clifford matrices method, which derives its fundamentals from the Clifford theory. We consider only extensions G of the normal subgroup K by the subgroup Q with the property that every irreducible character of K can be extended to an irreducible character of its inertia group in G, if K is abelian. This is indeed the case if G is a split extension, by a well-known theorem of Mackey. A brief outline of the classical theory of characters pertinent to this study, is followed by a discussion on the calculation of the conjugacy classes of extension groups by the method of coset analysis. The Clifford theory which provide the basis for the theory of Fischer-Clifford matrices is discussed in detail. Some of the properties of these Fischer-Clifford matrices which make their calculation much easier are also given. As mentioned earlier we restrict ourselves to split extension groups G in which K is always elementary abelian. In this thesis we are concerned with the construction of the character tables of certain groups which are associated with Fi₂₂ and Sp₈ (2). Both of these groups have a maximal subgroup of the form 2⁷: Sp₆ (2) but they are not isomorphic to each other. In particular we are interested in the inertia groups of these maximal subgroups, which are split extensions. We use the technique of the Fischer-Clifford matrices to construct the character tables of these inertia groups. These inertia groups of 2⁷ : Sp₆(2), the maximal subgroup of Fi₂₂, are 2⁷ : S₈, 2⁷ : Ο⁻₆(2) and 2⁷ : (2⁵ : S₆). The inertia group of 2⁷ : Sp₆(2), the affine subgroup of Sp₈(2), is 2⁷ : (2⁵ : S₆) which is not isomorphic to the group with the same form which was mentioned earlier.
Nenciu, Adriana. "Character tables of finite groups." [Gainesville, Fla.] : University of Florida, 2006. http://purl.fcla.edu/fcla/etd/UFE0014824.
Повний текст джерелаSkabelund, Dane Christian. "Character Tables of Metacyclic Groups." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3913.
Повний текст джерелаDavies, Ryan. "An induction theorem inspired by Brauer's induction theorem for characters of finite groups." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8834/.
Повний текст джерелаTaylor, Paul Anthony. "Computational investigation into finite groups." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/computational-investigation-into-finite-groups(8fe69098-a2d0-4717-b8d3-c91785add68c).html.
Повний текст джерелаCassell, Eleanor Jane. "Conjugacy classes in finite groups, commuting graphs and character degrees." Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/4628/.
Повний текст джерелаMontanaro, William M. Jr. "Character Degree Graphs of Almost Simple Groups." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1398345504.
Повний текст джерелаCraven, David Andrew. "Algebraic modules for finite groups." Thesis, University of Oxford, 2007. http://ora.ox.ac.uk/objects/uuid:7f641b33-d301-4445-8269-a5a33f4b7e5e.
Повний текст джерелаCouson, Martin [Verfasser]. "On the character degrees and automorphism groups of finite p-groups by coclass / Martin Couson." Braunschweig : Technische Universität Braunschweig, 2013. http://d-nb.info/1175822140/34.
Повний текст джерелаBamblett, Jane Carswell. "Algorithms for computing in finite groups." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240616.
Повний текст джерелаBrookes, Melanie. "On the efficiency of finite groups." Thesis, University of St Andrews, 1996. http://hdl.handle.net/10023/13682.
Повний текст джерелаStavis, Andreas. "Representations of finite groups." Thesis, Karlstads universitet, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-69642.
Повний текст джерелаGutekunst, Todd M. "Subsets of finite groups exhibiting additive regularity." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 128 p, 2008. http://proquest.umi.com/pqdweb?did=1605136271&sid=5&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Повний текст джерелаBasu, Devjani. "A THESIS ON BLOCK THEORY FOR FINITE GROUPS." OpenSIUC, 2020. https://opensiuc.lib.siu.edu/theses/2721.
Повний текст джерелаAubad, Ali. "On commuting involution graphs of certain finite groups." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/on-commuting-involution-graphs-of-certain-finite-groups(009c80f5-b0d6-4164-aefc-f783f74c80f1).html.
Повний текст джерелаRamiharimanana, Nantsoina Cynthia. "Realization of finite groups as Galois Groups over Q in Qtot,p." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85840.
