Добірка наукової літератури з теми "Chalcogenide alloys"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Chalcogenide alloys".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Chalcogenide alloys"

1

Rocca, J. A., M. A. Ureña, and M. R. Fontana. "MASTER CURVE FOR CRYSTALLIZATION OF SB70TE30AMORPHOUS ALLOYS." Anales AFA 34, no. 1 (March 28, 2023): 22–26. http://dx.doi.org/10.31527/analesafa.2023.34.1.22.

Повний текст джерела
Анотація:
One of the possible uses of chalcogenide glasses is their application in phase change memory devices. The operation of these non-volatile memories is based on the use of an alloy with chalcogenide elements as a sensitive material, taking advantage of the great contrast in electrical resistance between the amorphous and crystalline states. The Sb70Te30(atomic percentage) alloy stands out among the chalcogenide materials with these properties. On the other hand, the knowledge of the microscopic mechanisms of the amorphous alloys crystallization allows microstructural control to optimize properties. At this point, differential scanning calorimetry (DSC) has been widely used for the determination of the thermal stability of amorphous alloys. Previously we have started the study of the crystallization kinetics ofSb70Te30amorphous alloys. In this work, a procedure based on the so-called isokinetic hypothesis has been applied to carry out the kinetic analysis of the calorimetric data of continuous heating. In particular, the so-called master curve of the crystallization kinetics of this alloy is determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Shan, Xiaofang Li, Zhifeng Ren, and Qian Zhang. "Recent progress towards high performance of tin chalcogenide thermoelectric materials." Journal of Materials Chemistry A 6, no. 6 (2018): 2432–48. http://dx.doi.org/10.1039/c7ta09941j.

Повний текст джерела
Анотація:
This review summarizes the recent advances in tin chalcogenide (SnTe, SnSe, and SnS) bulk alloys, provides the possible directions for further improving the thermoelectric properties and elucidates the challenges for optimization and application of tin chalcogenides.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hegde, Ganesh Shridhar, and A. N. Prabhu. "A Review on Doped/Composite Bismuth Chalcogenide Compounds for Thermoelectric Device Applications: Various Synthesis Techniques and Challenges." Journal of Electronic Materials 51, no. 5 (March 14, 2022): 2014–42. http://dx.doi.org/10.1007/s11664-022-09513-x.

Повний текст джерела
Анотація:
AbstractOne of the global demands of primary research objectives is to achieve human energy harvesting and self-powered wearable technologies. Bismuth chalcogenides are the trending materials for thermoelectric generators and Peltier coolers due to their notable thermoelectric figure of merit in the low- and room-temperature range. Systematic alloying of bismuth chalcogenides leads to a substantial change in their electrical and thermal transport properties. The high thermoelectric figure of merit (ZT) observed in bismuth chalcogenides is due to the rhombohedral crystal structure, lower effective mass, low thermal conductivity, and large band degeneracy. This review is aimed at identifying and quantifying different techniques for effectively improving the thermoelectric properties of doped/composite bismuth chalcogenide compounds. The review also examines the various synthesis methods including ball milling (BM), spark plasma sintering (SPS), self-propagating high-temperature synthesis (SHS), soft chemical reaction, hydrothermal reaction, melt growth (MG), melt spinning (MS), sintering and consolidated synthesis, and hot extrusion, with their respective figures of merit. Since device modification is a challenging task, this report reviews the present research on bismuth chalcogenide alloys to benchmark future development using various techniques. Graphical Abstract
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kokkonis, P. A., and V. Leute. "Ternary Diffusion Effects in Chalcogenide Alloys." Defect and Diffusion Forum 143-147 (January 1997): 1159–66. http://dx.doi.org/10.4028/www.scientific.net/ddf.143-147.1159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yang, C. Y., D. E. Sayers, and M. A. Paesler. "Structural changes in amorphous chalcogenide alloys." Physica B: Condensed Matter 158, no. 1-3 (June 1989): 69–70. http://dx.doi.org/10.1016/0921-4526(89)90202-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ivanova, L. D., I. Yu Nikhezina, Yu V. Granatkina, V. A. Dudarev, S. A. Kichik, and A. A. Mel’nikov. "Thermoelements from antimony- and bismuth-chalcogenide alloys." Semiconductors 51, no. 8 (August 2017): 986–88. http://dx.doi.org/10.1134/s1063782617080140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bernard, James E., and Alex Zunger. "Optical bowing in zinc chalcogenide semiconductor alloys." Physical Review B 34, no. 8 (October 15, 1986): 5992–95. http://dx.doi.org/10.1103/physrevb.34.5992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Slimani, M., H. Meradji, C. Sifi, S. Labidi, S. Ghemid, E. B. Hannech, and F. El Haj Hassan. "Ab initio investigations of calcium chalcogenide alloys." Journal of Alloys and Compounds 485, no. 1-2 (October 2009): 642–47. http://dx.doi.org/10.1016/j.jallcom.2009.06.104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Saiter, Jean-Marc, Thierry Derrey, and Claude Vautier. "Coordinance of bismuth in amorphous chalcogenide alloys." Journal of Non-Crystalline Solids 77-78 (December 1985): 1169–72. http://dx.doi.org/10.1016/0022-3093(85)90867-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bokova, Maria, Steven Dumortier, Christophe Poupin, Renaud Cousin, Mohammad Kassem, and Eugene Bychkov. "Potentiometric Chemical Sensors Based on Metal Halide Doped Chalcogenide Glasses for Sodium Detection." Sensors 22, no. 24 (December 18, 2022): 9986. http://dx.doi.org/10.3390/s22249986.

