Зміст
Добірка наукової літератури з теми "Chambre de projection temporelle"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Chambre de projection temporelle".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Chambre de projection temporelle"
Loubère, Lucie, Sylvia Kasparian, and Fahim Ashkar. "Exploration textométrique d’ inondation dans les discours de la chambre des communes du Canada de 2003 à 2021." Éla. Études de linguistique appliquée N° 209, no. 1 (May 16, 2023): 99–113. http://dx.doi.org/10.3917/ela.209.0103.
Повний текст джерелаLe Maux, Laurent. "Le prêt en dernier ressort: Les chambres de compensation aux États-Unis durant le XIXe siècle." Annales. Histoire, Sciences Sociales 56, no. 6 (December 2001): 1223–51. http://dx.doi.org/10.1017/s0395264900033965.
Повний текст джерелаReveillere, Charles. "La fabrique temporelle du consentement." Actes de la recherche en sciences sociales N° 250, no. 5 (January 9, 2024): 60–77. http://dx.doi.org/10.3917/arss.250.0060.
Повний текст джерелаKwon, Song-Nim. "Par -spatial : l’espace temporalisé ; par -temporel : le temps spatialisé ?" Scolia 15, no. 1 (2002): 43–56. http://dx.doi.org/10.3406/scoli.2002.1021.
Повний текст джерелаSchneckenburger, Romain, Claire Bouffard, Eustache Francis, Béatrice Desgranges, Juskenaite Aurelija, and Quinette Peggy. "Cohérence temporelle et projection mentale chez un patient souffrant de lésions thalamiques." Revue Neurologique 172 (April 2016): A43. http://dx.doi.org/10.1016/j.neurol.2016.01.098.
Повний текст джерелаAlaoui Mhamdi, M., L. Aleya, S. Rachiq, and J. Devaux. "Étude préliminaire sur les échanges de phosphore à l'interface eau- sédiment au sein de la retenue d'Al Massira (Maroc)." Revue des sciences de l'eau 7, no. 2 (April 12, 2005): 115–30. http://dx.doi.org/10.7202/705192ar.
Повний текст джерелаAubert, Anne-Marie, and Roger Howe. "Géométrie des cônes aigus et application à la projection euclidienne sur la chambre de Weyl positive." Journal of Algebra 149, no. 2 (July 1992): 472–93. http://dx.doi.org/10.1016/0021-8693(92)90028-k.
Повний текст джерелаBellahoues, Besma. "Tentative taxinomique du coverbe aspectuel aller (+infinitif)." Langages N° 232, no. 4 (December 11, 2023): 37–63. http://dx.doi.org/10.3917/lang.232.0037.
Повний текст джерелаMartin, Marie, and Laurent Véray. "La chambre verte de François Truffaut, remake secret du Paradis perdu d’Abel Gance. Du culte des morts à celui du cinéma." Cinémas 25, no. 2-3 (March 23, 2016): 75–95. http://dx.doi.org/10.7202/1035773ar.
Повний текст джерелаArribert-Narce, Fabien. "De la « notation » à la « fictionalisation » de la vie: panorama des tendances photobiographiques dans la littérature française des années 1970 à nos jours." Nottingham French Studies 53, no. 2 (July 2014): 216–31. http://dx.doi.org/10.3366/nfs.2014.0087.
Повний текст джерелаДисертації з теми "Chambre de projection temporelle"
Ascher, Pauline. "Étude de la radioactivité deux protons de 54Zn avec une chambre à projection temporelle." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14376/document.
Повний текст джерелаThe study of nuclei at the proton drip-line is a recent and efficient tool to prove the nuclearstructure far from stability. In particular, the two proton radioactivity phenomenonpredicted in 1960 has been discovered in 2002. This PhD thesis concerns an experiment realisedat GANIL, in order to study the 2p radioactivity of 54Zn with a time projection chamber,developed for the individual detection of each proton and the reconstruction of their tracksin three dimensions. The data analysis allowed to determine the correlations in energy andangle between the two protons. They have been compared to a theoretical model, which takesinto account the dynamics of the emission, giving information about the structure of theemitter. However, due to the very low statistics, the interpretation of the results is limitedbut these results open very interesting prospects for further studies of nuclei at the limits ofthe existence
Ascher, Pauline. "Etude de la radioactivité deux protons de 54Zn avec une chambre à projection temporelle." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2011. http://tel.archives-ouvertes.fr/tel-00671779.
Повний текст джерелаAudirac, Laurent. "Etude de la radioactivité 2-protons de 45Fe avec une chambre à projection temporelle." Phd thesis, Bordeaux 1, 2011. http://tel.archives-ouvertes.fr/tel-00659079.
Повний текст джерелаGoigoux, Thomas. "Etude de la radioactivité deux-protons de 67Kr et développement d’une chambre à projection temporelle." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0706/document.