Повний текст джерелаMenezes, Nina E. "Random generation and chief length of finite groups." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3578.
Повний текст джерелаMcDougall-Bagnall, Jonathan M. "Generation problems for finite groups." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2529.
Повний текст джерелаMartin, Stuart. "Quivers and the modular representation theory of finite groups." Thesis, University of Oxford, 1988. http://ora.ox.ac.uk/objects/uuid:59d4dc72-60e5-4424-9e3c-650eb2b1d050.
Повний текст джерелаRyten, Mark Jonathan. "Model theory of finite difference fields and simple groups." Thesis, University of Leeds, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441226.
Повний текст джерелаKleidman, Peter Brown. "The subgroup structure of some finite simple groups." Thesis, University of Cambridge, 1987. https://www.repository.cam.ac.uk/handle/1810/250910.
Повний текст джерелаSass, Catherine Bray. "Prime Character Degree Graphs of Solvable Groups having Diameter Three." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1398110266.
Повний текст джерелаGeorge, Timothy Edward. "Symmetric representation of elements of finite groups." CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/3105.
Повний текст джерелаSemikina, Iuliia [Verfasser]. "G-theory of group rings for finite groups / Iuliia Semikina." Bonn : Universitäts- und Landesbibliothek Bonn, 2018. http://d-nb.info/1173789642/34.
Повний текст джерелаBastian, Nicholas Lee. "Terwilliger Algebras for Several Finite Groups." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/8897.
Повний текст джерелаNguyen, Long Pham Bao. "Fusion of Character Tables and Schur Rings of Dihedral Groups." BYU ScholarsArchive, 2008. https://scholarsarchive.byu.edu/etd/1429.
Повний текст джерелаWakefield, Thomas Philip. "Verifying Huppert's Conjecture for the simple groups of Lie type of rank two." [Kent, Ohio] : Kent State University, 2008. http://etd.ohiolink.edu/etd/send-pdf.cgi/Wakefield%20Thomas%20Philip.pdf?acc_num=kent1211880668.
Повний текст джерелаTitle from PDF t.p. (viewed Sept. 17, 2009). Advisor: Donald White. Keywords: Huppert's Conjecture; character degrees; nonabelian finite simple groups Includes bibliographical references (p. 103-105).
Aivazidis, Stefanos. "On the subgroup permutability degree of some finite simple groups." Thesis, Queen Mary, University of London, 2015. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8899.
Повний текст джерелаLee, Hyereem, and Hyereem Lee. "Triples in Finite Groups and a Conjecture of Guralnick and Tiep." Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/624584.
Повний текст джерелаHoran, Katherine. "On the invariant theory of finite unipotent groups generated by bireflections." Thesis, University of Kent, 2017. https://kar.kent.ac.uk/65736/.
Повний текст джерелаKasouha, Abeir Mikhail. "Symmetric representations of elements of finite groups." CSUSB ScholarWorks, 2004. https://scholarworks.lib.csusb.edu/etd-project/2605.
Повний текст джерелаBerardinelli, Angela. "Restricting Invariants and Arrangements of Finite Complex Reflection Groups." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804919/.
Повний текст джерелаWickramasekara, Sujeewa. "Differentiable representations of finite dimensional lie groups in rigged Hilbert spaces /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Повний текст джерелаWegner, Alexander. "The construction of finite soluble factor groups of finitely presented groups and its application." Thesis, University of St Andrews, 1992. http://hdl.handle.net/10023/12600.
Повний текст джерелаBaccari, Angelica. "Simple Groups, Progenitors, and Related Topics." CSUSB ScholarWorks, 2018. https://scholarworks.lib.csusb.edu/etd/736.
Повний текст джерелаPeterson, Aaron. "Pipe diagrams for Thompson's Group F /." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1959.pdf.
Повний текст джерелаBartlett, Bruce. "On Unitary 2-representations of finite groups and topological quantum field theory." Thesis, University of Sheffield, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.500530.