Повний текст джерела
Анотація:
Chalcogenide glasses are widely used as sensitive membranes in the chemical sensors for heavy metal ions detection. The lack of research work on sodium ion-selective electrodes (Na+-ISEs) based on chalcogenide glasses is due to the high hygroscopicity of alkali dopes chalcogenides. However, sodium halide doped Ga2S3-GeS2 glasses are more chemically stable in water and could be used as Na+-sensitive membranes for the ISEs. In this work we have studied the physico-chemical properties of mixed cation (AgI)x(NaI)30-x(Ga2S3)26(GeS2)44 chalcogenide glasses (where x = 0, 7.5, 15, 22.5 and 30 mol.% AgI) using density, DSC, and conductivity measurements. The mixed cation effect with shallow conductivity and glass transition temperature minimum was found for silver fraction r = Ag/(Na + Ag) ≈ 0.5. Silver addition decreases the moisture resistance of the glasses. Only (AgI)22.5(NaI)7.5(Ga2S3)26(GeS2)44 composition was suitable for chemical sensors application, contrary to the single cation sodium halide doped Ga2S3-GeS2 glasses, where 15 mol.% sodium-halide-containing vitreous alloys are stable in water solutions. The analytical parameters of (NaCl)15(Ga2S3)23(GeS2)62; (NaI)15(Ga2S3)23(GeS2)62 and (AgI)22.5(NaI)7.5(Ga2S3)26(GeS2)44 glass compositions as active membranes in Na+-ISEs were investigated, including detection limit, sensitivity, linearity, ionic selectivity (in the presence of K+, Mg2+, Ca2+, Ba2+, and Zn2+ interfering cations), reproducibility and optimal pH-range.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Chalcogenide alloys"

1

Price, Samantha Jayne. "Chalcogenide alloys for optical recording." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Thiagarajan, Suraj Joottu. "Thermoelectric properties of rare-earth lead selenide alloys and lead chalcogenide nanocomposites." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1196263620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Thiagarajan, Suraj Joottu. "Thermoelectric properties of rare-earth lead selenide alloys and lead chalcogenide nanocomposites." The Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=osu1196263620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Benmore, Christopher James. "A neutron diffraction study on the structure of fast-ion conducting and semiconducting glassy chalcogenide alloys." Thesis, University of East Anglia, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Carria, Egidio. "Amorphous-Crystal Phase Transitions in Ge2Sb2Te5 and GexTe1-x alloys." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/933.