Повний текст джерелаTwo-proton radioactivity is a decay mode of proton-rich nuclei located beyond the proton nuclear existence limit (drip line). Predicted in the 1960s, this process was observed for the first time in 2002 in the 45Fe decay study. Only four two-proton emitters were known so far: 45Fe, 48Ni, 54Zn and 19Mg. A search for new emitters was performed with the EURICA- WAS3ABi setup at the RIKEN Nishina center in 2015. The decay of 59Ge, 63Se, 67Kr and 68Kr was observed for the first time. Two-proton radioactivity of 67Kr together with the beta and delayed proton decay of exotic nuclei in the region were studied. A time projection chamber (TPC) developed at the CENBG (2004-2011) enabled the study of the correlations between the protons for 45Fe and 54Zn. A second generation of TPC is under construction within the ACTAR TPC (ACtive TARget for TPC) collaboration. This detector enables a reconstruction in three dimensions of the energy deposited in the active volume which allows a more efficient reconstruction of the tracks as compared to the previous TPC. The generic electronics GET (General Electronics for TPCs) manages the processing and acquisition of the signals. The characterisation of the GET electronics and the TPC demonstrator at CENBG is devoted to the second aspect of this PhD work
Pibernat, Jérôme. "Conception d'une électronique de traitement de signaux de forte dynamique issus d'une chambre à projection temporelle." Bordeaux 1, 2007. http://www.theses.fr/2007BOR13600.
Повний текст джерелаThe emphasis on many-particles radioactive decays requires a tracking detector like a Time Projection Chamber (TPC), which operating point can be set in accordance with the nucleides analyzed. The electrical model of such a detector reveals that, depending on its operating conditions and the nature of elements under study, the signals dynamic range can be up to more than five orders of magnitude. Consequently, an application specific processing system has to be designed. To meet the requirements of the experimental equipment, this system muste be integrated and its functional architecture muste be similar to the one of the prototype presented. The topology of the input stage of the protoype narrows the dynamics of the processing. The solution suffested to solve this problem consists in substituting this stage by a second generation current conveyor (CCII) with multiple outputs. The study of its linearity leads to predict the highest signal amplitude that it's able to process. A dynamic range greater than 1. 10(5) obtained in simulation with adapted filters. Optimization of this conveyor and filters coukd lead to extend even more this dynamic range
Lázaro, Roche Ignacio. "Design, réalisation et test in situ d’une caméra muon pour des applications en sciences de la terre et en génie civil." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4074/document.
Повний текст джерелаThis thesis is dedicated towards the creation of a new direction-sensitive tool for muon flux measurement based on a thin time projection chamber with a Micromegas readout, to achieve a compact detector with an angular resolution compatible with civil engineering and geophysics imagery and monitoring applications. The main motivation is to develop a detector capable to fill the technological gap for applications with compactness and transportability constraints. The dissertation provides a review of the different existing muon detection technologies and their diverse fields of application. Two muon imaging techniques are introduced: transmission and scattering muography. Transmission muography, more suitable for big targets, is based on the attenuation of the natural-occurring cosmic-muon flux due to the opacity of the material they traverse. This non-destructive, passive technique provides original information that can be used for imaging purposes. The work covers the methodology used towards the characterization of the incidental muon flux both on the surface and in underground conditions. A detailed description of the physical processes triggered by the passage of a muon through the detector is provided. Results of the simulations of the signal formation processes are presented and discussed to justify the design choices of the key components so as to meet performance requirements in term of temporal, spatial and angular resolution. The influence of operational or external parameters such as the gain, temperature or presence of contaminants is covered as well. The thesis describes in detail the principal phases of design and assembly of the MUST2 detector, including: (i) the design of the Micromegas readout layout, (ii) the choice of gas, (iii) the conception of an electric field homogenizer, (iv) the choice of the electronics instrumentation and its trigger signal, and (v) the creation of an auxiliary system to manage the gas. The versatility of MUST2 has been proved with the successful use of different trigger options and electronics. The data is acquired by means of software developed for the CERN’s Scalable Readout System electronics and subsequently analyzed with a muon trajectory reconstruction algorithm, which retrieves the: time of passage, 2D position, zenith and azimuth angles of the muons traversing the detector. The characteristics, performance and limitations of the data acquisition chain are presented and evaluated, a series of guidelines towards the improvement of its efficiency of are provided. A series of characterization tests has been carried out in different environments: controlled muon beam, open sky, at the bottom of a valley and in underground conditions. These tests have enabled a better understanding of the performance of the detector and allowed to tune up its operational parameters. Despite the weak statistics of the test runs, the measured muon flux has shown a good correlation with the surrounding target volumes. A campaign of measurements in real field conditions has been carried out at the Saint-Saturnin-les-Apt (Vaucluse, France) dam. The experimental results obtained are in consonance with the values anticipated by the digital model, the field transportability and the capability to perform long-term out-of-lab measurements have been demonstrated. On the downside, the impact of the external temperature on the data acquisition should be balanced out to get a steady acquisition and monitor the temporal evolution of the muon flux. In conclusion, the successful proof-of-concept trial allows to validate the MUST2 camera for transmission muography purposes
Wang, Wenxin. "Etude d’un grand détecteur TPC Micromegas pour l’ILC." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112099/document.