Повний текст джерелаGonda, Jessica Lynn. "Subgroups of Finite Wreath Product Groups for p=3." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1460027790.
Повний текст джерелаKlein, Tom. "Filtered ends of pairs of groups." Diss., Online access via UMI:, 2007.
Знайти повний текст джерелаDe, Visscher Maud. "Some problems in the representation theory of reductive groups and their finite subgroups." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275506.
Повний текст джерелаLANCELLOTTI, BENEDETTA. "Linear source lattices and their relevance in the representation theory of finite groups." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/199015.
Повний текст джерелаMany investigated and interesting problems in the representation theory of finite groups concern the global and local structure of the groups. Let G be a finite group, p a prime which divides the order of G and (K,O,F) a splitting p-modular system. The local-global study of the representations of G looks for the invariants of G that can be seen in its local subgroups, i.e., the normalizer N of a p-subgroup D of G, and vice versa. A very strong tool in this context is the Green correspondence, which establishes a bijection between the indecomposable OG-lattices with D as a vertex and the indecomposable ON lattices with vertex D. The main scope of this thesis is the study of linear source lattices and their connection with the irreducible representations of G and N both over K and F. The main objects involved for this goal is the Grothendieck ring of linear source OG-lattices L(G) with its subring of trivial source lattices. The first chapter is dedicated to the main results of the representation theory used through all the thesis. Special emphasis is laid on linear source lattices and their detection. In Chapter 2 the canonical sections of the surjective maps given by the tensor product with K for linear source lattices and with F for trivial source lattices are constructed. This result has been obtained following two strategies. The first involves the construction of dual maps defined considering the species of the rings. The strength of this approach is its link to the representation tables defined by Benson; but the maps constructed take values on the complexification of the rings. The canonical induction formulas introduced by R. Boltje turn out to be the solution to bypass this problem. The final result of this part is the proof that these two approaches lead to the same maps. Chapter 3 is divided in two parts. Studying a ring of modules a natural question is if it is possible to define a meaningful bilinear form. In this context the ring of essential linear source lattices arises. In the first part of Chapter 3 it is formally introduced and its species are studied. In the last part the link between trivial source lattices with maximal vertex and irreducible characters is analyzed in two particular cases: groups with normal subgroups of index p and groups with Sylow subgroups of order p. In the last chapter a connection between the Alperin-McKay conjecture and the Grothendieck group Lmx(B) of linear source lattices with maximal vertex in a block B of OG is established. Considering a bilinear form defined in Chapter 3 and a section of the canonical projection of L(B) in Lmx(B), it is possible to state two new conjectures (1 and 2). If both of them are affirmative, then they yield the Alperin-McKay conjecture and one of its refinements due to M. Isaacs and G. Navarro. Moreover, Conjecture 1 and Alperin-McKay conjecture imply its refinement stated by the previously mentioned mathematicians. The main result of this chapter is the proof of Conjecture 1 in some non trivial cases. E.g., for a block splendid equivalent to its Brauer correspondent (for some defect group) Conjecture 1 is positively verified. By a result of R. Rouquier this applies to the case of blocks with cyclic defect groups. This result establishes a new connection between the refinement due to Isaacs and Navarro and the "splendid form" of Broué conjecture.
Starling, Charles B. "Actions of Finite Groups on Substitution Tilings and Their Associated C*-algebras." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20663.
Повний текст джерелаFerreira, Jorge Nélio Marques. "On invariant Rings of Sylow subgroups of finite classical groups." Doctoral thesis, University of Kent, 2011. http://hdl.handle.net/10400.13/177.
Повний текст джерелаMahlasela, Zuko. "Finite fuzzy sets, keychains and their applications." Thesis, Rhodes University, 2009. http://hdl.handle.net/10962/d1005220.
Повний текст джерелаNave, Lee Stewart. "The cohomology of finite subgroups of Morava stabilizer groups and Smith-Toda complexes /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5803.
Повний текст джерелаLinton, Stephen Alexander. "The maximal subgroups of the sporadic groups Th, Fiâ†2â†4 and Fi'â†2â†4 and other topics." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317925.
Повний текст джерела