Повний текст джерела
Анотація:
Aim of this work was the investigation of the phase transitions in Ge2Sb2Te5 and GexTe1-x thin films. These alloys are of interest since they exhibit an excellent combination of electrical-optical and phase changing characteristics for memory applications. In particular we have focused our attention on the amorphous-crystal transition. We have then discussed the correlation between the local order in the amorphous network and the crystallization kinetics. To this aim we have modified the properties of the amorphous phase by laser and ion irradiation looking to the consequent variation in the phase transition speed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bragaglia, Valeria. "Epitaxial Growth and Ultrafast Dynamics of GeSbTe Alloys and GeTe/Sb2Te3 Superlattices." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18406.

Повний текст джерела
Анотація:
In dieser Arbeit wird das Wachstum von dünnen quasi-kristallinen Ge-Sb-Te (GST) Schichten mittels Molekularstrahlepitaxie demonstriert, die zu einer geordneten Konfiguration von intrinsischen Kristallgitterfehlstellen führen. Es wird gezeigt, wie es eine Strukturanalyse basierend auf Röntgenstrahlbeugungssimulationen, Dichtefunktionaltheorie und Transmissionselektronenmikroskopie ermöglicht, eine eindeutige Beurteilung der Kristallgitterlückenanordnung in den GST-Proben vorzunehmen. Das Verständnis für die Ordnungsprozesse der Gitterfehlstellen erlaubt eine gezielte Einstellung des Ordnungsgrades selbst, der mit der Zusammensetzung und der Kristallphase des Materials in Zusammenhang steht. Auf dieser Basis wurde ein Phasendiagramm mit verschiedenen Wachstumsfenstern für GST erstellt. Des Weiteren wird gezeigt, dass man eine hohe Ordnung der Gitterfehlstellen in GST auch durch Ausheizprozesse und anhand von Femtosekunden-gepulster Laserkristallisation von amorphem Material erhält, das zuvor auf einem als Kristallisationsgrundlage dienenden Substrat abgeschiedenen wurde. Diese Erkenntnis ist bemerkenswert, da sie zeigt, dass sich kristalline GST Schichten mit geordneten Kristallgitterlücken durch verschiedene Herstellungsprozesse realisieren lassen. Darüber hinaus wurde das Wachstum von GeTe/Sb2Te3 Übergittern durchgeführt, deren Struktur die von GST mit geordneten Gitterfehlstellen widerspiegelt. Die Möglichkeit den Grad der Gitterfehlstellenordung in GST gezielt zu manipulieren wurde mit einer Studie der Transporteigenschaften kombiniert. Die Anwendung von großflächigen Charakterisierungsmethoden wie XRD, Raman und IR-Spektroskopie, erlaubte die Bestimmung der Phase und des Fehlstellenordnungsgrades von GST und zeigte eindeutig, dass die Fehlstellenordnung für den Metall-Isolator-Übergang (MIT) verantwortlich ist. Insbesondere wird durch das Vergleichen von XRD-Messungen mit elektrischen Messungen gezeigt, dass der Übergang von isolierend zu leitend erfolgt, sobald eine Ordnung der Kristallgitterlücken einsetzt. Dieses Phänomen tritt in der kubischen Kristallphase auf, wenn Gitterfehlstellen in GST von einem ungeordneten in einen geordneten Zustand übergehen. Im zweiten Teil des Kapitels wird eine Kombination aus FIR- und Raman-Spektroskopie zur Untersuchung der Vibrationsmoden und des Ladungsträgerverhaltens in der amorphen und der kristallinen Phase angewendet, um Aktivierungsenergien für die Elektronenleitung, sowohl für die kubische, als auch für die trigonale Kristallphase von GST zu bestimmen. Hier ist es wichtig zu erwähnen, dass, in Übereinstimmung mit Ergebnissen aus anderen Untersuchungen, das Auftauchen eines MIT beim Übergang zwischen der ungeordneten und der geordneten kubischen Phase beobachtet wurde. Schlussendlich wurden verschiedene sogenannte Pump/Probe Technik, bei der man das Material mit dem Laser anregt und die Röntgenstrahlung oder Terahertz (THz)-spektroskopie als Sonde nutzt, angewandt. Dies dient um ultra-schnelle Dynamiken zu erfassen, die zum Verständnis der Umschaltmechanismen nötig sind. Die Empfindlichkeit der THz-Messungen hinsichtlich der Leitfähigkeit, sowohl in GST, als auch in GeTe/Sb2Te3 Übergittern zeigte, dass die nicht-thermische Natur der Übergitterumschaltprozesse mit Grenzflächeneffekten zusammenhängt und . Der Ablauf wird mit beeindruckender geringer Laser-Fluenz erreicht. Dieses Ergebnis stimmt mit Berichten aus der Literatur überein, in denen ein Kristall-zu Kristallwechsel von auf Übergittern basierenden Speicherzellen für effizienter gehalten wird als GST Schmelzen, was zu einen ultra-schwachen Energieverbrauch führt.
The growth by molecular beam epitaxy of Ge-Sb-Te (GST) alloys resulting in quasi-single-crystalline films with ordered configuration of intrinsic vacancies is demonstrated. It is shown how a structural characterization based on transmission electron microscopy, X-ray diffraction and density functional theory, allowed to unequivocally assess the vacancy ordering in GST samples, which was so far only predicted. The understanding of the ordering process enabled the realization of a fine tuning of the ordering degree itself, which is linked to composition and crystalline phase. A phase diagram with the different growth windows for GST is obtained. High degree of vacancy ordering in GST is also obtained through annealing and via femtosecond-pulsed laser crystallization of amorphous material deposited on a crystalline substrate, which acts as a template for the crystallization. This finding is remarkable as it demonstrates that it is possible to create a crystalline GST with ordered vacancies by using different fabrication procedures. Growth and structural characterization of GeTe/Sb2Te3 superlattices is also obtained. Their structure resembles that of ordered GST, with exception of the Sb and Ge layers stacking sequence. The possibility to tune the degree of vacancy ordering in GST has been combined with a study of its transport properties. Employing global characterization methods such as XRD, Raman and Far-Infrared spectroscopy, the phase and ordering degree of the GST was assessed, and unequivocally demonstrated that vacancy ordering in GST drives the metal-insulator transition (MIT). In particular, first it is shown that by comparing electrical measurements to XRD, the transition from insulating to metallic behavior is obtained as soon as vacancies start to order. This phenomenon occurs within the cubic phase, when GST evolves from disordered to ordered. In the second part of the chapter, a combination of Far-Infrared and Raman spectroscopy is employed to investigate vibrational modes and the carrier behavior in amorphous and crystalline phases, enabling to extract activation energies for the electron conduction for both cubic and trigonal GST phases. Most important, a MIT is clearly identified to occur at the onset of the transition between the disordered and the ordered cubic phase, consistently with the electrical study. Finally, pump/probe schemes based on optical-pump/X-ray absorption and Terahertz (THz) spectroscopy-probes have been employed to access ultrafast dynamics necessary for the understanding of switching mechanisms. The sensitivity of THz-probe to conductivity in both GST and GeTe/Sb2Te3 superlattices showed that the non-thermal nature of switching in superlattices is related to interface effects, and can be triggered by employing up to one order less laser fluences if compared to GST. Such result agrees with literature, in which a crystal to crystal switching of superlattice based memory cells is expected to be more efficient than GST melting, therefore enabling ultra-low energy consumption.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sahin, Cuneyt. "Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1897.