Повний текст джерелаThe study of the fundamental building blocks of matter necessitates always more powerful accelerators. New particles are produced in high energy collisions of protons or electrons. The by-Products of these collisions are detected in large apparatus surrounding the interaction point. The 125 GeV Higgs particle discovered at LHC will be studied in detail in the next e⁺e⁻ collider. The leading project for this is called ILC. The team that I joined is working on the R&D for a Time Projection Chamber (TPC) to detect the charged tracks by the ionization they leave in a gas volume, optimised for use at ILC. This primary ionization is amplified by the so-Called Micromegas device, with a charge-Sharing anode made of a resistive-Capacitive coating. After a presentation of the physics motivation for the ILC and ILD detector, I will review the principle of operation of a TPC (Chapter 2) and underline the advantages of the Micromegas readout with charge sharing. The main part of this PhD work concerns the detailed study of up to 12 prototypes of various kinds. The modules and their readout electronics are described in Chapter 3. A test-Bench setup has been assembled at CERN (Chapter 4) to study the response to a ⁵⁵Fe source, allowing an energy calibration and a uniformity study. In Chapter 5, the ion backflow is studied using a bulk Micromegas and the gas gain is measured using a calibrated electronics chain. With the same setup, the electron transparency is measured as a function of the field ratio (drift/amplification). Also, several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. These beam tests allowed the detailed study of the spatial resolution. In the final test, the endplate was equipped with seven modules, bringing sensitivity to misalignment and distortions. Such a study required software developments (Chapter 6) to make optimal use of the charge sharing and to reconstruct multiple tracks through several modules with a Kalman filter algorithm. The results of these studies are given in Chapter 7. The TPC technique has been applied to neutron imaging in collaboration with the University of Lanzhou. A test using a neutron source has been carried out in China. The results are reported in Chapter 8
Cotte, Philippe. "Le projet WA105 : un prototype de chambre à projection temporelle à argon liquide diphasique utilisant des détecteurs LEMs." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS246/document.
Повний текст джерелаThe WA105/ProtoDUνE-DP project is a prototyping experiment which goal is to test the Double Phase Liquid Argon Time Projection Chamber (DLArTPC) technology at large scale, to use it in the future neutrinos physics experiment DUνE. Scheduled for the end of 2026 in the USA, DUνE aims at measuring the neutrinos mass ordering and the leptonic CP symetry violation. The first part of this thesis is dedicated to tests and simulations of the detection and amplification elements of the WA105 detectors. The second part is focused on the analysis of cosmic muon tracks seen by a first prototype of 4t, operated at CERN in 2017. The DLArTPC technology is a variation of the LArTPC technology allowing for the amplification of the electrons extracted from the liquid phase to the gas phase. The Large Electron Amplifiers (LEMs) are 50x50cm² PCB plates with a thickness of 1mm, pierced by 400k holes of 500 microns diameter, covered on each side by a thin layer of copper giving a gain superior to 10. Part of this thesis work is about the simulation of electrons drifting through those LEMs to study the charge collection efficiencies. Another part of this thesis is about the measurement of important caracteristics (thickness, voltage stability) of the LEMs that are used in the 300t demonstrator of WA105, which commissionning was done in the end of August 2019. The gain is one of the main caracteristics of a DLArTPC, and it has been studied in the 4t prototype by detecting cosmic muons. Comparisons are done with previous results from 2014 from a smaller prototype of 3L, and a dedicated reconstruction program was created to analyse noisy events. The work done in the thesis allowed for a better understanding of DALrTPCs, mainly on the multiplication and drift of electrons. This knowledge will be important during the operation of the 300t demonstrator at CERN, and during the operationg of the DLArTPC module of DUνE
Tampon, Benjamin. "Qualification expérimentale de la μTPC LNE-IRSN-MIMAC comme instrument de référence pour les mesures en énergie et en fluence de champs neutronique entre 27keV et 6,5 MeV". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAY083/document.
Повний текст джерелаIn France, the references associated to the neutron fluence and the deriva-ted dosimetric quantities are under the responsability of the micro-irradiation and neutronmetrology and dosimetry laboratory (LMDN)of IRSN. In order to improve the definition ofreferences in fluence and energy of the monoenergetic neutron fields, produced at AMANDEfacility, a micro-TPC gaseous detector, called LNE-IRSN-MIMAC, is developping in collabo-ration with LPSC.In a previous work, the detector was qualified for neutron fields in the energy rangebetween 27 keV and 565 keV. The objective of the present work is to extend the range of theμTPC above 1 MeV. The choice of the gas, the development of an analysis method and thedetector characterization allowed to validate the detector capacity to perform measurements inmonoenergetic neutron fields ranging from 250 keV up to 6,5 MeV with a relative uncertaintyof 3% and 2,5% respectively in energy and fluence
Gros, Marie-Hélène. "Calibration par lasers de la chambre a projection temporelle (tpc) de delphi et mesure des parametres du zo par l'etude de ses desintegrations hadroniques." Paris 11, 1990. http://www.theses.fr/1990PA112101.
Повний текст джерелаКниги з теми "Chambre de projection temporelle"
Bessy, Maurice. Le mystère de la chambre noire: Histoire de la projection animée. Paris: Pygmalion/G. Watelet, 1990.
Знайти повний текст джерела