Повний текст джерела
Анотація:
The emerging field of spintronics relies on the manipulation of electron spin in order to use it in spin-based electronics. Such a paradigm change has to tackle several challenges including finding materials with sufficiently long spin lifetimes and materials which are efficient in generating pure spin currents. This thesis predicts that two types of material families could be a solution to the aforementioned challenges: complex oxides and bismuth based materials. We derived a general approach for constructing an effective spin-orbit Hamiltonian which is applicable to all nonmagnetic materials. This formalism is useful for calculating spin-dependent properties near an arbitrary point in momentum space. We also verified this formalism through comparisons with other approaches for III-V semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting spin lifetimes for strained SrTiO3 and a two-dimensional electron gas in SrTiO3 (such as at the LaAIO3/SrTiO3 interface). Our results suggest robust spin coherence and spin transport properties in SrTiO3 related materials even at room temperature. In the second part of the study we calculated intrinsic spin Hall conductivities for bismuth-antimony Bi1-xSbx semimetals with strong spin-orbit couplings, from the Kubo formula and using Berry curvatures evaluated throughout the Brillouin zone from a tight-binding Hamiltonian. Nearly crossing bands with strong spin-orbit interaction generate giant spin Hall conductivities in these materials, ranging from 474 ((ћ/e)Ω-1cm-1) for bismuth to 96((ћ/e)Ω-1cm-1) for antimony; the value for bismuth is more than twice that of platinum. The large spin Hall conductivities persist for alloy compositions corresponding to a three-dimensional topological insulator state, such as Bi0.83Sb0.17. The spin Hall conductivity could be changed by a factor of 5 for doped Bi, or for Bi0.83Sb0.17, by changing the chemical potential by 0.5 eV, suggesting the potential for doping or voltage tuned spin Hall current. We have also calculated intrinsic spin Hall conductivities of Bi2Se3 and Bi2Te3 topological insulators from an effective tight-binding Hamiltonian including two nearest-neighbor interactions. We showed that both materials exhibit giant spin Hall conductivities calculated from the Kubo formula in linear response theory and the clean static limit. We conclude that bismuth-antimony alloys and bismuth chalcogenides are primary candidates for efficiently generating spin currents through the spin Hall effect.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gunasekera, Kapila. "Fragility, melt/glass homogenization, self-organization in chalcogenide alloy systems." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1382372615.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Akhtar, Javeed. "Structural and optoelectronic studies of lead chalcogenide thin films and nanocrystals." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/structural-and-optoelectronic-studies-of-lead-chalcogenide-thin-films-and-nanocrystals(625f5327-bebc-42e3-898c-d884a3df8860).html.

Повний текст джерела
Анотація:
The work described herein deals with the synthesis and characterization of lead chalcogenide thin films and nanocrystals. The first part of thesis describes the properties of semiconductors followed by an analysis on the chemical vapour deposition and nanoparticulate formation. In the next part of thesis, single-source precursors of type thioselenophosphinato, selenoureato, dithiocarbamato and dithiocarbanato complexes of lead have been synthesised and characterised. As-synthesised compounds have been utilised for the fabrication of lead sulfide and lead selenide thin films by aerosol-assisted chemical vapour deposition as well as nanocrystals by colloidal injection method. Lead sulfide thin films were also deposited by liquid-liquid interface from lead dithiocarbanato at room temperature. The as grown thin films of lead sulfide and lead selenide have been characterised by XRD, SEM and energy dispersive x-ray (EDX) analysis. In the second part of the thesis, preparation of lead sulfide and lead selenide nanocrystals in olive oil at low growth temperatures (50-60°C) is described and have shown that by controlling experimental conditions, well-defined particles with tunable emission in mid and far-infrared region can be synthesised. Furthermore, compositionally-tuned PbSxSe1-x nanocrystals has also been prepared by adding controlled amount of sulur and selenium ingredients into lead oxide. Homogenous distribution of sulfur and selenium within alloyed nanocrystals is confirmed by transmission electron microscope studies. Moreover, attempts have been made to prepare quaternary (PbTe/Se/S) nanocrystals of lead chalcogenides and depth (1.9-5.8 nm) profile analysis by x-ray photoelectron spectroscopy confirmed the formation of core/shell/shell type structure i.e. PbTe/S/Se.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Martin, Joshua. "Methods of thermoelectric enhancement in silicon-germanium alloy type I clathrates and in nanostructured lead chalcogenides." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Chalcogenide alloys"

1

1942-, Taylor P. C., Materials Research Society Meeting, and Symposium on Chalcogenide Alloys for Reconfigurable Electronics (2006 : San Francisco, Calif.), eds. Chalcogenide alloys for reconfigurable electronics: Symposium held April 19-21, 2006, San Francisco, California, U.S.A. Warrendale, Pa: Materials Research Society, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Benmore, Christopher James. A neutron diffraction study on the structure of fast-ion conducting and semiconducting glassy chalcogenide alloys. Norwich: University of East Anglia, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kolobov, Alexander V., P. Craig Taylor, Arthur H. Edwards, and Jon Maimon. Chalcogenide Alloys for Reconfigurable Electronics: Volume 918. University of Cambridge ESOL Examinations, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Taylor, P. Craig. Chalcogenide Alloys for Reconfigurable Electronics: Symposium Held April 19-21, 2006, San Francisco, California, U.S.A. (Materials Research Society Symposium Proceedings (Hardcover)). Materials Research Society, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Chalcogenide alloys"

1

Mikla, Victor I., and Victor V. Mikla. "Spectroscopic Studies of Gap States and Laser-Induced Structural Transformations in Selenium-Based Arsenic-Free Amorphous Semiconductors: Sb x Se1−x Alloys." In Metastable States in Amorphous Chalcogenide Semiconductors, 101–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02745-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

DIEKER, HENNING, HAJO NOERENBERG, CHRISTOPH STEIMER, and MATTHIAS WUTTIG. "CHALCOGENIDE ALLOYS AS A BASIS FOR NEW NON-VOLATILE RANDOM ACCESS MEMORIES." In Functional Properties of Nanostructured Materials, 455–60. Dordrecht: Springer Netherlands, 2006. http://dx.doi.org/10.1007/1-4020-4594-8_43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Evans, E. J., J. H. Helbers, and S. R. Ovshinsky. "Reversible Conductivity Transformations in Chalcogenide Alloy Films." In Disordered Materials, 17–22. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-8745-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Boniardi, Mattia. "Thermal Model and Remarkable Temperature Effects on the Chalcogenide Alloy." In Phase Change Memory, 41–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69053-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ravindra, N. M., Bhakti Jariwala, Asahel Bañobre, and Aniket Maske. "Thermoelectrics: Material Candidates and Structures I – Chalcogenides and Silicon-Germanium Alloys." In Thermoelectrics, 69–89. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96341-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kaushik, Parul, Hukum Singh, and Ambika Devi. "Theoretical Evaluation of (Ge20Se80)100−x(Si20Te80)x Quaternary Chalcogenide Glassy Alloy." In Lecture Notes in Mechanical Engineering, 533–42. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-6945-4_40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Xinyu, and J. K. Furdyna. "Optical dispersion of ternary II–VI semiconductor alloys." In Chalcogenide, 67–117. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102687-8.00006-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Madan, Arun, and Melvin P. Shaw. "Characterization and Properties of Amorphous Chalcogenide Alloys." In The Physics and Applications of Amorphous Semiconductors, 318–54. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-092443-4.50008-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Madan, Arun, and Melvin P. Shaw. "Electrical Switching and Memory Devices Employing Films of Amorphous Chalcogenide Alloys." In The Physics and Applications of Amorphous Semiconductors, 355–470. Elsevier, 1988. http://dx.doi.org/10.1016/b978-0-08-092443-4.50009-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hoddeson, Lillian, and Peter Garrett. "Information: Displays and Memory Devices (1981–2007)." In The Man Who Saw Tomorrow, 209–24. The MIT Press, 2018. http://dx.doi.org/10.7551/mitpress/9780262037532.003.0011.

Повний текст джерела
Анотація:
Adapting the thin-film technology developed in its solar energy program, ECD became a pioneer in making flat panel displays. Its subsidiary Ovonic Imaging Systems enjoyed some success in this area, but in time the display industry was taken over by the giant Japanese and Korean electronics companies. Commercializing Ovshinsky’s invention of phase-change memory also went slowly. The company first developed chalcogenide alloys for faster optical memories, used in rewritable CDs and DVDs. At Ovshinsky’s urging, the same alloy was used in an electrical phase-change memory, which advanced to the point where a new company, Ovonyx, was begun to develop its promise for use in computers. One other promising information technology, a “cognitive computer” whose architecture modeled that of the human brain, never reached fruition because the program was terminated by ECD at the time Ovshinsky was pushed out.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Chalcogenide alloys"

1

Piccinotti, D., B. Gholipour, J. Yao, K. F. Macdonald, B. E. Hayden, and N. I. Zheludev. "Combinatorial search for plasmonic and epsilon-near-zero chalcogenide alloys." In 2017 Conference on Lasers and Electro-Optics Europe (CLEO/Europe) & European Quantum Electronics Conference (EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8086613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dabard, Corentin, Sandrine Ithurria, and Emmanuel Lhuillier. "Optimized Cation Exchange for Mercury Chalcogenide 2D Nanoplatelets and its Application for Alloys." In nanoGe Spring Meeting 2022. València: Fundació Scito, 2022. http://dx.doi.org/10.29363/nanoge.nsm.2022.102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Edgerton, Robert F. "Reversible Optical Data Storage Materials Optical Properties of Several Chalcogenide Compounds." In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/ods.1987.pdp2.

Повний текст джерела
Анотація:
The use of chalcogenide alloys for reversible optical data storage was first reported by Ovshinsky in 1970.1 The design of an optimal system requires a thin film design with the active material as part of a thin film structure.2 The optical properties of the material in both the recorded (amorphous) and erased (crystalline) is required to calculate the performance of a particular design. Several chalcogenide compounds (TeSe, Te3Sb2, Te3As2, Te2Sb2Se) were deposited as amorphous thin films on quartz with a nominal thickness of 100nm. Two films from the same deposition were used in each study and one the films was crystallized by heating appropriately in an oven.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kostylev, S. A. "Recovery and other effects of annihilation of high current density filaments after switching in chalcogenide alloys." In 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS). IEEE, 2008. http://dx.doi.org/10.1109/nvmt.2008.4731186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sharma, Ambika, Kumari Anshu, and Preeti Yadav. "Study of conduction mechanism in amorphous Ge[sub 20]Te[sub 80-x]Bi[sub x] (x = 0, 1.5, 2.5, 5.0) chalcogenide glassy alloys." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sharma, Yagya D., Laxman Singh, and Promod K. Bhatnagar. "New chalcogenide alloy as phase-change optical recording material." In International Symposium on Optical Science and Technology, edited by Mario N. Armenise. SPIE, 2001. http://dx.doi.org/10.1117/12.447641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bhadra, S. K., Amitesh Maiti, and K. Goswami. "Synthesis of chalcogenide alloy film by CW and pulse laser radiation for integrated device." In Photonics 2000: International Conference on Fiber Optics and Photonics, edited by S. K. Lahiri, Ranjan Gangopadhyay, Asit K. Datta, Samit K. Ray, B. K. Mathur, and S. Das. SPIE, 2001. http://dx.doi.org/10.1117/12.441321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gadhwal, Reena, and Ambika Devi. "Theoretical evaluation of physicochemical parameters of (Ge20Te80)x(Se80Te20)100-x pseudobinary chalcogenide glassy alloy." In PROCEEDING OF INTERNATIONAL CONFERENCE ON FRONTIERS OF SCIENCE AND TECHNOLOGY 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0115367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Raj, Rajnish, Pooja Lohia, and D. K. Dwivedi. "Structural and optical investigations of (GeS2)85(Sb2S3)15 chalcogenide glassy alloy: A material for IR devices." In 2020 International Conference on Electrical and Electronics Engineering (ICE3). IEEE, 2020. http://dx.doi.org/10.1109/ice348803.2020.9122789.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Saliminia, A., T. V. Galstyan, A. Villeneuve, and Kathleen Richardson. "Z-Scan Study of Thin Chalcogenide As2S3 Glass Films and Holographic Fabrication of Microlens Networks." In Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.bmg.4.

Повний текст джерела
Анотація:
Chalcogenide glasses (ChG) have been shown to be very promising candidates for optical information storage and infrared communication systems [1]. The high photosensitivity of these materials in the visible (near bandgap for ChG) spectral band allows the fabrication of various photoinduced structures for integrated optical circuits [2]. The characterization of the light-induced complex refractive index changes (Δn) in ChG and the realization of new applications represent the goal of the present work. Namely, we report, we believe for the first time, the dynamic separation of different photoexcitation modes in ChG, and the holographic fabrication of one (1D) and two (2D) dimensional microlens networks. We study the ChG film refractive index (n), absorption (α) and thickness (d) photomodulation processes, both in steady state and in transient excitation regimes. We use dynamic holography [3] and Z-scan techniques [4] for this study. These techniques provide important information concerning both the dynamical and the steady-state excitation behavior of our ChG films. Different physical and photochemical mechanisms are responsible for the complex behavior of ChG [3] and their understanding and control is an important challenge for the possible applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії